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ReGenesees-package ReGenesees: a Package for Design-Based and Model-Assisted Analy-
sis of Complex Sample Surveys

Description

ReGenesees is an R package for design-based and model-assisted analysis of complex sample
surveys.

It handles multistage, stratified, clustered, unequally weighted survey designs.

Sampling variance estimation for nonlinear (smooth) estimators is obtained by Taylor-series lin-
earization. Sampling variance estimation for multistage designs can be obtained either under the
Ultimate Cluster approximation or by means of an actual multistage computation.

ReGenesees offers comprehensive and advanced functionalities for calibration of survey weights.
In addition, ReGenesees can trim calibration weights while preserving all the calibration con-
straints, and perform ‘special purpose calibration’ tasks, i.e. calibrate on complex population pa-
rameters like Multiple Regression Coefficients.

Estimates, standard errors, confidence intervals and design effects are provided for Horvitz-Thompson
and Calibration estimators of: Totals, Means, absolute and relative Frequency Distributions (marginal,
conditional and joint), Ratios, Shares and Ratios of Shares, Population Variances and Standard De-
viations, Multiple Regression Coefficients and Quantiles (variance via the Woodruff method).

ReGenesees also handles Complex Estimators, i.e. any user-defined estimator that can be expressed
as an analytic function of Horvitz-Thompson or Calibration estimators of Totals or Means, by auto-
matically linearizing them. The Design Covariance and Correlation between Complex Estimators
is also provided.

Furthermore, the package can compute estimates and sampling errors of complex Measures of
Change derived from two not necessarily independent samples.

All the analyses listed above can be carried out for arbitrary subpopulations.

ReGenesees also offers a Generalized Variance Functions (GVF) infrastructure, i.e. facilities for
defining, fitting, testing and plotting GVF models, and to exploit them to predict sampling variance
estimates.

Lastly, the package offers simple survey planning tools to estimate sample size requirements and
perform power calculations.

The ReGenesees package is the fundamental building block of a full-fledged R-based software sys-
tem: the ReGenesees System. The latter has a clear-cut two-layer architecture. The application
layer of the system is embedded into package ReGenesees. A second R package, called ReGene-
sees.GUI, implements the presentation layer of the system, namely a user-friendly Tcl/Tk GUI.
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A Quick Reading Guide to the Reference Manual

This reference manual reports a documentation entry for each (user visible) function of package
ReGenesees. As you may have noticed by reading section ‘R topics documented’ (page 1 of the pdf
manual), these documentation entries are automatically sorted according to the alphabetic ordering
of the names of the functions. Such an ordering doesn’t provide any clue about where should a user
start reading, nor on the best way to proceed further.

In section ‘Table of Contents’, I tried to cluster the most important topics documented in the refer-
ence manual into few broad groups, based on both the statistical goals and on the software design
of the underlying functions.

Moreover, I provided a relevance code for each documented topic/function. The meaning of such
codes, along with the corresponding reading suggestions, are reported in the following table:

Relevance Codes Legend

CODE RELEVANCE READING SUGGESTION

*kk Very Important...... Read these topics as soon as possible. A clear
understanding of these functions is mandatory
in order to start using profitably the package.

*% Important........... Read these topics once you have been experiencing
for a while with (at least some of) the 'Very
Important' functions.

* Useful.............. These functions are ancillary (albeit in
different ways) to the 'Very Important' and
"Important' ones (and their usage is generally
simpler).

Advanced............ These topics are very relevant but, unfortunately
quite difficult. As they involve technical
details, you should postpone their reading until
you become familiar with the package.

Important Notice
It goes without saying that the ‘Examples’ sections at the end of each documented topic represent
a crucial part of this reference manual.

TABLE OF CONTENTS

Survey Design:

**%%x e.svydesign.......... Specification of a Complex Survey Design
* weights.............. Retrieve Sampling Units Weights
* find.lon.strata...... Find Strata with Lonely PSUs
*% collapse.strata...... Collapse Strata Technique for Eliminating
Lonely PSUs
des.addvars.......... Add Variables to Design Objects
des.merge............ Merge New Survey Data into Design Objects

*% smooth.strat.jump....Smooth Weights to Cope with Stratum Jumpers
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Calibration:

*% pop.template......... Template Data Frame for Known Population Totals
population.check..... Compliance Test for Known Totals Data Frames
pop.descC............. Natural Language Description of Known Totals

Templates
**% fill.template........ Fill the Known Totals Template for a
Calibration Task
* pop.plot............. Plot Calibration Control Totals vs Current
Estimates
* bounds.hint.......... A Hint for Range Restricted Calibration
**x e.calibrate.......... Calibration of Survey Weights
* check.cal............ Calibration Convergence Check
*% trimcal.............. Trim Calibration Weights while Preserving
Calibration Constraints
* g.range.............. Range of g-Weights
get.residuals........ Calibration Residuals of Interest Variables
get.linvar........... Linearized Variable(s) of Complex Estimators
by Domains
* ext.calibrated....... Make ReGenesees Digest Externally Calibrated
Weights
contrasts.RG......... Set, Reset or Switch Off Contrasts for
Calibration Models
%intod%. ... .. Compress Nested Factors
Special Purpose Calibration:
prep.calBeta......... Prepare a Survey Design to Calibration on
Multiple Regression Coefficients
pop.calBeta.......... Prepare Control Totals for Calibration on
Multiple Regression Coefficients
pop.fuse............. Fuse Control Totals Data Frames for Special

Purpose and Ordinary Calibration Tasks

Estimates and Sampling Errors:

**%%x svystatTM............ Estimation of Totals and Means in
Subpopulations

*x% svystatR............. Estimation of Ratios in Subpopulations

**x svystatS............. Estimation of Shares in Subpopulations

**x svystatSR............ Estimation of Share Ratios in Subpopulations

**%x svystatB............. Estimation of Population Regression Coefficients in
Subpopulations

*x% svystatQ............. Estimation of Quantiles in Subpopulations

**x svystatL............. Estimation of Complex Estimators in
Subpopulations

**%%x svySigma............. Estimation of the Population Standard Deviation of
a Variable

*%% svySigma2............ Estimation of the Population Variance of a Variable

*x%x svyDelta............. Estimation of a Measure of Change from Two
Not Necessarily Independent Samples

* details.............. Details on svyDelta results
*% aux.estimates........ Quick Estimates of Auxiliary Variables Totals
*% CoV, Corr............ Design Covariance and Correlation of Complex

Estimators in Subpopulations



*
*

ReGenesees-package

write.svystat........ Export Survey Statistics

extractors........... Extractor Functions for Variability Statistics

ReGenesees.options...Variance Estimation Options for the ReGenesees
Package

Generalized Variance Functions Method:

*kk
*kk
*kk

*k*

GVF.db............... Archive of Registered GVF Models

gvf.input............ Prepare Input Data to Fit GVF Models

svystat.............. Compute Many Estimates and Errors in Just a
Single Shot

fit.gvf.............. Fit GVF Models

plot.gvf.fit......... Diagnostic Plots for Fitted GVF Models

drop.gvf.points...... Drop Outliers and Refit a GVF Model

getR2, AIC, BIC...... Quality Measures on Fitted GVF Models

getBest.............. Identify the Best Fit GVF Model

predictCV............ Predict CV Values via Fitted GVF Models

gvf.misc............. Miscellanea: Methods for Fitted GVF Models

estimator.kind....... Which Estimator Did Generate these

Survey Statistics?

XX N.PrOP..ceeeennnnennn. Sample Size Requirements for the Estimation
of a Proportion

*%  Prec.prop............. Expected Precision Level in the Estimation
of a Proportion

*%  N.COMP2Prop........... Power Calculations for a Test that Compares
Two Estimated Proportions: Sample Size

*%  POW.COMP2Prop......... Power Calculations for a Test that Compares
Two Estimated Proportions: Expected Power

*% mde.comp2prop......... Power Calculations for a Test that Compares
Two Estimated Proportions: Expected Minimum
Detectable Effect

*%k n.mean................ Sample Size Requirements for the Estimation
of a Mean

*% prec.mean............. Expected Precision Level in the Estimation
of a Mean

*% n.comp2mean........... Power Calculations for a Test that Compares
Two Estimated Means: Sample Size

*% pow.comp2mean......... Power Calculations for a Test that Compares
Two Estimated Means: Expected Power

*%x mde.comp2mean......... Power Calculations for a Test that Compares
Two Estimated Means: Expected Minimum
Detectable Effect

Weight Diagnostics:
* UWE................... Unequal Weighting Effect
Visualization:

* PlotCI................ Visualize Domain Estimates and Confidence
Intervals by Simple Plots

* BarPlotCI............. Visualize Domain Estimates and Confidence

Intervals by Bar Charts
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Data Sets:
*x data.examples........ Artificial Household Survey Data
**% fpcdat............... A Small But Not Trivial Artificial Sample
Data Set
*% shs....... . Artificial Structural Business Statistics Data
*x Delta.el............. Two Artificial Samples of Elementary Units for
Estimation of Change
*%x Delta.clus........... Two Artificial Cluster Samples for Estimation
of Change
**% AF.gvf. ... .. ... ..., Example Data for GVF Model Fitting
Utilities:
* Zapsmall.............. Zapsmall Data Frame Columns and Numeric Vectors

The ordering of the above ‘Table of Contents’ reflects only loosely the procedural sequence in
which functions could be used. For instance, while you cannot apply function e.calibrate unless
you have previously built a design object by using e.svydesign, you can exploit, e.g., function
collapse.strata also after calibration. As a further example, all functions in group ‘Estimates and
Sampling Errors’ can be used on objects created by e. svydesign (yielding estimates and sampling
errors for functions of Horvitz-Thompson estimators), as well as on objects created by e.calibrate
(yielding estimates and sampling errors for functions of Calibration estimators).

References

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.

AF.gvf Example Data for GVF Model Fitting

Description

File AF . gvf contains a set of summary statistics that can be used to illustrate ReGenesees facilities
for fitting Generalized Variance Functions models. These summary statistics have kind ‘Absolute
Frequency’ (see function estimator.kind), i.e. involve estimates and errors of counts.

Usage
data(AF.gvf)

Format

Each row of the ee.AF data frame represents an estimated absolute frequency along with its esti-
mated sampling error (expressed in terms of standard error, coefficient of variation and variance).
The data frame has 349 rows, and the following 5 columns:

name The name of the original estimate, factor with 349 levels.

Y The value of the original estimate (an absolute frequency), numeric.

SE The standard error of the original estimate, numeric.

CV The coefficient of variation of the original estimate, numeric.

VAR The variance of the original estimate, numeric.


https://doi.org/10.1515/jos-2015-0013
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Details

Object AF is a list storing estimates and errors of counts (namely, summary statistics of kind ‘Abso-
lute Frequency’) computed on survey design object exdes. The names of the slots of list AF indicate
the nature of the corresponding estimates, e.g. element AF[["sex.marstat"”]] stores estimates and
errors of the joint absolute frequency distribution of variables sex and marstat (see ‘Examples’).

Object ee. AF is the gvf . input object built upon all such summary statistics, via function gvf. input
(see ‘Examples’).

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, GVF . db
to manage ReGenesees archive of registered GVF models, gvf.input and svystat to prepare the
input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots
for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and
simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

data(AF.gvf)

# Inspect object AF
class(AF)

length(AF)

names (AF)
AF$sex.marstat
class(AF$sex.marstat)

# Inspect gvf.input object ee.AF
head(ee.AF)
str(ee.AF)
plot(ee.AF)

# The design object used to compute ee.AF is the following:
exdes

# How has object ee.AF been built?
foo <- gvf.input(exdes, stats = AF)
identical(ee.AF, foo)

aux.estimates Quick Estimates of Auxiliary Variables Totals

Description

Quickly estimates the totals of the auxiliary variables of a calibration model.

Usage

aux.estimates(design,
calmodel = if (inherits(template, "pop.totals"))
attr(template, "calmodel"),
partition = if (inherits(template, "pop.totals"))
attr(template, "partition") else FALSE,
template = NULL)
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Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model (see ‘Details’); FALSE (the default) implies no calibration domains.
template An object of class pop. totals, be it a template or the actual known totals data
frame for the calibration task.
Details

The main purpose of function aux.estimates is to make easy the task of estimating the totals
of all the auxiliary variables involved in a calibration model (separately inside distinct calibration
domains, if specified). Even if such totals can be estimated also by repeatedly invoking function
svystatTM, this may reveal very tricky in practice, because real-world calibration tasks (e.g. in
the field of Official Statistics) can simultaneously involve hundreds of auxiliary variables. More-
over, total estimates provided by function svystatTM are always complemented by sampling errors,
whose estimation is very computationally demanding.

Function aux. estimates, on the contrary, only provides estimates of totals (i.e. without associated
sampling errors), thus being very quick to be executed. Moreover, aux.estimates is able to com-
pute, in just a single shot, all the totals of the auxiliary variables of a calibration model, no matter
how complex the model is. Lastly, as a third strong point, the totals estimated by aux.estimates
will be returned exactly in the same standard format in which the known population totals for the re-
lated calibration task need to be represented (see pop. template, population.check, fill. template).

It may be useful to point out that, besides having been designed to handle auxiliary variables in-
volved in calibration models, function aux.estimates could be also used for computing general
estimates of totals inside subpopulations in a very effective way (see ‘Examples’).

Value
An object of class pop. totals, thus inheriting from class data. frame storing the estimated totals
in a standard format.

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM for calculating es-
timates and standard errors of totals, e.calibrate for calibrating weights, pop.template for
constructing known totals data frames in compliance with the standard required by e.calibrate,
population.check to check that the known totals data frame satisfies that standard, fill.template
to automatically fill the template when a sampling frame is available.

Examples

# Load sbs data:
data(sbs)

# Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)
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Now suppose you have to perform a calibration process which
exploits as auxiliary information:
i) the total number of employees (emp.num)
by class of number of employees (emp.cl) crossed with nace.macro;
ii) the total number of enterprises (ent)
by region crossed with nace.macro;

# Build a template for the known totals:

pop<-pop.template(sbsdes,
calmodel=~emp.num:emp.cl + region -1,
partition=~nace.macro)

# Use the fill.template function to automatically compute
# the totals from the universe (sbs.frame) and safely fill
# the template:

pop<-fill.template(sbs.frame, template=pop)

pop

# You can now use aux.estimates to verify how much difference

# exists between the target totals and the initial HT estimates:
aux.HT<-aux.estimates(sbsdes, template=pop)

aux.HT

# If you calibrate,
sbscal<-e.calibrate(sbsdes, pop)

# ... you can verify that CAL estimates exactly match the known totals:
aux.CAL<-aux.estimates(sbscal, template=pop)
aux.CAL

# Recall that you can also use aux.estimates for computing
# general estimates of totals inside subpopulations (even
# not related to any calibration task).

# E.g. estimate the total of value added inside areas:
aux.estimates(sbsdes,~va.imp2-1,~area)

# ...and compare to svystatTM (notice also
# the increased execution time):
svystatTM(sbsdes,~va.imp2,~area)

bounds.hint A Hint for Range Restricted Calibration

Description

Suggests a sound bounds value for which e.calibrate is likely to converge.

Usage

bounds.hint(design, df.population,
calmodel = if (inherits(df.population, "pop.totals"))
attr(df.population, "calmodel”),
partition = if (inherits(df.population, "pop.totals"))
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attr(df.population, "partition") else FALSE,
msg = TRUE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

df.population Data frame containing the known population totals for the auxiliary variables.

calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model; FALSE (the default) implies no calibration domains.
msg Enables printing of a summary description of the result (the default is TRUE).
Details

Function bounds. hint returns a bounds value for which e.calibtrate is likely to converge. This
interval is just a sound hint, not an exact result (see ‘Note’).

The mandatory argument design identifies the analytic object on which the calibration problem
is defined.

The mandatory argument df . population identifies the known totals data frame.

The argument calmodel symbolically defines the calibration model you want to use: it identifies
the auxiliary variables and the constraints for the calibration problem. The design variables ref-
erenced by calmodel must be numeric or factor and must not contain any missing value (NA).
The argument can be omitted provided df.population is an object of class pop.totals (see
population.check).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). The design vari-
ables referenced by partition (if any) must be factor and must not contain any missing value
(NA). The argument can be omitted provided df . population is an object of class pop.totals (see
population.check).

The optional argument msg enables/disables printing of a summary description of the achieved
result.

Value

A numeric vector of length 2, representing the suggested value for the bounds argument of e. calibrate.
The attributes of that vector store additional information, which can lead to better understand why
a given calibration problem is (un)feasible (see ‘Examples’).

Note

Assessing the feasibility of an arbitrary calibration problem is not an easy task. The problem is even
more difficult whenever additional “range restrictions” are imposed. Indeed, even if one assumes
that the calibration constraints define a consistent system, one also has to choose the bounds such
that the feasible region is non-empty.

One can argue that there must exist a minimum-length interval I = [L, U] such that, if it is covered
by bounds, the specified calibration problem is feasible. Unfortunately in order to compute exactly
that minimum-length interval I one should solve a big linear programming problem [Vanderhoeft
01]. As an alternative, a trial and error procedure has been frequently proposed [Deville et al. 1993;
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Sautory 1993]: (i) start with a very large interval bounds. ; (ii) if convergence is achieved, shrink
it so as to obtain a new interval bounds.1; (iii) repeat until you get a sufficiently tight feasible
interval bounds.n. The drawback is that this procedure can cost a lot of computer time since, for
each choice of the bounds, the full calibration problem has to be solved.

However, when both the benchmark population totals and the corresponding Horvitz-Thompson
estimates are all non-negative, it is easy to find at least a given specific interval [* = [L*, U*] such
that, if it is not covered by bounds, the current calibration problem is surely unfeasible. This means
that any feasible bounds value must necessarily contain the /* interval. Function bounds.hint: (i)
first identifies such an /* interval (by computing the range of the ratios between known population
totals and corresponding direct Horvitz-Thompson estimates), (ii) then builds a new interval 1°“99
with same midpoint and double length. The latter is the suggested value for the bounds argument
of e.calibrate. The return value of bounds.hint should be understood as a useful starting guess
for bounds, even though there is definitely no warranty that the calibration algorithm will actually
converge.

Author(s)

Diego Zardetto

References

Vanderhoeft, C. (2001) “Generalized Calibration at Statistic Belgium”, Statistics Belgium Working
Paper n. 3.

Deville, J.C., Sarndal, C.E. and Sautory, O. (1993) “Generalized Raking Procedures in Survey
Sampling”, Journal of the American Statistical Association, Vol. 88, No. 423, pp.1013-1020.

Sautory, O. (1993) “La macro CALMAR: Redressement d’un Echantillon par Calage sur Marges”,
Document de travail de la Direction des Statistiques Demographiques et Sociales, no. F9310.

See Also

e.calibrate for calibrating weights, pop.template for constructing known totals data frames
in compliance with the standard required by e.calibrate, population.check to check that the
known totals data frame satisfies that standard, g.range to compute the range of the obtained g-
weights, and check. cal to check if calibration constraints have been fulfilled.

Examples

# Creation of the object to be calibrated:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Calibration (partitioned solution) on the marginal distribution
# of age in 5 classes (age5c) inside provinces (procod)

# (totals in pop@6p). Get a hint for feasible bounds:
hint<-bounds.hint(des, pop@6p,~age5c-1,~procod)

# Let's verify if calibration converges with the suggested

# value for the bounds argument (i.e. c(0.219, 1.786) ):

descal@6p<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=hint,aggregate.stage=2)

# Now let's verify that calibration fails, if bounds don't cover
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# the interval [0.611, 1.394]:

## Not run:

descal@6p<-e.calibrate(design=des,df.population=pop@6p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=c(0.62,1.50),aggregate.stage=2, force=FALSE)

## End(Not run)

# The warning message raised by e.calibrate tells that

# the population total of variable age5c5 (i.e. the fifth
# age class frequency) was not matched.

# By analysing ecal.status one understands that calibration
# failed due to the sub-task identified by procod 30:
ecal.status

# this is easily explained by inspecting the "bounds”
# attribute of the bounds.hint output object:
attr(hint, "bounds")

# indeed the specified lower bound (@.62) was too high
# for procod 30, where instead a value ~0.61 was required.

# Recall that you can always "force"” a calibration task that

# would not converge:

descal@6p. forced<-e.calibrate(design=des,df.population=pop@6p,
calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.62,1.50),aggregate.stage=2,force=TRUE)

# Notice, also, that forced sub-tasks can be tracked down by
# directly looking at ecal.status...
ecal.status

# ...or by using function check.cal:
check.cal (descale6p.forced)

check.cal Calibration Convergence Check

Description

Checks whether Calibration Constraints are fulfilled; if not, assesses constraints violation degree.

Usage

check.cal(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details

The function verifies if all the imposed Calibration Constraints are actually fulfilled by object
cal.design. If it is not the case, the function evaluates the degree of violation of the constraints
and prints a summary of the mismatches between population totals and achieved estimates (see also
Section ’Calibration process diagnostics’ in the help page of e.calibrate).
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Value

The main purpose of the function is to print on screen; anyway a list is invisibly returned, which
summarizes the results of the check.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights (in particular, Section ’Calibration process diagnostics’).

Examples

# Load sbs data:
data(sbs)

# Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

## Example 1
# Build template...
pop<-pop.template(sbsdes,~emp.num:emp.cl+ent-1,~region)
# Fill template...
pop<-fill.template(sbs.frame,pop)
# Calibrate...
sbscal<-e.calibrate(sbsdes,pop, sigma2=~emp.num)
# Check calibration...
check.cal(sbscal)

## Example 2
# Build template...
pop<-pop.template(sbsdes,~emp.numtent-1,~area)
# Fill template...
pop<-fill.template(sbs.frame,pop)
# Calibrate with tight bounds...
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num,bounds=c(0.8,1.2))
# Check calibration...
check.cal(sbscal)

# Now try to calibrate with suggested bounds...
hint <- bounds.hint(sbsdes,pop)
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num, bounds=hint)
# Check calibration...
check.cal(sbscal)

collapse.strata Collapse Strata Technique for Eliminating Lonely PSUs

Description

Modifies a stratified design containing lonely PSUs by collapsing its design strata into superstrata.
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Usage

collapse.strata(design, block.vars = NULL, sim.score = NULL)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
block.vars Formula specifying blocking variables: only strata belonging to the same block
will be aggregated (see ‘Details’). If NULL (the default option) no constraints
will be imposed.
sim.score Formula specifying a similarity score for strata: lonely strata will be paired
with the most similar stratum in each block (see ‘Details’). If NULL (the default
option) random pairs will be formed.
Details

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. As a general solution, the ReGenesees package can handle
the lonely PSUs problem by setting proper variance estimation options (see ReGenesees.options).
The collapse. strata function implements a widely used alternative: the so called collapsed strata
technique. The basic idea is to build artificial “superstrata” by aggregating strata containing lonely
PSUs to other strata, and then to use such superstrata for variance estimation (see e.g. [Wolter 85]
and [Rust, Kalton 87]).

The optional argument block.vars identifies “blocking variables” that can be used to constrain
the way lonely strata are collapsed to form superstrata. More specifically: first, blocking variables
are used to partition sample data in “blocks” via factor crossing, then, only lonely strata belonging
to the same block are aggregated. If block.vars=NULL (the default option), no constraint will act
on collapsing. The design variables referenced by block.vars (if any) should be of type factor.
Errors will be raised if (i) blocks cut across strata, or (ii) block.vars generate any non-aggregable
strata (i.e. lonely strata which are a singleton inside a block).

The optional argument sim. score can be used to specify a similarity score for strata aggregation.
This means that each lonely stratum will be collapsed with the stratum that has the most similar
value of variable sim. score inside the block. Thus the similarity of two strata is actually measured
by the (absolute value of the) difference among the corresponding sim.score values. Only one
design variable can be referenced by the sim.score formula: (i) it must be of type numeric, (ii)
it must be constant inside each stratum, and (iii) it should be positive (otherwise its abs() will be
silently used). Note that if no similarity score is specified (i.e. sim.score=NULL), the achieved
strata aggregation will depend on the ordering of input sample data in design.

The collapsing algorithm will, whenever possible, build superstrata by pairing a lonely stratum to
another not-yet-aggregated stratum. Therefore, in general, superstrata will contain only two design
strata. Rare exceptions can arise, e.g. due to constraints, with at most three design strata inside
a superstratum. The choice to collapse strata in pairs has been taken because it is known to be
appropriate for large-scale surveys with many strata (at least for national level estimates, see e.g.
[Rust, Kalton 87]).

The collapse. strata function handles correctly finite population corrections. If design has been
built by passing strata sampling fractions via the fpc argument, the function re-computes sampling
fractions inside superstrata by exploiting the achieved mapping of strata to superstrata and the fpc
slot of design.
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Value

An object of the same class as design, without strata containing lonely PSUs.

Strata Collapse Process Diagnostics

As already observed in the ‘Details’ Section, there are three non trivial reasons why function
collapse.strata can run into errors: (1) the blocks cut across strata, (2) some blocks contain

a stratum needing to be aggregated while this stratum happens to be the only one inside the block,

(3) the similarity score for strata aggregation varies inside strata. In order to help the user to identify
such data anomalies, hence taking a step forward to eliminate them, every call to collapse.strata
generates, by side effect, a diagnostics data structure named clps.strata.status into the .GlobalEnv
(see ‘Examples’).

The clps.strata. status list has three components: the first reports the error message, the second
stores a vector identifying the data subsets that have been hit by the anomaly, the third reports the
call to collapse.strata that generated the list. For instance, when error condition (1) holds, the
second element of clps.strata. status identifies the strata that are cut by blocks; if, instead, error
condition (2) holds, the second element of the list identifies the blocks containing non-aggregable
strata.

It must be stressed that every call to collapse.strata generates the clps.strata.status list,
even when the strata collapsing process ends successfully. In such cases, the first element of the list
reports the number of lonely strata that have undergone aggregation, whereas the second is a useful
data frame (named clps. table) mapping collapsed strata to superstrata. To be more specific: each
row of clps. table identifies a stratum that has been mapped to a superstratum, while the columns
of clps.table give: (i) the block to which the stratum belongs, (ii) the stratum name, (iii) a flag
indicating if the stratum was lonely or not, (iv) the name of the superstratum to which it has been
mapped.

Methodological Warning

A warning must be emphasized: strata similarity score sim. score should be based on prior knowl-
edge and/or on expectations on true values of stratum means for the variable(s) to be estimated,
not on current sample data. Indeed, building sim. score by estimating stratum means with the cur-
rent sample can lead to severe underestimation of sampling variance, i.e. to too tight confidence
intervals.

Author(s)

Diego Zardetto

References

Wolter, K.M. (2007) “Introduction to Variance Estimation”, Second Edition, Springer-Verlag, New
York.

Rust, K., Kalton, G. (1987) “Strategies for Collapsing Strata for Variance Estimation”, Journal of
Official Statistics, Vol. 3, No. 1, pp. 69-81.
See Also

ReGenesees.options for a different way to handle the lonely PSUs problem (namely by setting
variance estimation options).



collapse.strata

Examples

SEHHHEH R E AR B EE R
# Explore alternative collapsing strategies. #
HHHHHHEEEEE A A

# Build a survey design with lonely PSU strata:

data(data.examples)

exdes <- e.svydesign(data= example, ids= ~ towcod+famcod,
strata= ~ stratum, weights= ~ weight)

exdes

# Explore 3 possible collapsing strategies:

# 1) Aggregate lonely strata by forming random pairs
exdes.clpsl <- collapse.strata(exdes)
exdes.clps1

# 2) Aggregate lonely strata in pairs under constraints:

# i. aggregated strata must be both not self-representing
# ii. aggregated strata must belong to the same province (which
# is appropriate if e.g. provinces are planned estimation domains)

exdes.clps2 <- collapse.strata(exdes,~sr:procod)
exdes.clps2

# 3) A WRONG strategy: compute strata similarity score by using

# sample estimates of the interest variable (y1) inside strata:
old.op <- options(”"RG.lonely.psu"="remove")
stat.score <- svystatTM(design= exdes, ~y1, by= ~ stratum)

options(old.op)

exdes2<-des.addvars(exdes,
sim.score=stat.score[match(stratum,stat.score$stratum),2])

exdes.clps3 <- collapse.strata(exdes2,~sr:procod,~sim.score)

exdes.clps3

# Compute total estimates of y1 at the province level

# for all 3 designs with collapsed strata:

stat.clpsl <- svystatTM(design= exdes.clpsl, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct”)

stat.clps2 <- svystatTM(design= exdes.clps2, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct”)

stat.clps3 <- svystatTM(design= exdes.clps3, y= ~ y1, by= ~ procod,
estimator= "Total”, vartype= "cvpct")

# Compute the same estimates by using two alternatives
# to handle lonely PSUs:
# "adjust” option

old.op <- options("”RG.lonely.psu”="adjust")

stat.adj <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,
estimator= "Total”, vartype= "cvpct")

options(old.op)

# "average" option

old.op <- options("”RG.lonely.psu”="average")

stat.ave <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct")

options(old.op)

# Lastly, compare achieved estimates for CV percentages:

17
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stat.clpsi
stat.clps2
stat.clps3
stat.adj
stat.ave

# Thus the qualitative features are as expected: the "adjust” option

# tends to give conservative sampling variance estimates, the WRONG collapsing
# strategy 3) tends to underestimate sampling variance, while other methods

# give results in-between those extrema.

SHEHHHHHHHEEE AR R R

# A simple way for defining the strata similarity scores. #
HHHEHHHHHEE A AR

# Suppose that strata have been clustered in groups of similar
# strata. You can, then, use the integer codes of the factor
# variable identifying the clusters as a similarity score.

# You can do as follows:

# Load some data:
data(fpcdat)

# Build a design object:
fpcdes<-e.svydesign(data=fpcdat,ids=~psutssu,strata=~stratum,weights=~w)
fpcdes

# As we deliberately omitted to specify fpcs, this design
# has 2 lonely strata out of 5:
find.lon.strata(fpcdes)

# Now, suppose that factor variable pl.domain identifies clusters of
# similar strata...
table(fpcdat$stratum, fpcdat$pl.domain)

# ...hence, the similarity score can be obtained simply...
fpcdes<-des.addvars(fpcdes, score=unclass(pl.domain))

# ...and readily be used to drive the strata collapsing:
fpcdes.clps<-collapse.strata(fpcdes,sim.score=~score)
fpcdes.clps
clps.strata.status

# As we expected from the groups defined by pl.domain, lonely stratum S.2
# has been paired to S.3, and lonely stratum S.5 to S.4.

# Should we have omitted to specify a similarity score, we would have
# obtained different superstrata:
fpcdes.clps2<-collapse.strata(fpcdes)
fpcdes.clps2
clps.strata.status

AR AR R AR
# Few examples to inspect the clps.strata.status list generated #
# for diagnostics purposes. #
AR AR AR AR
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# 1) I1l defined blocks: cutting across strata:
## Not run:
clps.err1 <- collapse.strata(exdes,~sex)

## End(Not run)
clps.strata.status

# 2) I11 defined blocks: generating non-aggregable strata
## Not run:
clps.err2 <- collapse.strata(exdes,~regcod:stratum)

## End(Not run)
clps.strata.status

# 3) Successful collapsing: explore strata to superstrata mapping
exdes.ok <- collapse.strata(exdes, ~sr:regcod:procod)
clps.strata.status

contrasts.RG Set, Reset or Switch Off Contrasts for Calibration Models

Description

These functions control the way ReGenesees translates a symbolic calibration model (as specified
by the calmodel formula in e.calibrate, pop.template, fill.template, aux.estimates,...)
to its numeric encoding (i.e. the model-matrix used by the internal algorithms to perform actual
computations).

Usage

contrasts.RG()

contrasts.off()

contrasts.reset()

contr.off(n, base = 1, contrasts = TRUE, sparse = FALSE)

Arguments
n Formally as in function contr.treatment (see ‘Details’).
base Formally as in function contr. treatment (see ‘Details’).
contrasts Fictitious, but formally as in function contr. treatment. (see ‘Details’)
sparse Formally as in function contr. treatment. (see ‘Details’)
Details

All the calibration facilities in package ReGenesees transform symbolic calibration models (as
specified by the user via calmodel) into numeric model-matrices. Factor variables occurring in
calmodel play a special role in such transformations, as the encoding of a factor can (and, by
default, do) depend on the structure of the formula in which it occurs. The ReGenesees functions
documented below control the way factor levels are translated into auxiliary variables and mapped
to columns of population totals data frames. The underlying technical tools are contrasts handling
functions (see Section ’Technical Remarks and Warnings’ for further details).
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Under the calibration perspective, ordered and unordered factors appearing in calmodel must be
treated the same way. This obvious constraint defines the ReGenesees default for contrasts han-
dling. Such a default is silently set when loading the package. Moreover, you can set it also by
calling contrasts.RG(). As can be understood by reading Section ’Technical Remarks and Warn-
ings’ below, the default setup can be seen as “efficient-but-slightly-risky”.

A call to contrasts.off() simply disables all contrasts and imposes a complete dummy coding
of factors. Under this setup, all levels of factors occurring in calmodel generate a distinct model-
matrix column, even if some of these columns can be linearly dependent. To be very concise, the
contrasts.off() setup can be seen as “safe-but-less-efficient” as compared to the default one
(read Section ’Technical Remarks and Warnings’ for more details).

Function contr.off is not meant to be called directly by users: it serves only the purpose of
enabling the contrasts.off () setup.

A call to contrasts.reset() restores R factory-fresh defaults for contrasts (which do distinguish
ordered and unordered factors). Users may want to use this function after having completed a
ReGenesees session, e.g. before switching to other R functions relying on contrasts (such as 1m,
glm, ...).

Technical Remarks and Warnings

“[...] the corner cases of model. matrix and friends is some of the more impenetrable code in the R
sources.”
Peter Dalgaard

Contrasts handling functions tell R how to encode the model-matrix associated to a given model-
formula on specific data (see, e.g., contr.treatment, contrasts, model.matrix, formula, and
references therein). More specifically, contrasts control the way factor-terms and interaction-terms
occurring in formulae get actually represented in the model matrix. For instance, R (by default)
avoids the complete dummy coding of a factor whenever it is able to understand, on the basis of
the structure of the model-formula, that some of the factor levels would generate linearly dependent
(i.e. redundant) columns in the model-matrix (see Section ‘Examples’).

The usage of contrasts to build smaller, full-rank calibration model-matrices would be a good op-
portunity for ReGenesees, provided it comes without any information loss. Indeed, smaller model-
matrices mean less population totals to be provided by users, and higher efficiency in computations.

Unfortunately, few controversial cases have been signalled in which R ability to "simplify" a model-
matrix on the basis of the structure of the related model-formula seems to lead to strange, unex-
pected results (see, e.g., this R-help thread). No matter whether such R behaviour is or not an actual
bug with respect to its impact on R linear model fitting or ANOVA facilities, it surely represents
a concern for ReGenesees with respect to calibration (see Section ‘Examples’). The risk is the
following: there could be rare cases in which exploiting R contrasts handling functions inside Re-
Genesees ends up with a wrong (i.e. incomplete) population totals template, and (eventually) with
wrong calibration results.

Though one could adopt several ad-hoc countermeasures to sterilize the risk described above while
still taking advantage of contrasts (see Section ‘Examples’), the choice of completely disabling con-
trasts via contrasts.off () would result in a 100% safety guarantee. If computational efficiency
is not a serious concern for you, switching off contrasts may determine the best ReGenesees setup
for your analyses.

Author(s)

Diego Zardetto


https://stat.ethz.ch/pipermail/r-help/2012-January/301901.html
https://stat.ethz.ch/pipermail/r-help/2012-January/301778.html
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References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

"Why does the order of terms in a formula translate into different models/model matrices?", R-help
thread.

See Also

e.calibrate, pop.template, fill.template, and aux.estimates for the meaning and the us-
age of calmodel in ReGenesees. formula, model.matrix, contrasts, and contr.treatment to
understand the role of contrasts in R.

Examples

WA
# Easy things first: #
S

# 1) When ReGenesees is loaded, its standard way of handling contrasts
# (i.e. no ordered-unordered factor distinction) is silently set:
options("contrasts”)

# 2) To switch off contrasts (i.e. apply always dummy coding to factors),
# simply type:
contrasts.off ()

# 3) To restore R factory-fresh defaults for contrasts, simply type:
contrasts.reset()

# 4) To switch on again standard ReGenesees contrasts, simply type:
contrasts.RG()

W
# A simple calibration example to understand the effects of #
# switching off contrasts. #
S

# Load sbs data:
data(sbs)

# Create a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

# Suppose you want to calibrate on the marginals of 'region' (a factor

# with 3 levels: "North”, "Center"”, and "South”) and 'dom3' (a factor

# with 4 levels: "A", "B", "C", and "D").

# Let's see how things go under the 'contrast on' (default) and 'contrasts off’
# setups:

HHHHHEHEH A
# 1) ReGenesees default: contrasts ON. #
B s s R S
# As you see contrasts are ON:
options(”contrasts”)


https://stat.ethz.ch/pipermail/r-help/2012-January/301778.html
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# Build and fill the population totals template:
temp1<-pop. template(data=sbsdes, calmodel=~region+dom3-1)
popl1<-fill.template(universe=sbs.frame, template=temp1)

# Now inspect the obtained known totals data.frame:
pop1

# As you see: (i) it has only 6 columns, and (ii) the "A" level of

# factor 'dom3' is missing. This is because contrasts are ON, so that
# R is able to understand that only 6 out of the 3 + 4 marginal counts
# are actually independent. Indeed, the "A" counts...

sum(sbs. frame$dom3=="A")

# ...are actually redundant, since they can be deduced by popl:
sum(pop1[,1:31)-sum(popl1[,4:61)

# Now calibrate:
cali<-e.calibrate(sbsdes,popl)

HHHHHEHEH AR AR
# 2) Switch OFF contrasts: dummy coding for all! #
SR A
# To switch off contrasts simply call:
contrasts.off ()

# Build and fill the population totals template:
temp2<-pop. template(data=sbsdes, calmodel=~region+dom3-1)
pop2<-fill.template(universe=sbs.frame, template=temp2)

# Now inspect the obtained known totals data.frame:
pop2

# As you see: (1) it has now 7 columns, and (2) the "A" level of factor
# 'dom3' has been resurrected. This is because contrasts are OFF,
# so that each level of factors in calmodel are coded to dummies.

Now calibrate. Since only 6 out of 7 dummy auxiliary variables are
actually independent, the model.matrix computed by e.calibrate will not be
full-rank. As a consequence, e.calibrate would use the Moore-Penrose
generalized inverse (in practice, this could depend on the machine R

is running on):

cal2<-e.calibrate(sbsdes,pop2)

H o H ¥

# Compare the calibration weights generated under setups 1) and 2):
all.equal(weights(cal2),weights(call))

# Lastly set back contrasts to ReGenesees default:
contrasts.RG()

B
# Weird results, risks and countermeasures. #
# ("When the going gets tough...") #
S HEHHHE R

# Suppose you want to calibrate on: (A) the joint distribution of 'region' (a
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ETE T

factor with 3 levels: "North”, "Center”, and "South”) and 'nace.macro' (a
factor with 4 levels: "Agriculture”, "Industry”, "Commerce"”, and "Services")
and, at the same time, on (B) the total number of employees ('emp.num', a
numeric variable) by 'nace.macro'.

You rightly expect that 3*4 + 4 = 16 population totals are needed for such a
calibration task. Indeed, knowing the enterprise counts for the 3*4 cells of
the joint distribution (A) doesn't tell anything on the number of employees

working in the 4 nace macrosectors (B), and vice-versa.

Moreover, you might expect that calibration models:
# (i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
# (ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1

should produce the same results.
Unfortunately, WHEN CONTRASTS ARE ON, this is not the case: only model (i)
leads to the expected, right results. Let's see.

R g S e s g s s g
# A strange result when contrasts are ON: #
# the order of terms in calmodel matters! #
R i S s g s s g
# As you see contrasts are ON:
options(”contrasts”)

# Start with (i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
# Build and fill the population totals template:
temp1<-pop.template(data=sbsdes,~region:nace.macro+emp.num:nace.macro-1)
pop1<-fill.template(universe=sbs.frame, template=temp1)

# Now inspect the obtained known totals data.frame:
pop1

# and verify it stores the right, expected number of totals (i.e. 16):
dim(pop1)

# Now calibrate:
call<-e.calibrate(sbsdes,pop1)

# Now compare with (ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1
# Build and fill the population totals template:
temp2<-pop.template(data=sbsdes, ~emp.num:nace.macro+region:nace.macro-1)
pop2<-fill.template(universe=sbs.frame, template=temp2)

# First check if it stores the right, expected number of totals (i.e. 16):
dim(pop2)

# Apparently 4 totals are missing; let's inspect the known totals data.frame
# to understand which ones:

pop2

# Thus we are missing the 4 'nace.macro' totals for 'region' level "North”.

# Everything goes as if R contrasts functions mistakenly treated the term

# emp.num:nace.macro as a factor-factor interaction (i.e. a 2 way joint

# distribution), which would have justified to eliminate the 4 missing totals
# as redundant.

23
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# Notice that calibrating on pop2 would generate wrong results...
cal2<-e.calibrate(sbsdes,pop2)

# ...indeed the 4 estimates of 'nace.macro' for 'region' level "North" are not
# actually calibrated (look at the magnitude of SE estimates):
svystatTM(cal2,~region,~nace.macro)

HHHHEEHEHE AR AR AR
# A possible countermeasure (still working with contrasts ON). #
HHHHHEHE AR

# Empirical evidence tells that the weird case above is extremely rare

# and that it manifests whenever a numeric (say X) and a factor (say F) both
# interact with the same factor (say D), i.e. calmodel=~(X+F):D-1.

#

# The risky order-dependent nature of such models can be sterilized (while
# still taking advantage of contrasts-driven simplifications for large,

# complex calibrations) by using a numeric variable with values 1 for

# all sample units.

#

# For instance, one could use variable 'ent' in the sbs data.frame, to

# handle the (A) part of the calibration constraints. Indeed you may easily
# verify that both the calmodel formulae below:

# (i) calmodel = ~ent:region:nace.macro + emp.num:nace.macro - 1

# (ii) calmodel = ~emp.num:nace.macro + ent:region:nace.macro - 1

#

#

produce exactly the same, right results.

B R
# THE ULTIMATE, 100% SAFE, COUNTERMEASURE: switch contrasts OFF! #
HHHHEEHE AR
# No contrasts means no model-matrix simplifications at all, hence
# also no unwanted, wrong simplifications. Let's see:

# To switch off contrasts simply call:
contrasts.off()

# Compare again, with contrasts OFF, the calibration models:
# (i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
# (ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1

# Build and fill the population totals templates:
temp1<-pop.template(data=sbsdes,~region:nace.macro+emp.num:nace.macro-1)
pop1<-fill.template(universe=sbs.frame, template=temp1)

pop1

temp2<-pop.template(data=sbsdes,~emp.num:nace.macro+region:nace.macro-1)
pop2<-fill.template(universe=sbs.frame, template=temp2)

pop2

# Verify they store the same, right number of totals (i.e. 16):
dim(pop1)

dim(pop2)

# Verify they lead to right calibrated objects...
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cali<-e.calibrate(shsdes,popl)
cal2<-e.calibrate(sbsdes,pop2)

# ...with the same calibrated weights:
all.equal(weights(cal2),weights(call))

# Lastly set back contrasts to ReGenesees default:

contrasts.RG()

Corr

Design Covariance and Correlation of Complex Estimators in Sub-
populations

Description

Estimates the covariance and the correlation of Complex Estimators in subpopulations. A Complex
Estimator can be any analytic function of (Horvitz-Thompson or Calibration) estimators of Totals

and Means.

Usage

CoV(design, exprl, expr2,

by = NULL,

na.rm = FALSE)

Corr(design, exprl, expr2,

by = NULL,

Arguments

design

exprl
expr2

by

na.rm

Details

na.rm = FALSE)

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

R expression defining the first Complex Estimator (see ‘Details’).
R expression defining the second Complex Estimator (see ‘Details’).

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

This function allows to estimate the covariance and the correlation of two arbitrary Complex Esti-
mators. Estimates are calculated using the Taylor linearization technique.

The mandatory arguments expr1 and expr2 identify the Complex Estimators: both must be of class
expression. For further details on the syntax and the semantics of such expressions, see svystatL.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by CoV (Corr) refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call CoV (Corr) twice.
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The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystats,
Ratios between Shares svystatSR, Multiple Regression Coefficients svystatB, Quantiles svystatQ,
and Complex Analytic Functions of Totals and/or Means svystatL.

Examples

SR R
# Some checks and some simple examples #
# to illustrate the syntax. #
B s s
# Load survey data:
data(data.examples)

# Creation of a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Let's start with some natural checks:
## The covariance of any estimator with itself is its variance
## (use mean income as an example):
CoV(des,expression(income/ones),expression(income/ones))
VAR (svystatL (des,expression(income/ones)))
VAR(svystatTM(des,~income,estimator="Mean"))

## The correlation of any estimator with itself is 1
## (use mean income as an example):
Corr(des,expression(income/ones),expression(income/ones))

# Switch to non trivial examples:
## Correlation of mean income with population size:
Corr(des,expression(income/ones),expression(ones))
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## Correlation of mean income with total income:
# at population level:
Corr(des,expression(income/ones),expression(income))
# for regions:
Corr(des,expression(income/ones),expression(income),by=~regcod)

## Correlation of a product of two totals and a ratio of two totals:
# at population level:
Corr(des,expression(ylxy2),expression(x1/x2))

# for provinces:
Corr(des,expression(income/ones),expression(income),by=~procod)

B g
# A more meaningful and complex example: correlation #
# between Geometric, Harmonic and Arithmetic Means. #
HH AR RHEHHEHER R
# Creation of another design object:

data(sbs)
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Let's use variable emp.num, which is ok as it is always strictly positive:
## Add a convenience variable for estimating the harmonic mean (see ?svystatlL
## for details) and prepare the formal estimator expression:
sbsdes<-des.addvars(sbsdes,emp.num.m1=1/emp.num)
h<-expression(ones/emp.num.m1)

## Add a convenience variable for estimating the geometric mean (see ?svystatlL

## for details) and prepare the formal estimator expression:
sbsdes<-des.addvars(sbsdes, log.emp.num=1og(emp.num))
g<-expression(exp(log.emp.num/ones))

## prepare the formal estimator expression for the arithmetic mean:
m<-expression(emp.num/ones)

# Now compute correlations:
## Harmonic with Arithmetic:
Corr(sbsdes,h,m)

## Geometric with Arithmetic:
Corr(sbsdes,g,m)

## Harmonic with Geometric:
Corr(sbsdes,h,g)

## Hence, while correlations g-m and g-h are high, correlation h-m is low.
HHHEHHAEEEE R A
# Another example: is a ratio estimator of a total #
# expected to be more efficient than an HT one? #

A

# Let's recall that the ratio estimator of a total is
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expected to be more efficient than HT, if the
correlation of numerator and denominator exceeds
half of the ratio between the CVs of denominator
and numerator.

ETgE T T

# Compute the HT estimate of the total of value added (variable va.imp2):
VA<-svystatTM(sbsdes,~va.imp2)
VA

# Compute the HT estimate of the total of emp.num:
EMP<-svystatTM(sbsdes, ~emp.num)
EMP

# Now estimate the correlation of the numerator

# and denominator totals:

corr <- Corr(sbsdes,expression(va.imp2),expression(emp.num))
corr

# and compare it with (1/2)*( CV(den)/CV(num) )
stopifnot( corr > @.5xcv(EMP)/cv(VA) )

# As the comparison holds TRUE, we expect an efficiency gain
# of the ratio estimator of the total compared to HT.
# Let's check...:

# Compute the ratio estimate of the total of value added using
# as auxiliary variable the number of emloyees, whose total

# is 984394:

TOT.emp.num <- sum(sbs.frame$emp.num)

TOT.emp.num

VA.ratio<-svystatL(sbsdes, expression(TOT.emp.num * (va.imp2/emp.num)))
VA.ratio

# Compare standard errors sizes:
SE(VA.ratio)

SE(VA)

stopifnot( SE(VA.ratio) < SE(VA) )

# ...as expected.

data.examples Artificial Household Survey Data

Description

Example data frames. Allow to run R code contained in the ‘Examples’ section of the ReGenesees
package help pages.

Usage

data(data.examples)
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Format

The main data frame, named example, contains (artificial) data from a two stage stratified cluster
sampling design. The sample is made up of 3000 final units (individuals), for which the following
21 variables were observed:

towcod Code identifying "variance PSUs": towns (PSUs) in not-self-representing (NSR) strata,
households (SSUs) in self-representing (SR) strata, numeric

famcod Code identifying households (SSUs), numeric

key Key identifying final units (individuals), numeric

weight Initial weights, numeric

stratum Stratification variable, factor with levels 801 802 803 901 902 903 904 905 906 907
908 1001 1002 1003 1004 1005 1006 1007 1008 1009 1101 1102 1103 1104 3001 3002 3003
3004 3005 3006 3007 3008 3009 3010 3011 3012 3101 3102 3103 3104 3105 3106 3107
3108 3201 3202 3203 3204 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
5412 5413 5414 5415 5416 5501 5502 5503 5504 9301 9302 9303 9304 9305 9306 9307
9308 9309 9310 9311 9312

SUPERSTRATUM Collapsed strata variable (eliminates lonely PSUs), factor with levels 123456
7891011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
383940414243 44 4546 47 48 49 50 51 52 53 54 55

sr Strata type, integer with values @ (NSR strata) and 1 (SR strata)

regcod Code identifying regions, factor with levels 6 7 10

procod Code identifying provinces, factor with levels 8 9 10 11 3@ 31 32 54 55 93
x1 Indicator variable (integer), numeric

x2 Indicator variable (integer), numeric

x3 Indicator variable (integer), numeric

y1 Indicator variable (integer), numeric

y2 Indicator variable (integer), numeric

y3 Indicator variable (integer), numeric

agebc Age variable with 5 classes, factor with levels 12345

agel@c Age variable with 10 classes, factor withlevels 12345678910

sex Sex variable, factor with levels f m

marstat Marital status variable, factor with levels married unmarried widowed
z A continuous quantitative variable, numeric

income Income variable, numeric

Details

Objects popd1, ..., pop@7pp contain known population totals for various calibration models. Ob-
ject pairs with names differing in the ’p’ suffix (such as pop@3 and pop@3p) refer to the same
calibration problem but pertain to different solution methods (global and partitioned respectively,
see e.calibrate). The two-component numeric vector bounds expresses a possible choice for the
allowed range for the ratios between calibrated weights and direct weights in the aforementioned
calibration problems.
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Warning

Data in the example data frame are artificial. The structure of example intentionally resembles
the one of typical household survey data, but the values it stores are unreliable. The only purpose of
such data is that they can be fruitfully exploited to illustrate the syntax and the working mechanism
of the functions provided by the ReGenesees package.

Examples

data(data.examples)
head(example)
str(example)

Delta.clus Two Artificial Cluster Samples for Estimation of Change

Description

Two small, partially overlapping datasets, built to mimick non-independent PSU samples selected
with a one- or multi-stage, stratified, cluster sampling design (but identifiers of SSUs etc. are
not reported). Allow to run R code contained in the ‘Examples’ section of ReGenesees function
svyDelta.

Usage

data(Delta.clus)

Format

Two data frames, sclus1 and sclus2, with 6 PSUs each (and 20 and 22 final units, respectively),
and the following 5 variables.

* For both samples sclus1 and sclus2:

id Identifier of sample PSUs, numeric

strata Stratification variable, a factor with 2 levels: A, and B
w Sampling weights of final units, numeric

y A numeric variable

X A numeric variable, correlated with y

Details

The two samples, sclus1 and sclus2, have 3 PSUs in common, resulting in an overlap rate of 3 /
6 = 0.5 at PSU-level. One could think of them as, e.g., two consecutive waves of a rotating panel
with a 50% overlap at PSU-level.

Common PSUs are unambigously identified by variable id.

The stratification is static: (1) sclus1 and sclus2 use the same strata (i.e. levels A, and B), and (2)
no common PSUs changed stratum from sclus1 to sclus2.

The ‘Examples’ section of svyDelta will illustrate the effect of dynamic stratification by injecting
new strata and stratum-changer units in the samples.
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See Also

svyDelta for calculating estimates and sampling errors of Measures of Change from two not neces-
sarily independent samples, and Delta.el for 2 artificial overlapping samples of elementary units.

Examples

data(Delta.clus)
# Have a look:
sclusi

sclus?

# Have a look at the overlap subsample of 3 PSUs (36 final units):
sc <- merge(sclusl, sclus2, by = "id", suffixes = c("1", "2"))
sc

# Have a look at the full rotation structure (50% PSUs overlap in each stratum):
s <- merge(sclus1, sclus2, by = "id", all = TRUE, suffixes = c("1", "2"))

s <- s[order(s$stratal, s$strata2), ]

s

# As anticipated, strata are static:
with(s, table(stratal, strata2, useNA = "ifany"))

Delta.el Two Artificial Samples of Elementary Units for Estimation of Change

Description

Two small, partially overlapping datasets, built to mimick non-independent samples selected with
a one-stage, stratified, element sampling design. Allow to run R code contained in the ‘Examples’
section of ReGenesees function svyDelta.

Usage

data(Delta.el)

Format

Two data frames, s1 and s2, with 20 observations each and the following 5 variables.
* For both samples s1 and s2:

id Identifier of sample units, numeric

strata Stratification variable, a factor with 2 levels: A, and B
w Sampling weights, numeric

y A numeric variable

X A numeric variable, correlated with y
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Details

The two samples, s1 and s2, have 8 units in common, resulting in an overlap rate of 8 / 20 = 0.4.
One could think of them as, e.g., two consecutive waves of a rotating panel with a 40% overlap.

Common units are unambigously identified by variable id.

The stratification is static: (1) s1 and s2 use the same strata (i.e. levels A, and B), and (2) no common
units changed stratum from s1 to s2.

The ‘Examples’ section of svyDelta will illustrate the effect of dynamic stratification by injecting
new strata and stratum-changer units in the samples.

See Also

svyDelta for calculating estimates and sampling errors of Measures of Change from two not nec-
essarily independent samples, and Delta.clus for 2 artificial overlapping samples of clusters.

Examples

data(Delta.el)
# Have a look:
s1
s2

# Have a look at the overlap subsample of 8 units:
sc <- merge(sl, s2, by = "id", suffixes = c("1", "2"))
sc

# Have a look at the full rotation structure (40% overlap in each stratum):
s <- merge(s1, s2, by = "id", all = TRUE, suffixes = c("1", "2"))

s <- s[order(s$stratal, s$strata2), ]

s

# As anticipated, strata are static:
with(s, table(stratal, strata2, useNA = "ifany"))

des.addvars Add Variables to Design Objects

Description

Modifies an analytic object by adding new variables to it.

Usage
des.addvars(design, ...)
Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-

pling design metadata.

tag = expr arguments defining columns to be added to design.
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Details

This function adds to the data frame contained in design the new variables defined by the tag =
expr arguments. A tag can be specified either by means of an identifier or by a character string;
expr can be any expression that it makes sense to evaluate in the design environment.

For each argument tag = expr bound to the formal argument . . . the added column will have name
given by the tag value and values obtained by evaluating the expr expression on design. Any
input expression not supplied with a tag will be ignored and will therefore have no effect on the
des.addvars return value.

Variables to be added to the input object have to be new: namely it is not possible to use des. addvars
to modify the values in a pre-existing design column. This an intentional feature meant to safe-
guard the integrity of the relations between survey data and sampling design metadata stored in
design.

Value

An object of the same class of design, containing new variables but supplied with exactly the same
metadata.

Author(s)

Diego Zardetto

References

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/jos20150013.

See Also

e.svydesign to bind survey data and sampling design metadata, e.calibrate for calibrating
weights.

Examples

data(data.examples)

# Creation of an analytic object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Adding the new 'ones' variable to estimate the number
# of final units in the population:
des<-des.addvars(des,ones=1)

svystatTM(des, ~ones)

# Recoding a qualitative variable:

des<-des.addvars(des, agerange=factor(ifelse(age5c==1,
"young","not-young")))

svystatTM(des, ~agerange,estimator="Mean")

svystatTM(des,~income, ~agerange,estimator="Mean",conf.int=TRUE)

# Algebraic operations on numeric variables:
des<-des.addvars(des,z2=z"2)
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svystatTM(des,~z2,estimator="Mean")

# A more interesting example: estimating the
# percentage of population with income below
# the poverty threshold (defined as 0.6 times
# the median income for the whole population):
Median.Income <- coef(svystatQ(des, ~income,probs=0.5))
Median.Income
des <- des.addvars(des,
status = factor(
ifelse(income < (0.6 * Median.Income),
"poor"”, "non-poor")
)
)
svystatTM(des, ~status,estimator="Mean")
# Mean income for poor and non-poor:
svystatTM(des,~income,~status,estimator="Mean")

### NOTE: Procedure above yields *correct point estimatesx of the share of poor

#iH# population and their average income, while *variance estimation is
#it# approximated* since we neglected the sampling variability of the
#iHt estimated poverty threshold.
des.merge Merge New Survey Data into Design Objects
Description

Modifies an analytic object by joining the original survey data with a new data frame via a common
key.

Usage

des.merge(design, data, key)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
data Data frame containing a key variable, plus new variables to be merged to design
data.
key Formula identifying the common key variable to be used for merging.
Details

This function updates the survey variables contained into design (i.e. design$variables), by
merging the original data with those contained into the data data frame. The merge operation
exploits a single variable key, which must be common to both design and data.

The function preserves both the original ordering of the survey data stored into design, as well as
all the original sampling design metadata.

The variable referenced by key must be a valid unique key for both design and data: it must not
contain duplicated values, nor NAs. Moreover, the values of key in design and data must be in



des.merge 35

1:1 correspondence. These requirements are meant to ensure that the new survey data (that is the
merged ones) will have exactly the same number of rows as the old survey data stored into design.

Should design and data contain further common variables besides the key, only their original
design version will be retained. Thus, des.merge cannot modify any pre-existing design columns.
This an intentional feature intended to safeguard the integrity of the relations between survey data
and sampling design metadata stored in design.

Value

An object of the same class of design, containing additional survey data but supplied with exactly
the same metadata.

Practical Purpose

In the field of Official Statistics, it is not infrequent that calibration weights must be computed even
several months before the target variables of the survey are made available for estimation. Such a
time lag follows from the fact that target variables typically undergo much more thorough editing
and imputation procedures than auxiliary variables.

In such production scenarios, function des.merge allows to tackle the task of computing estimates
and errors for the fresh-released target variables without any need of repeating the calibration step.
Indeed, by using the function, one can join the data contained into an already calibrated design
object with new data made available only after the calibration step. The merge operation is made
easy and safe, and preserves all the original calibration metadata (e.g. those needed for variance
estimation).

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, e.calibrate for calibrating
weights, des.addvars to add new variables to design objects.

Examples

data(data.examples)

# Create a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Create a calibrated design object as well (e.g. using population totals

# stored inside pop@3p):

cal<-e.calibrate(design=des,df.population=pop@3p,
calmodel=~marstat-1,partition=~sex,calfun="logit",
bounds=bounds)

# Lastly create a new data frame to be merged into des and cal:
set.seed(12345) # RNG seed fixed for reproducibility
new.data<-example[,c("income"”,"key")]

new.data$income <- 1000 + new.data$income # altered income values
new.data$NEW. f<-factor(sample(c("A","B"),nrow(new.data),rep=TRUE))
new.data$NEW.n<-rnorm(nrow(new.data), 10,2)
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new.data <- new.data[sample(1:nrow(new.data)), 1] # rows ordering changed

head(new.data)

HEHHHHHHEHEEHH AR AR AR
# Example 1: merge new data into a non calibrated design. #
HHHEHHHEHEE AR R

# Merge new data inside des (note the warning on income):
des2<-des.merge(design=des,data=new.data,key=~key)

# Compare visually:
## before:
head(des$variables)
## after:
head(des2$variables)

# New data can be used as usual:
svystatTM(des2,~NEW.n,~NEW.f,vartype="cvpct")

# O0ld data are unaffected, as it must be:
svystatTM(des,~income,estimator="Mean",vartype="cvpct")
svystatTM(des2,~income,estimator="Mean",vartype="cvpct")

HHHHHHHHH AR AR A
# Example 2: merge new data into a calibrated design. #
B

# Merge new data inside cal (note the warning on income):
cal2<-des.merge(design=cal,data=new.data, key=~key)

# Compare visually:
## before:
head(cal$variables)
## after:
head(cal2$variables)

# New data can be used as usual:
svystatTM(cal2,~NEW.n,~NEW. f,vartype="cvpct")

# 0ld data are unaffected, as it must be:
svystatTM(cal,~income,estimator="Mean",vartype="cvpct")
svystatTM(cal2,~income,estimator="Mean",vartype="cvpct")

drop.gvf.points Drop Outliers and Refit a GVF Model

Description

This function drops observations (alleged outliers) from a fitted GVF model and simultaneously

re-fits the model.

Usage

drop.gvf.points(x, method = c("pick"”, "cut"), which.plot

1:2,
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res.type = c("standard”, "student"”), res.cut = 3,
id.n = 3, labels.id = NULL,
cex.id = 0.75, label.pos = c(4, 2),

cex.caption = 1, col = NULL, drop.col = "red”,
)
Arguments

X An object containing a single fitted GVF model (i.e. of class gvf.fit orgvf.fit.gr).

method character specifying the method for identifying observations to be dropped
(see ‘Details’); it may be either 'pick’ (the default) or 'cut'.

which.plot integer controlling the nature of the plot(s) that are used to identify and/or
visualize the observations to be dropped: 1 means ‘Observed vs Fitted’, 2 means
‘Residuals vs Fitted’ (see ‘Details’).

res.type character specifying what kind of residuals must be used.

res.cut A positive value: observations to be dropped will be those with residuals whose
absolute value exceeds 'res.cut’'. Only meaningful if method is 'cut'.

id.n Number of points to be initially labelled in each plot, starting with the most
extreme. Only meaningful if method is 'pick’.

labels.id Vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id Magnification of point labels.

label.pos Positioning of labels, for the left half and right half of the graph(s) respectively.

cex.caption Controls the size of caption.

col Color to be used for the points in the plot(s).

drop.col Color to be used to visualize and annotate the points to be dropped in the plot(s).
Other parameters to be passed through to plotting functions.

Details

This function drops observations (alleged outliers) from a single fitted GVF model and simulta-
neously re-fits the model. As a side effect, the function prints on screen the induced change for
selected quality measures (see, e.g., getR2).

If method = "pick”, observations to be dropped are identified interactively by clicking on points
of a plot (see ‘Note’). Argument which.plot determines the nature of the plot: value 1 is for
‘Observed vs Fitted’, value 2 is for ‘Residuals vs Fitted’. In the latter case, argument res. type
specifies what kind of residuals have to be plotted. Argument id.n specifies how many points have
to be labelled initially, starting with the most extreme in terms of the selected residuals: this applies
to both kinds of plots.

If method = "cut”, observations to be dropped are those with residuals whose absolute value ex-
ceeds the value of argument res.cut. Again, argument res. type specifies what kind of residuals
have to be used (and plotted). The points which have been cut will be highlighted on a plot, whose
nature is again specified by argument which.plot. If which.plot = 1:2, dropped points will be
visualized on both the ‘Observed vs Fitted’ and the ‘Residuals vs Fitted’ graphs simultaneously.

Argument drop. col controls the color to be used to visualize and annotate in the plot(s) the points
to be dropped. All the other arguments have the same meaning as in function plot.1lm.



38 drop.gvf.points

Value

An object of the same class as x (i.e. either gvf.fit or gvf.fit.gr), containing the original GVF
model re-fitted after dropping (alleged) outliers.

Note

For method = "pick”, function drop.gvf.points is only supported on those screen devices for
which function identify is supported. The identification process can be terminated either by right-
clicking the mouse and selecting *Stop’ from the menu, or from the ’Stop’ menu on the graphics
window.

Author(s)

Diego Zardetto

See Also

GVF . db to manage ReGenesees archive of registered GVF models, gvf. input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, and predictCV to predict CV values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Inspect available estimates and errors of counts:
str(ee.AF)

# List available registered GVF models:
GVF.db

# Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, model=1)

m

summary (m)

HHHHHHAREEEE R R

# Method 'pick': identify outlier observations to be dropped #

# interactively by clicking on points of a plot. #

HHHHHHARHEE AR AR A
# Using the 'Observed vs Fitted' plot (the default):

## Not run:
ml <- drop.gvf.points(m)
ml

summary(m1)
## End(Not run)
# Using the 'Residuals vs Fitted' plot with standardized

# residuals (the default) and increasing id.n to get more
# labelled points to guide your choices:

## Not run:
ml <- drop.gvf.points(m, which.plot = 2, id.n = 10)
ml

summary (m1)
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## End(Not run)

# The same as above, but with studentized residuals and

# playing with colors:

## Not run:

ml <- drop.gvf.points(m, which.plot = 2, id.n = 10, res.type = "student”,
col = "blue”, drop.col = "green"”, pch = 20)

ml

summary(m1)

## End(Not run)

HHHHHHHEHEE AR AR

# Method 'cut': identify outlier observations to be dropped #

# by specifying a threshold for the absolute values of the #

# residuals. #
HEHHHHHHEEEE AR PR HHHHEHHHHHRHEEHEHHEEH R

# Using default threshold on standardized residuals and visualizing
# dropped observations on both 'Observed vs Fitted' and 'Residuals
# vs Fitted' plots:

ml <- drop.gvf.points(m, method ="cut")

ml

summary(m1)

# Using a custom threshold on studentized residuals and visualizing

# dropped observations on the 'Observed vs Fitted' plot:

ml <- drop.gvf.points(m, method ="cut”, res.type = "student”,
res.cut = 2.5, which.plot = 1)

ml

summary (m1)

# The same as above, but visualizing dropped observations on the

# 'Residuals vs Fitted' plot:

ml <- drop.gvf.points(m, method ="cut”, res.type = "student”,
res.cut = 2.5, which.plot = 2)

ml

summary(m1)

# You can obviously "cut"”/"pick"” alleged outliers again from an already
# "cut"/"picked"” fitted GVF model:
m2 <- drop.gvf.points(ml, method ="cut”, res.type = "student”,
res.cut = 2.5, col = "blue”, pch = 20)
m2
summary (m2)

B
# Identifying outlier observations to be dropped from "grouped” #
# GVF fitted models (i.e. x has class 'gvf.fit.gr'). #
HHHEHHAEEEEH AR A
# Recall we have at our disposal the following survey design object
# defined on household data:
exdes

# Now use function svystat to prepare "grouped” estimates and errors

39



40 e.calibrate

# of counts to be fitted separately (here groups are regions):

ee <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
ee

plot(ee)

# Fit registered GVF model number one separately inside groups:
m <- fit.gvf(ee, model=1)

m

summary (m)

# Now drop alleged outliers separately inside groups:
B e R R R i S S R i iy e g i

# Method 'pick': work interactively group by group. #
SRR A

## Not run:
ml <- drop.gvf.points(m, which.plot = 2, res.type = "student”, col = "blue”,
pch = 20)
m1

summary (m1)
## End(Not run)

HHHHHHHEEEE AR AR

# Method 'cut': apply the same threshold to all groups. #

HHHHHHAREA AR R

ml <- drop.gvf.points(m, method ="cut”, res.type = "student”, res.cut = 2)
m1

summary (m1)

e.calibrate Calibration of Survey Weights

Description

Adds to an analytic object the calibrated weights column.

Usage

e.calibrate(design, df.population,

calmodel = if (inherits(df.population, "pop.totals"))
attr(df.population, "calmodel”),

partition = if (inherits(df.population, "pop.totals"))
attr(df.population, "partition”) else FALSE,

calfun = c("linear”, "raking", "logit"),

bounds = c(-Inf, Inf), aggregate.stage = NULL,

sigma2 = NULL, maxit = 50, epsilon = 1e-07, force = TRUE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
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df.population Data frame containing the known population totals for the auxiliary variables.
calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model (see ‘Details’); FALSE (the default) implies no calibration domains.

calfun character specifying the distance function for the calibration process; the de-
faultis 'linear’.

bounds Allowed range for the ratios between calibrated and initial weights; the default
is c(-Inf,Inf).

aggregate.stage
An integer: if specified, causes the calibrated weights to be constant within
sampling units at this stage.

sigma2 Formula specifying a possible heteroskedasticity effect in the calibration model;
NULL (the default) implies homoskedasticity.

maxit Maximum number of iterations for the Newton-Raphson algorithm; the default
is 50.

epsilon Tolerance for the absolute relative differences between the population totals
and the corresponding estimates based on the calibrated weights; the default
is 10*-7.

force If TRUE, whenever the calibration algorithm does not converge, forces the func-

tion to return a value (see ‘Details’ and ‘Calibration process diagnostics’); the
default is TRUE.

Details

This function creates an object of class cal.analytic. A cal.analytic object makes it possible
to compute estimates and standard errors of calibration estimators [Deville, Sarndal 92] [Deville,
Sarndal, Sautory 93].

The mandatory argument calmodel symbolically defines the calibration model you intend to use,
that is - in the language of the Generalized Regression Estimator - the assisting linear regression
model underlying the calibration problem. More specifically, the calmodel formula identifies the
auxiliary variables and the constraints for the calibration problem, with a notation inspired by
[Wilkinson, Rogers 73]. For example, calmodel=~(X+Z):C+(A+B):D-1 defines the calibration
problem in which constraints are imposed: (i) on the totals of auxiliary (quantitative) variables X
and Z within the subpopulations identified by the (qualitative) classification variable C and, at the
same time, (ii) on the absolute frequency of the (qualitative) variables A and B within the subpopu-
lations identified by the (qualitative) classification variable D.

The design variables referenced by calmodel must be numeric or factor and must not contain
any missing value (NA).

Problems for which one or more qualitative variables can be “factorized” in the formula that spec-
ifies the calibration model, are particularly interesting. These variables split the population into
non-overlapping subpopulations known as “calibration domains” for the model. An example is
provided by the statement calmodel=~(A+B+X+Z) :D-1 in which the variable that identifies the cal-
ibration domains is D; similarly, the formula calmodel=~(A+B+X+Z) :D1:D2-1 identifies as calibra-
tion domains the subpopulations determined by crossing the modalities of D1 and D2. The interest
in models of this kind lies in the fact that the global calibration problem they describe can, actually,
be broken down into local subproblems, one per calibration domain, which can be solved separately
[Vanderhoeft 01]. Thus, for example, the global problem defined by calmodel=~(A+B+X+Z) :D-1
is equivalent to the sequence of problems defined by the “reduced model” calmodel=~A+B+X+Z-1
in each of the domains identified by the modalities of D. The opportunity to separately solve the
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subproblems related to different calibration domains achieves a significant reduction in computa-
tion complexity: the gain increases with increasing survey data size and (most importantly) with
increasing auxiliary variables number.

The optional argument partition makes it possible to choose, in cases in which the calibra-
tion problem can be factorized, whether to solve the problem globally or in a partitioned way
(that is, separately for each calibration domain). The global solution (which is the default op-
tion) can be selected invoking the e.calibrate function with partition=FALSE. To request the
partitioned solution - a strongly recommended option when dealing with a lot of auxiliary vari-
ables and big data sizes - it is necessary to specify via partition the variables defining the
calibration domains for the model. If a formula is passed through the partition argument (for
example: partition=~D1:D2), the program checks that calmodel actually describes a "reduced
model" (for example: calmodel=~A+B+X+Z-1), that is it does not reference any of the partition
variables; if this is not the case, the program stops and prints an error message. Notice that a
formula like partition=~D1+D2 will be automatically translated into the factor-crossing formula
partition=~D1:D2.

The design variables referenced by partition (if any) must be factor and must not contain any
missing value (NA).

The mandatory argument df . population is used to specify the known totals of the auxiliary vari-
ables referenced by calmodel within the subpopulations (if any) identified by partition. These
known totals must be stored in a data frame whose structure (i) depends on the values of calmodel
and partition and (ii) must conform to a standard. In order to facilitate understanding of and
compliance with this standard, the ReGenesees package provides the user with four functions:
pop.template, population.check, pop.desc and fill.template. The pop.template function
is able to guide the user in constructing the known totals data frame for a specific calibration prob-
lem, the pop.desc function provides a natural language description of the template structure, the
fill.template function can be exploited to automatically fill the template when a sampling frame
is available, while the population.check function allows to check whether a known totals data
frame conforms to the standard required by e.calibrate. In any case, if the df.population
data frame does not comply with the standard, the e.calibrate function stops and prints an error
message: the meaning of the message should help the user diagnose the cause of the problem.

The calfun argument identifies the distance function to be used in the calibration process. Three
built-in functions are provided: "linear”, "raking"”, and "logit" (see [Deville, Sarndal, Sautory
93]). The default is "linear"”, which corresponds to the euclidean metric and yields the General-
ized Regression Estimator (provided that no range restrictions are imposed on the g-weights). The
"raking" distance corresponds to the “multiplicative method” of [Deville, Sarndal, Sautory 93].

The bounds argument allows to add “range constraints” to the calibration problem. To be precise,
the interval defined by bounds will contain the values of the ratios between final (calibrated) and
initial (direct) weights. The default value is c(-Inf,Inf), i.e. no range constraints are imposed.
These constraints are optional unless the "logit” function is selected: in the latter case the range
defined by bounds has to be finite (see, again, [Deville, Sarndal, Sautory 93]).

The value passed by the aggregate. stage argument must be an integer between 1 and the number
of sampling stages of design. If specified, causes the calibrated weights to be constant within sam-
pling units selected at the aggregate. stage stage (actually this is only allowed if the initial weights
had already this property, as it is sometimes the case in multistage cluster sampling). If not spec-
ified, the calibrated weights may differ even for sampling units with identical initial weights. The
same holds if some final units belonging to the same cluster selected at the stage aggregate.stage
fall in distinct calibration domains (i.e. if the domains defined by partition "cut across" the
aggregate. stage-stage clusters).

The argument sigma2 can be used to take into account a possible heteroskedasticity effect in the
(assisting linear regression model underlying the) calibration problem. In such cases, sigma2 must
identify some variable to which the variances of the error terms are believed to be proportional.



e.calibrate 43

Notice that sigma2 can also be interpreted from a "purely calibration-based"” point of view: it
corresponds to the 1/¢ unit-weights appearing inside the distance measures of [Deville, Sarndal
92] [Deville, Sarndal, Sautory 93]. The final effect is, on average, that calibrated weights associated
to higher values of sigma?2 tend to stay closer to their corresponding initial weights.

Note that it is technically possible to exploit this behaviour in order to prevent some subset of the
initial weights from being altered by calibration. The trick is simple: just build a convenience
sigma2 variable whose values are set to some very high value (e.g. 1E12) for those units whose
initial weight must be preserved, and to 1 otherwise (see ‘Examples’). Nevertheless, this trick
should be used sparingly and very carefully, as otherwise it may: (i) cause the calibration algorithm
to not converge, (ii) result in introducing bias in calibration estimates. In particular, with respect
to bias, one should not select the units whose weight must be preserved on the basis of the current
sample.

The sigma2 formula can reference just a single design variable: such variable must be numeric,
strictly positive and must not contain NAs. If aggregate. stage is specified, sigma2 must obviously
be constant inside aggregate. stage-stage clusters (otherwise the function stops and prints an error
message).

The maxit argument sets the maximum number of iteration for the Newton-Raphson algorithm that
is used to solve the calibration problem (the only exception being unbounded linear calibration,
i.e. calfun="linear' and bounds=c(-Inf, Inf), which is actually handled by directly solving a
linear problem). The default value of maxit is 50.

The epsilon argument determines the convergence criterion for the optimization algorithm: it fixes
the maximum allowed absolute value for the relative differences between the population totals and
the corresponding estimates based on the calibrated weights. The default value is 10*-7.

The calibrated weights computed by e.calibrate must ensure that the calibration estimators of
the auxiliary variables exactly match the corresponding known population totals. It is, however,
possible (more likely when range constraints are imposed) that, for a specific calibration problem
and for given values of epsilon and maxit, the solving algorithm does not converge. In this case,
if force = FALSE, e.calibrate stops and prints an error message. If - on the contrary - force =
TRUE, the function is forced to return the best approximation achieved for the calibrated weights,
nevertheless signaling the calibration failure by a warning (see also Section ’Calibration process
diagnostics’).

Value

An object of class cal.analytic. The data frame it contains includes (in addition to the data
already stored in design) the calibrated weights column. The name of this column is obtained by
pasting the name of the initial weights column with the string ".cal".

Calibration Process Diagnostics

When, dealing with a factorizable calibration problem, the user selects the partitioned solution, the
global calibration problem gets split into as many sub-problems as the number of subpopulations
defined by partition. In turn, each one of these calibration sub-problems can end without con-
vergence on any one of the involved auxiliary variables. A calibration process with such a complex
structure needs some ad hoc tool for error diagnostics. For this purpose, every call to e.calibrate
creates, by side effect, a dedicated data structure named ecal.status into the .GlobalEnv.

ecal.statusis alist with up to three components: the first, "call”, identifies the call to e.calibrate
that generated the list, the second, return.code, is a matrix each element of which identifies the
return code of a specific calibration sub-problem. The meaning of the return codes is as follows:

CODE MEANING
il I not yet tackled sub-problem;
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Q........ solved sub-problem (convergence achieved);
Toooon.. unsolved sub-problem (no convergence): output forced.

Recall that the latter return code (1) may only occur if force = TRUE.

If any return.code equal to 1 exists, the ecal. status list gains a third component named "fail.diagnostics”
which is itself a list; its components correspond to sub-problems for which convergence was not

achieved, and store useful information about the auxiliary variables for which calibration constraints

are violated. Therefore, users can exploit ecal. status to identify sub-problems and variables from

which errors stemmed, hence taking a step forward to eliminate them.

Notice, lastly, that the ecal. status list will also be persistently bound to the e.calibrate return
object, stored inside a dedicated attribute. For the inspection of such diagnostics information the
check. cal function is available.

Note

The cal.analytic class is a specialization of the analytic class; this means that an object created
by e.calibrate inherits from the analytic class and you can use on it all methods defined on the
latter class, e.g. print, summary, weights. Moreover, a calibrated design can be passed again to
e.calibrate, thus undergoing further calibration steps.

Author(s)

Diego Zardetto
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See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM, svystatR, svystats,
svystatSR, svystatB, svystatQ and svystatL for calculating estimates and standard errors,
pop. template for constructing known totals data frames in compliance with the standard required
by e.calibrate, population.check to check that the known totals data frame satisfies that stan-
dard, pop. desc to provide a natural language description of the template structure, fill. template
to automatically fill the template when a sampling frame is available, bounds.hint to obtain a
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hint for range restricted calibration, g.range to asses the variation of weights after calibration and
check. cal to check if calibration constraints have been fulfilled.

Examples

B S
# Calibration of a design object according to different calibration #
# models (the known totals data frames pop@1, \ldots, pop@5p and the #

# bounds vector are all contained in the data.examples file). #
# For the examples relating to calibration models that can be #
# factorized both a global and a partitioned solution are given. #

A

# Load household data:
data(data.examples)

# Creation of the object to be calibrated:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# 1) Calibration on the total number of units in the population

#  (totals in pop@1):

descal@1<-e.calibrate(design=des,df.population=pop@1, calmodel=~1,
calfun="logit",bounds=bounds,aggregate.stage=2)

# Printing descal@l immediately recalls that it is a
# "calibrated” object:
descalo1

# Use the summary() function if you need some additional details, e.g.:
summary (descal@1)

# Use the 'variables' slot to extract survey data, e.g.:
head(descal@1$variables)

# Use the weights() function to extract weights, e.g.:
summary (weights(descal@1))

# Checking the result (first add the new 'ones' variable

# to estimate the number of final units in the population):
descal@1<-des.addvars(descal@l,ones=1)

svystatTM(descal@l1, ~ones)

# 2) Calibration on the marginal distributions of sex and marstat

# (totals in pop@2):

descal@2<-e.calibrate(design=des,df.population=pop@2,
calmodel=~sex+marstat-1,calfun="logit",bounds=bounds,
aggregate.stage=2)

# Checking the result:

svystatTM(descal@2,~sex+marstat)

# 3) Calibration (global solution) on the joint distribution of sex
# and marstat (totals in pop@3):
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descal@3<-e.calibrate(design=des,df.population=pop@3,
calmodel=~marstat:sex-1,calfun="logit",bounds=bounds)

# Checking the result:
svystatTM(descal@3,~sex,~marstat) # or: svystatTM(descal@3,~marstat,~sex)

# which, obviously, is not respected by descal@2 (notice the size of SE):
svystatTM(descal@2,~sex,~marstat)

# 3.1) Again a calibration on the joint distribution of sex and marstat

# but, this time, with the partitioned solution (partition=~sex,

# totals in pop@3p):

descal@3p<-e.calibrate(design=des,df.population=popd3p,
calmodel=~marstat-1,partition=~sex,calfun="logit",
bounds=bounds)

# Checking the result:
svystatTM(descal@3p, ~sex,~marstat)

# 4) Calibration (global solution) on the totals for the quantitative

# variables x1, x2 and x3 in the subpopulations defined by the

# regcod variable (totals in pop04):

descal@4<-e.calibrate(design=des,df.population=pop04,
calmodel=~(x1+x2+x3):regcod-1,calfun="logit",
bounds=bounds, aggregate.stage=2)

# Checking the result:
svystatTM(descal@4,~x1+x2+x3,~regcod)

# 4.1) Same problem with the partitioned solution (partition=~regcod,

# totals in pop@4p):

descal@4p<-e.calibrate(design=des,df.population=pop@4p,
calmodel=~x1+x2+x3-1,partition=~regcod, calfun="logit",
bounds=bounds, aggregate.stage=2)

# Checking the result:
svystatTM(descal@4p, ~x1+x2+x3, ~regcod)

# 5) Calibration (global solution) on the total for the quantitative

# variable x1 and on the marginal distribution of the qualitative

# variable age5c, in the subpopulations defined by crossing sex

# and marstat (totals in pop@5):

descal@5<-e.calibrate(design=des,df.population=pop®d5,
calmodel=~(age5c+x1):sex:marstat-1,calfun="logit",
bounds=bounds)

# Checking the result:
svystatTM(descal@5, ~age5c+x1,~sex:marstat)

# 5.1) Same problem with the partitioned solution (partition=~sex:marstat,
# totals in pop@5p):
descal@5p<-e.calibrate(design=des,df.population=popd5p,



e.calibrate

calmodel=~age5c+x1-1,partition=~sex:marstat,
calfun="logit",bounds=bounds)

# Checking the result:
svystatTM(descal@5p, ~age5c+x1,~sex:marstat)

# Notice that 3.1 and 5.1) 5.2) do not impose the aggregate.stage=2
# condition. This condition cannot, in fact, be fulfilled because

# in both cases the domains defined by partition "cut across”

# the des second stage clusters (households). To compare the results,
# the same choice was also made for 3) and 5).

5.2) Just a single example to inspect the ecal.status list generated
for diagnostics purposes.
Let's shrink the bounds in order to prevent perfect convergence
(recall that force=TRUE by default):
approx.cal<-e.calibrate(design=des,df.population=pop@5p,
calmodel=~age5c+x1-1,partition=~sex:marstat,
calfun="logit", bounds=c(0.95,1.05))

#
#
#
#

# ...now use check.cal function to assess the amount of calibration
# constraints violation:
check.cal(approx.cal)

# ...or (equivalently) inspect directly ecal.status:
ecal.status

AR

# Some examples illustrating how calibration #
# can be exploited to reduce nonresponse bias #
# (see, e.g. [Sarndal, Lundstrom 05]). #

A

# Load sbs data:
data(sbs)

SHHHHHHHERE S
# Full-response case. #
S

# Create a full-response design object:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

# Now estimate the average value added and its 95% confidence interval:

mean.VA<-svystatTM(design=sbsdes,y=~va.imp2,estimator="Mean",vartype= "cvpct”,
conf.int=TRUE,conf.lev=0.95)

mean.VA

# Compare the obtained estimate with the true population parameter:
MEAN.VA<-mean(sbs.frame$va.imp2)
MEAN. VA

# We get a small overestimation of about 4%...
100* (coef (mean.VA)-MEAN.VA) /MEAN. VA
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# which, anyway, doesn't indicate a significant bias for the
# full-response sample, because the 95% confidence interval
# covers the true value.

A
# Nonresponse case: assume a response propensity #
# which increases with enterprise size. #
S

# Set bigger response probabilities for bigger firms,
# e.g. exploiting available information about the

# number of employees (emp.cl):

levels(sbs$emp.cl)

p.resp <- c(.4,.6,.8,.95,.99)

# Tie response probabilities to sample observations:
pr<-p.resplunclass(sbs$emp.cl)]

# Now, randomly select a subsample of responding units from sbs:
set.seed(12345) # (fix the RNG seed for reproducibility)
rand<-runif(1:nrow(sbs))

sbs.nr<-sbs[rand<pr, ]

# This implies an overall response rate of about 73%:
nrow(sbs.nr)/nrow(sbs)

# Treat the non-response sample as it was complete: this should

# lead to biased estimates of value added, as the latter is

# positively correlated with firms size...
sbsdes.nr<-e.svydesign(data=sbs.nr,ids=~id,strata=~strata,weights=~weight)

#...indeed:
old.op <- options(”RG.lonely.psu"="adjust”) # (prevent lonely-PSUs troubles)
mean.VA.nr<-svystatTM(design=sbsdes.nr,y=~va.imp2,estimator="Mean",
vartype= "cvpct"”,conf.int=TRUE, conf.lev=0.95)
mean.VA.nr

# and, comparing with the true population average, we see a
# significant overestimation effect, with the 95% confidence
# interval not even covering the parameter:

MEAN. VA

# Nonresponse bias can be effectively reduced by calibrating

# on variables explaining the response propensity: e.g., in

# the present example, on the population distribution of emp.cl:
# Prepare the known totals template...
N.emp.cl<-pop.template(data=sbs.nr,calmodel=~emp.cl-1)
N.emp.cl

# Fill it by using the sampling frame...
.emp.cl<-fill.template(sbs.frame,N.emp.cl)
N.emp.cl

=

# Lastly calibrate:
# Get a hint on the calibration bounds:
hint<-bounds.hint(sbsdes.nr,N.emp.cl)
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sbscal.nr<-e.calibrate(design=sbsdes.nr,df.population=N.emp.cl,
bounds=hint)
sbscal.nr

# Now estimate the average value added on the calibrated design:
mean.VA.cal.nr<-svystatTM(design=sbscal.nr,y=~va.imp2,estimator="Mean",
vartype= "cvpct”,conf.int=TRUE, conf.lev=0.95)

# options(old.op) # (reset variance estimation options)

# As expected, we see a significant bias reduction:
MEAN. VA

mean.VA.nr

mean.VA.cal.nr

# Even if the 95% confidence interval still doesn't cover the

# true value, by calibration we passed from an initial overestimation
# of about 33% to a 7% one:

100 (coef (mean.VA.nr)-MEAN.VA) /MEAN. VA

100* (coef (mean.VA.cal.nr)-MEAN.VA)/MEAN.VA

B S R
# A multi-step calibration example showing that #
# a calibrated object can be calibrated again #
# (this can be sometimes useful in practice): #
# Step 1: calibrate to reduce nonresponse bias; #
# Step 2: calibrate again to gain efficiency. #
B S R

# Suppose you already performed a first calibration step,
# as shown in the example above, with the aim of softening
# nonresponse bias:

sbscal.nr

# Now you may want to calibrate again in order to reduce

# estimators variance, by using further available auxiliary
# information, e.g. the total number of employees (emp.num)
# and enterprises (ent) inside the domains obtained

# by crossing nace.macro and region:

# Build the second step population totals template:

pop2<-pop.template(sbscal.nr,
calmodel=~emp.num+ent-1,
partition=~nace.macro:region)

# Use the fill.template function to (i) automatically compute
# the totals from the universe (sbs.frame) and (ii) safely fill
# the template:

pop2<-fill.template(universe=sbs.frame, template=pop2)

# Now perform the second calibration step:
# Get a hint on the calibration bounds:
hint2<-bounds.hint(sbscal.nr,pop2)
sbscal.nr2<-e.calibrate(design=sbscal.nr,df.population=pop2,
bounds=hint2)

49
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# Notice that printing sbscal.nr2 you immediately understand
# that it is a "twice-calibrated” object:
sbscal.nr2

# Notice also that, even if the second calibration step causes

# sbscal.nr2 to be no more exactly calibrated with respect to

# emp.cl (look at the cvpct values)...

old.op <- options(”"RG.lonely.psu”"="adjust"”) # (prevent lonely-PSUs troubles)
svystatTM(design=sbscal.nr2,y=~emp.cl,vartype="cvpct")

# ...the nonresponse bias has not been resurrected (i.e. it gets stuck

# to its previous 7%):

mean.VA.cal.nr2<-svystatTM(design=sbscal.nr2,y=~va.imp2,estimator="Mean",
vartype= "cvpct”,conf.int=TRUE,conf.lev=0.95)

options(old.op) # (reset variance estimation options)
mean.VA.cal.nr2

100 (coef (mean.VA.cal.nr2)-MEAN.VA)/MEAN. VA

B i S S ST T S
# Provided the auxiliary variables are chosen in a smart way #

# a single calibration step can simultaneously succeed in: #
# (i) softening nonresponse bias; #
# (ii) reducing estimators variance. #

SRR

# Let's come back to the original design with nonresponse:
sbsdes.nr

# Now, let's try to calibrate simultaneously on (see examples above):
# (i) the population distribution of emp.cl;

# (ii) the total number of employees (emp.num) and enterprises (ent)
# inside the domains obtained by crossing nace.macro and region:

# Build the population totals template (notice that we are now forced
# to a global calibration, as we are assuming to ignore emp.cl counts
# inside domains obtained by crossing nace.macro and region):
popl1<-pop.template(sbs.nr,

calmodel=~emp.cl+(emp.num+ent) :nace.macro:region-1)

# Use the fill.template function to (i) automatically compute
# the totals from the universe (sbs.frame) and (ii) safely fill
# the template:

pop1<-fill.template(universe=sbs.frame, template=pop1)

# Now perform the single calibration step:
# Get a hint on the calibration bounds:
hint1<-bounds.hint(sbsdes.nr,pop1)
sbscal.nri1<-e.calibrate(design=sbsdes.nr,df.population=pop1,
bounds=hint1)

sbscal.nri

# Now:
# (i) verify the nonresponse bias reduction effect:
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n_n

old.op <- options(”RG.lonely.psu”="adjust") #(prevent lonely-PSUs troubles)
mean.VA.cal.nri<-svystatTM(design=sbscal.nr1,y=~va.imp2,estimator="Mean",

vartype= "cvpct"”,conf.int=TRUE, conf.lev=0.95)
options(old.op)

mean.VA.cal.nri
100* (coef(mean.VA.cal.nr1)-MEAN.VA)/MEAN.VA

# thus we are back to ~7%, as for the previous 2-step calibration example.

# (ii) compare cvpct with the previous 2-step calibration example:
mean.VA.cal.nr1
mean.VA.cal.nr2

# hence, both bias reduction and efficiency are almost the same in 2-step and
# single step calibration (auxiliary information being equal): the choice

# will often depend on practical considerations (e.g. convergence, computation
# time).

HHHHHHHEHEE AR AR AR
# Example with heteroskedastic assisting linear model: shows how to obtain #
# the ratio estimator of a total by calibration. #
HHHHHHHEEEE AR AR R

# Load sbs data:
data(sbs)

# Create the design object to be calibrated:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

# Suppose you have to calibrate on the total amount of employees:
# Prepare the template:

pop<-pop.template(data=sbsdes, calmodel=~emp.num-1)

pop

# Fill it by using the sampling frame (sbs.frame)...
pop<-fill.template(sbs.frame,pop)
pop

# ... thus the total number of employees is 984394.

# Now calibrate assuming that error terms variances are proportional
# to emp.num:
sbscal<-e.calibrate(design=sbsdes,df.population=pop, sigma2=~emp.num)

# Now compute the calibration estimator of the total
# of value added (i.e. variable va.imp2)...
VA.tot.cal<-svystatTM(design=sbscal,y=~va.imp2)
VA.tot.cal

#... and observe that this is identical to the ratio estimator of the total...
TOT.emp.num <- pop[1, 1]

VA.ratio<-svystatlL (design=sbsdes, expression(TOT.emp.num * (va.imp2/emp.num)))
VA.ratio

# ...as it must be.
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# Recall that, for the calibration problem above, one must expect, by virtue of
# simple theoretical arguments, that the g-weights are constant and equal to the
# ratio between the known total of emp.num (984394) and its HT estimate.

# This property is exactly satisfied by our numerical results, see below:

pop[1, 1]/coef(svystatTM(sbsdes, ~emp.num))

g.range(sbscal)

# ...as it must be.

HHHHHHAREEE AR AR R
# A second example of calibration with heteroskedastic assisting linear #
# model. Shows that calibrated weights associated to higher values of #
# sigma2 tend to stay closer to their corresponding initial weights. #
HHHEHHHEHEH AR

# Perform a calibration process which exploits as auxiliary
# information the total number of employees (emp.num)

# and enterprises (ent) inside the domains obtained by:

# 1) crossing nace2 and region;

# ii) crossing emp.cl, region and nace.macro;

# Build the population totals template:
pop<-pop.template(sbsdes,
calmodel=~(emp.num+ent): (nace2+emp.cl:nace.macro)-1,
partition=~region)

# Use the fill.template function to (i) automatically compute
# the totals from the universe (sbs.frame) and (ii) safely fill
# the template:
pop<-fill.template(universe=sbs.frame, template=pop)

# Now calibrate:
# 1) First, without any heteroskedasticy effect
sbscall<-e.calibrate(sbsdes,pop,calfun="1linear"”,bounds = c(0.01, 3),
sigma2=NULL)

# 2) Then, with heteroskedastic effect proportional to emp.num:
sbscal2<-e.calibrate(sbsdes,pop,calfun="1linear"”,bounds = c(0.01, 3),
sigma2=~emp.num)

# Compute the g-weights for both the calibrated objects:
gl<-weights(sbscall)/weights(sbsdes)
g2<-weights(sbscal2)/weights(sbsdes)

# Now visually compare the absolute deviations from 1 of the g-weights
# as a function of emp.num:

plot(logl@(sbs$emp.num),abs(gl-1), col="blue"”, pch=19, cex=0.5)
points(logl@(sbs$emp.num),abs(g2-1), col="red", pch=19, cex=0.5)

#...as emp.num grows red points clearly tend to stay closer to
# the horizontal axis than blue ones, as expected.

S HEEHHE PR
# A third example. Shows how to exploit the sigma2 argument to prevent #
# some initial weights from being altered by calibration. #
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HHHHEHHH A

# Let's refer again to object sbsdes:
sbsdes

# Let's assume that for some reason we want to prevent the *highestx* initial
# weights from being altered by calibration:

dmax <- max(weights(sbsdes))

dmax

# The relevent units are the following 4:
to.keep <- which(weights(sbsdes) == dmax)
to.keep

# Now, let's prepare a convenience variable (to be later bound to the 'sigma2'
# argument of e.calibrate) whose values are set to a very high value (say 1E12)
# for those units whose initial weight must be preserved, and to 1 otherwise.

# For definiteness, let's call such variable 'fixed':

sbsdes <- des.addvars(sbsdes, fixed = ifelse(weights(sbsdes) == dmax, 1E12, 1))

# Now, let's perform a calibration process which exploits as auxiliary
# information the total number of employees (emp.num)

# and enterprises (ent) inside the domains obtained by:

# 1) crossing region and emp.cl;

# ii) crossing region and nace.macro;

# Build the population totals template:

pop<-pop. template(sbsdes,
calmodel = ~(emp.num + ent):(emp.cl + nace.macro) - 1,
partition = ~region)

# Use the fill.template function to (i) automatically compute
# the totals from the universe (sbs.frame) and (ii) safely fill
# the template:
pop<-fill.template(universe=sbs.frame, template=pop)

# Now calibrate:
# 1) First, xwithout* any heteroskedasticy effect:
sbscall <- e.calibrate(sbsdes, pop, calfun = "linear”, sigma2 = NULL)
g.range(sbscall)

## As expected, calibration weights of the 4 units to.keep *differx from
## the corresponding initial weights:

weights(sbsdes)[to.keep]

weights(sbscall)[to.keep]

# 2) Then, xwith* heteroskedasticy effect given by our convenience variable
# 'fixed':
sbscal2 <- e.calibrate(sbsdes, pop, calfun = "linear"”, sigma2 = ~fixed)
g.range(sbscal2)

## Let's verify that calibration weights of the 4 units to.keep are now
## xequal* to the corresponding initial weights:
weights(sbsdes)[to.keep]

weights(sbscal2)[to.keep]

## ...as it must be.
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# NOTE: It should be clear that the additional request to hold some weights
# fixed while calibrating will - all other things being equal - increase
# the probability of non-convergence of the calibration algorithm.

HHHEHHEBHEEHE AR AR AR
# Calibrating simultaneously on unit-level and cluster-level #
# auxiliary information: an household survey example. #
HHHEHHEEEEHE R AR AR

# Load household data:
data(data.examples)

# Define the survey design:
exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~stratum,
weights=~weight)

# Collapse strata to eliminate lonely PSUs:
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

# Now add new convenience variables to the design object:
## 'houdensity': to estimate households counts
## 'ones': to estimate individuals counts
exdes<-des.addvars(exdes,
houdensity=ave(famcod, famcod,FUN = function(x) 1/length(x)),
ones=1)

# Let's see how it's possible to calibrate *simultaneously* on:
# 1. the number of xindividualsx crossclassified by sex, 5 age classes,
# and province;
# 2. the number of *households* by region.

# First, for the purpose of running the example, let's generate some
# artificial population totals. We have only to get HT estimates for
# the auxiliary variables and perturb them randomly:
# Get HT estimates of auxiliary variables:
xx<-aux.estimates(design=exdes, calmodel=~houdensity+sex:age5c:procod-1,
partition=~regcod)

# Add a random uniform perturbation to these numbers:
set.seed(12345) # Fix the RNG seed for reproducibility
xx[,=11<-round(xx[,=-11*runif(prod(dim(xx[,-11)),0.8,1.2))

# Now we have at hand our artificial population totals, and

# we can proceed with the calibration task:

excal<-e.calibrate(design=exdes,df.population=xx,calfun= "linear”,
bounds=c(0, 3),aggregate.stage=2)

# To perceive the effect of calibration, let's e.g. compare the HT and

# calibrated estimates of the average number of individuals per household
# at population level:

svystatR(exdes, ~ones,~houdensity,vartype="cvpct")

svystatR(excal, ~ones,~houdensity, vartype="cvpct")

HHHHEHEE AR
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# Calibrating on different patterns of #
# "incomplete” auxiliary information. #
HHHEHHHEEE AR

Usually calibration constraints involve "complete auxiliary information”,
i.e. totals which are known either:
(i) for the target population as a whole (e.g. total number of
employees working in italian active enterprises at a given date);
or:
(ii) for each subpopulation belonging to a complete partition of
the target population (e.g. number of male and female people
residing in Italy at a given date).

Anyway, it may happen sometimes that the available auxiliary information
is actually "incomplete”, i.e. one doesn't know all the totals for all the
subpopulations in a partition, but rather only for some of them. As an
example, suppose marital status has categories "married”, "unmarried”,

and "widowed” and that one only knows the number of "unmarried” people.

In what follows I show how you can use ReGenesees to handle a calibration
task on "incomplete” auxiliary information.

SR
# A simple example. #
FHHHHHEEH A

# Load household data:
data(data.examples)

# Define the survey design:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Suppose you only know the number of "unmarried” people (let's say 398240)
# but you ignore "married” and "widowed” totals, and you want to calibrate
# on this incomplete information.

# First, add to the survey design a new numeric variable with value 1

# for unmarried people and @ otherwise:

des<-des.addvars(des,unmarried=as.numeric(marstat=="unmarried"))

# Second, prepare a template to store the known "unmarried” people count:
pop<-pop.template(des, calmodel=~unmarried-1)

# Third, fill the template with the known total:
pop[1,1] <- 398240

# Fourth, calibrate:
descal<-e.calibrate(des,pop)

# Now test that only "unmarried” estimated total has @ percent CV:
Zapsmall(svystatTM(descal,~marstat,vartype="cvpct"))

# ...as it must be.
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# A more complicated example. #
B S S S

# Load sbs data:
data(sbs)

# Define the survey design:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

# Suppose you want to calibrate on the following "incomplete” known totals:
# 1. enterprises counts by nace.macro
# 2. enterprises counts by dom3 ONLY inside nace.macro 'Industry'’
# 3. total of y by emp.cl ONLY inside nace.macro 'Commerce'’

# First, add to the survey design new variables identifying the domains
# where "incomplete” totals 2. and 3. are known:

## 2. -> nace.macro = 'Industry'

sbsdes<-des.addvars(sbsdes, Industry=as.numeric(nace.macro=="Industry"))
## 3. -> nace.macro = 'Commerce'’
sbsdes<-des.addvars(sbsdes,Commerce=as.numeric(nace.macro=="Commerce"))

# Do the same for the sampling frame:

## 2. -> nace.macro = 'Industry'
sbs.frame$Industry=as.numeric(sbs.frame$nace.macro=="Industry")
## 3. -> nace.macro = 'Commerce'’

sbs. frame$Commerce=as.numeric(sbs.frame$nace.macro=="Commerce")

# Second, prepare a template to store the totals listed in 1., 2. and 3.;

# to this purpose one can e.g. compute HT estimates of the involved auxiliary

# variables:

Xht<-aux.estimates(design=sbsdes,
calmodel=~nace.macro+Industry:dom3+Commerce:y:emp.cl-1)

Xht

# Third, use the structure above to compute actual population totals
# from the sampling frame:

pop <- fill.template(universe=sbs.frame,template=Xht)

pop

# Fourth, calibrate:
sbscal <- e.calibrate(design=sbsdes,df.population=pop)

# Test1: nace.macro counts have @ CVs:
test1<-svystatTM(design=sbscal,y=~nace.macro,vartype="cvpct")
testl

# Test2: only 'Industry' macrosector has @ CVs for dom3 counts:
test2<-svystatTM(design=sbscal,y=~dom3,by=~nace.macro,vartype="cvpct")
Zapsmall(test2)

# Test3: only 'Commerce' macrosector has @ CVs for y total by emp.cl:
test3<-svystatTM(design=sbscal,y=~y,by=~emp.cl:nace.macro,vartype="cvpct")
Zapsmall(test3)

e.svydesign Specification of a Complex Survey Design
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Description

Binds survey data and sampling design metadata.

Usage

e.svydesign(data, ids, strata = NULL, weights,
fpc = NULL, self.rep.str = NULL, check.data = TRUE)

## S3 method for class 'analytic'

summary(object, ...)
Arguments
data Data frame of survey data.
ids Formula identifying clusters selected at subsequent sampling stages (PSUs, SSUs,
).
strata Formula identifying the stratification variable; NULL (the default) implies no
stratification.
weights Formula identifying the initial weights for the sampling units.
fpc Formula identifying finite population corrections at subsequent sampling stages

(see ‘Details’).

self.rep.str  Triggers an approximate variance estimation method for multistage designs (see
‘Details’). If not NULL (the default), must be a formula identifying self-representing
strata (SR), if any.

check.data Check out the correct nesting of data clusters? The default is TRUE.
object An object of class analytic, as returned by e. svydesign.

Arguments for future extensions.

Details

This function has the purpose of binding in an effective and persistent way the survey data to the
metadata describing the adopted sampling design. Both kinds of information are stored in a complex
object of class analytic, which extends the survey.design2 class from the survey package. The
sampling design metadata are then used to enable and guide processing and analyses provided by
other functions in the ReGenesees package (such as e.calibrate, svystatTM,...).

The data, ids and weights arguments are mandatory, while strata, fpc, self.rep.str and
check.data arguments are optional. The data variables that are referenced by ids, weights and,
if specified, by strata, fpc, self.rep.str must not contain any missing value (NA). Should empty
levels be present in any factor variable belonging to data, they would be dropped.

The ids argument specifies the cluster identifiers. It is possible to specify a multistage sampling
design by simply using a formula which involves the identifiers of clusters selected at subsequent
sampling stages. For example, ids=~id.PSU + id.SSU declares a two-stage sampling in which the
first stage units are identified by the id.PSU variable and second stage ones by the id. SSU variable.

The strata argument identifies the stratification variable. The data variable referenced by strata
(if specified) must be a factor. By default the sample is assumed to be non-stratified.

The weights argument identifies the initial (or direct) weights for the units included in the sam-
ple. The data variable referenced by weights must be numeric. Direct weights must be strictly
positive.
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The fpc formula serves the purpose of specifying the finite population corrections at subsequent
sampling stages. By default fpc=NULL, which implies with-replacement sampling.

If the survey has only one stage, then the fpcs can be given either as the total population size in each
stratum or as the fraction of the total population that has been sampled. In either case the relevant
population size must be expressed in terms of sampling units (be they elementary units or clusters).
That is, sampling 100 units from a population stratum of size 500 can be specified as 500 or as
100/500=0.2. Thus, passing to fpc a column of zeros, means again with-replacement sampling.
For multistage sampling the population size (or the sampling fraction) for each sampling stage
should also be specified in fpc. For instance, when ids=~id.PSU + id. SSU the fpc formula should
look like fpc=~fpc.PSU + fpc.SSU, with variable fpc.PSU giving the population sizes (or sampling
fractions) in each stratum for the first stage units, while variable fpc.SSU gives population sizes (or
sampling fractions) for the second stage units in each sampled PSU. Notice that if you choose to
pass to fpc population totals (rather than sampling rates) at a given stage, then you must do the
same for all stages (and vice versa).

If fpc is specified but for fewer stages than ids, sampling is assumed to be complete for subsequent
stages. The function will check that fpcs values at each sampling stage do not vary within strata.

When dealing with a two-stage (multistage) stratified sampling design that includes self-representing
(SR) strata (i.e. strata containing only one PSU selected with probability 1), the only (leading) con-
tribution to the variance of SR strata arises from the second stage units (“variance PSUs”).

When options("RG.ultimate.cluster") is FALSE (which is the default for ReGenesees), vari-
ance estimation for SR strata is correctly handled provided the survey fpcs have been properly
specified. In particular, if fpc=~fpc.PSU + fpc.SSU and one specifies fpcs in terms of sampling
fractions, then, inside SR strata, fpc.PSU must be always equal to one. When, on the contrary, the
“Ultimate Cluster Approximation” holds (i.e. options("RG.ultimate.cluster”) has been set to
TRUE) the SR strata give no contribution at all to the sampling variance.

A compromise solution (adopted by former existing survey software) is the one of retaining, for
both SR and not-SR strata, only the leading contribution to the sampling variance. This means
that only the SSUs are relevant for SR strata, whereby only the PSUs matter in not-SR strata.
This compromise solution can be achieved by using the self.rep.str argument. If this argument
is actually specified (as a formula referencing the data variable that identifies the SR strata), a
warning is generated in order to remind the user that an approximate variance estimation method
will be adopted on that design. Notice that, when choosing the self.rep.str option, the user must
ensure that the variable referenced by self.rep.str is logical (with value TRUE for SR strata and
FALSE otherwise) or numeric (with value 1 for SR strata and @ otherwise) or factor (with levels
"1" for SR strata and "@" otherwise).

The optional argument check . data allows to check out the correct nesting of data clusters (PSUs,
SSUs, ...). If check. data=TRUE the function checks that every unit selected at stage k+1 is associ-
ated to one and only one unit selected at stage k. For a stratified design the function checks also the
correct nesting of clusters within strata.

Value

An object of class analytic. The print method for that class gives a concise description of the
sampling design. The summary method provides further details. Objects of class analytic persis-
tently store input survey data inside their variables component. Weights can be accessed by using
the weights function.

PPS Sampling Designs

Probability proportional to size sampling with replacement does not pose any problem: one must
simply specify fpc=NULL and pass the right weights. This holds also for multistage designs, where
PSUs are selected with replacement with PPS inside strata. Moreover, when the PSUs are sampled
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with replacement, the only contribution to the variance arises from the estimated PSU totals, and
one can simply ignore any available information about subsequent sampling stages.

For unequal probability sampling without replacement, on the contrary, in order to get correct vari-
ance estimates, one should know the second-order inclusion probabilities under the sampling design
at hand. Unluckily, these probabilities cannot generally be computed, thus one has to resort to some
viable approximation. The easier one rests on pretending that PSUs were sampled with replacement,
even if this is not actually the case. It is worth stressing that this approach will result in conservative
estimates. Moreover, the variance overestimation is expected to be negligible as long as the actual
sampling fractions of PSUs are close to zero. Notice that this "with replacement” approximation
can be achieved by either not specifying fpc, or by passing to the PSUs term of fpc a column of
ZEeros.

Note

The analytic class is a specialization of the survey.design2 class from the survey package
[Lumley 06]; this means that an object created by e. svydesign inherits from the survey.design2
class and you can use on it every method defined on the latter class.

Author(s)

Diego Zardetto.

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Lumley, T. (2006) “survey: analysis of complex survey samples”, https://CRAN.R-project.
org/package=survey.

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.

See Also

svystatTM, svystatR, svystats, svystatSR, svystatB, svystatQ, svystatL for calculating es-
timates and standard errors, e.calibrate for calibrating weights, ReGenesees.options for set-
ting/changing variance estimation options, collapse.strata for the suggested way of handling
lonely PSUs, weights to extract weights.

Examples

HHHEHHHEHE A
# The following examples illustrate how to create objects #
# (of class 'analytic') defining different sampling designs. #
# Note: sometimes the same survey data will be used to #
# define more than one design: this serves only the purpose #
# of illustrating e.svydesign syntax. #
HHHEHHHEHE A AR A

data(data.examples)

# Two-stage stratified cluster sampling design (notice that

# the design contains lonely PSUs):
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~stratum,


https://CRAN.R-project.org/package=survey
https://CRAN.R-project.org/package=survey
https://doi.org/10.1515/jos-2015-0013
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weights=~weight)
des

# Use the summary() function if you need some additional details, e.g.:
summary (des)

# Use the 'variables' slot to extract survey data, e.g.:
head(des$variables)

# Use the weights() function to extract weights, e.g.:
summary (weights(des))

# Again the same design, but using collapsed strata (SUPERSTRATUM variable)

# to remove lonely PSUs:

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

des

# Two stage cluster sampling (no stratification):
des<-e.svydesign(data=example, ids=~towcod+famcod,weights=~weight)
des

# Stratified unit sampling design:

des<-e.svydesign(data=example, ids=~key, strata=~SUPERSTRATUM,
weights=~weight)

des

data(sbs)

# One-stage stratified unit sampling without replacement

# (notice the presence of the fpc argument):

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

des

# Same design as above but ignoring the finite population corrections:
des<-e.svydesign(data=sbhs,ids=~id,strata=~strata,weights=~weight)
des

data(fpcdat)

# Two-stage stratified cluster sampling without replacement

# (notice that the fpcs are specified for both stages):

des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2)

des

# Same design as above but assuming complete sampling for the

# second stage units (notice fpcs have been passed only for the

# first stage):

des<-e.svydesign(data=fpcdat, ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpc1)

des

# Again a two-stage stratified cluster sampling without replacement but
# specified in such a way as to retain, in the estimation phase, only
# the leading contribution to the sampling variance (i.e. the one arising
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# from SSUs in SR strata and PSUs in not-SR strata). Notice that the

# self.rep.str argument is used:

des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2, self.rep.str=~sr)

des

estimator.kind Which Estimator Did Generate these Survey Statistics?

Description

Identifies what kind of estimator has been used to compute a (set of) survey static(s).

Usage

estimator.kind(stat, design)

Arguments
stat An object containing survey statistics.
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
Details

Given a survey statistic object stat and a survey design object design from which stat is supposed
to have been derived, this function returns the “precise kind” of the corresponding estimator, as a
textual description.

Argument stat can be any object which has been returned by calling a survey statistics function
(e.g. svystatTM, svystatR, svystatS, svystatSR, svystatB, svystatQ, svystatL, svySigma,
and svySigma?2) on survey design object design. It can also be a collection of survey statistics as
generated by protean function svystat, provided that function is invoked with forGVF = FALSE.

Should stat be a survey statistic derived from a design object other than design, the function
would raise an error.

Note that function estimator.kind is smart enough to recognize that estimates of totals/means of
dummy variables are actually estimates of absolute/relative frequencies, despite such variables are
of class numeric (see Section ‘Examples’).

Value

A character string describing the estimator kind.
Currently, possible return values (i.e. estimator kinds) are the following:

(1) 'Total'

(2) 'Absolute Frequency'

(3) 'Mix of Totals and Absolute Frequencies'
(4) 'Mean'

(5) 'Relative Frequency'

(6) 'Mix of Means and Relative Frequencies'
(7) 'Ratio’

(8) 'Share'
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(9) 'Share Ratio'

(10) 'Regression Coefficient'

(11) 'Quantile’

(12) 'Complex Estimator'

(13) 'Population Variance'

(14) 'Population Standard Deviation'

Author(s)

Diego Zardetto

See Also

gvf.input and svystat to prepare the input for GVF model fitting, fit.gvf to fit GVF models,
and GVF . db to manage ReGenesees archive of registered GVF models.

Examples

# Create a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Compute some statistics and ask the corresponding estimator kind:
stat<-svystatTM(des, ~emp.num)

stat

estimator.kind(stat,des)

stat<-svystatTM(des,~emp.num,estimator="Mean")
stat
estimator.kind(stat,des)

stat<-svystatTM(des,~emp.num+emp.cl)
stat
estimator.kind(stat,des)

stat<-svystatR(des,num=~va.imp2,den=~emp.num,by=~region)
stat
estimator.kind(stat,des)

stat<-svystatQ(des,y=~va.imp2,ties="rounded")
stat
estimator.kind(stat,des)

# Using protean function svystat to get many statistics in a single shot:
## ungrouped summary statistics:
stat<-svystat(des,kind="R",num=~va.imp2,den=~emp.num,by=~emp.cl:nace.macro,
combo=2, forGVF=FALSE)
stat
estimator.kind(stat,des)

## grouped summary statistics:

stat<-svystat(des,kind="R",num=~va.imp2,den=~emp.num,by=~emp.cl:nace.macro,
group=~region, forGVF=FALSE)

stat
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estimator.kind(stat,des)

# Behaviour with dummy variables:
## 1. convenience variable 'ent' (whose values are always 1, so that its

# estimated total actually estimates haw many enterprises are there in the

# target population)
class(des$variables$ent)
range(des$variables$ent)
# The estimated total is correctly recognized as a count
stat<-svystatTM(des,~ent)

stat

estimator.kind(stat,des)

## 2. an actual dummy variable (built on the fly) which indicates if the

# enterprise has more than 29 employess or not:

des<-des.addvars(des,emp.gt.29=as.numeric(emp.num > 29))
class(des$variables$emp.gt.29)
range(des$variables$emp.gt.29)
# The estimated total is correctly recognized as an absolute frequency
stat<-svystatTM(des,~emp.gt.29)

stat

estimator.kind(stat,des)
# The estimated mean is correctly recognized as a relative frequency

stat<-svystatTM(des,~emp.gt.29,estimator="Mean")

stat

estimator.kind(stat,des)
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ext.calibrated

Make ReGenesees Digest Externally Calibrated Weights

Description

Enables ReGenesees to provide correct variance estimates of (functions of) calibration estimators,
even if the survey weights have not been calibrated by ReGenesees.

Usage

ext.calibrated(data, ids, strata = NULL, weights,
fpc = NULL, self.rep.str = NULL, check.data = TRUE,

Arguments

data

ids

strata
weights

fpc
self.rep.str

check.data

weights.cal, calmodel, partition

The same as in function e.
The same as in function e.
The same as in function e.
The same as in function e.
The same as in function e.
The same as in function e.

The same as in function e.

svydesign.
svydesign.
svydesign.
svydesign.
svydesign.
svydesign.

svydesign.

FALSE, sigma2 = NULL)
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weights.cal Formula identifying the externally calibrated weights.
calmodel The same as in function e.calibrate.
partition The same as in function e.calibrate.
sigma2 The same as in function e.calibrate.
Details

Owing to ReGenesees’s ability to provide proper variance estimates for (complex functions of)
calibration estimators, some users may be tempted to exploit ReGenesees in the estimation phase
even if they did not use ReGenesees for calibration.

This result cannot be achieved naively, by simply passing to ReGenesees function e.svydesign
the survey data and supplying the externally calibrated weights through its weights argument.

Indeed, variance estimation methods of ReGenesees’s summary statistics functions (svystatTM,
svystatR, svystatS, svystatSR, svystatB, svystatQ, svystatlL and svystat) are dispatched
according to the class of the input design object:

1. If the design object is un-calibrated (i.e. its class is ‘analytic’), variance formulas are appro-
priate to Horvitz-Thompson estimators (and functions of them).

2. If the design object is calibrated (i.e. its class is ‘cal.analytic’), variance formulas are appro-
priate to Calibration estimators (and functions of them).

Therefore, the naive approach of passing the externally calibrated weights weights.cal toe.svydesign
as if they were initial or design weights cannot succeed, since it would result in HT-like variance
estimates, leading generally to variance overestimation (with bigger upward bias for variables that

are better explained by the calibration model).

Function ext.calibrated has been designed exactly to avoid the aforementioned pitfalls and to
allow ReGenesees provide correct variance estimates of (functions of) calibration estimators, even
if the survey weights have been calibrated externally by other software.

Argument weights.cal identifies the externally calibrated weights of the units included in the
sample. The data variable referenced by weights. cal must be numeric. Currently, only positive
externally calibrated weights can be handled (see the dedicated section below).

Other arguments to ext.calibrated derive either from function e.svydesign or from function
e.calibrate. The former serve the purpose of passing the survey data and the corresponding
sampling design metadata, the latter are meant to tell ext.calibrated how the externally calibrated
weights have been obtained.

Value

An object of class cal.analytic, storing the original survey data plus all the sampling design and
calibration metadata needed for proper variance estimation.

What if externally calibrated weights happen to be negative?

From a methodological perspective, negative calibration weights are legitimate. However, owing to
software implementation details whose modification would not be trivial, function ext.calibrated
is not yet able to cope with this case. Note that the problem is actually due to the external origin
of the negative calibration weights. In fact, ReGenesees calibration and estimation facilities are
entirely able to cope with possibly negative calibration weights, provided they were computed in-
ternally.
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Note

Exactly as ReGenesees’s base functions e . svydesign and e.calibrate would do, ext.calibrated
too will wrap inside its return value a local copy of data. As usual, this copy will be stored inside
the variables slot of the output list. As usual, again, the calibrated weights will be accessible by
using the weights function.

Author(s)

Diego Zardetto.

See Also

e.svydesign to bind survey data and sampling design metadata, and e.calibrate for calibrating
survey weights within ReGenesees.

Examples

# Load data sbs data
data(sbs)

HHHHEHHHHHHEEHHHHHEHHHHAE AR

# Simulate an external calibration procedure and compute some benchmark #

# estimates and errors to test function ext.calibrated #

HHHHEHHHHHHHEHHEHHHEHHHHAEAHAEHEHHH A

# Define a survey design

sbsdes <- e.svydesign(data= sbs, ids= ~id, strata= ~strata, weights= ~weight,
fpc= ~fpc)

# Build a template for population totals
pop <- pop.template(data= sbsdes, calmodel= ~y:nace.macro + emp.cl + emp.num - 1,
partition= ~dom3)

# Have a look at the template structure
pop.desc(pop)

# Fill the template
pop <- fill.template(universe= sbs.frame, template= pop)

# Calibrate
sbscal <- e.calibrate(design= sbsdes, df.population= pop, calfun= "logit",
bounds= c(0.8, 1.3), sigma2= ~ emp.num)

# Compute benchmark estimates and errors (average value added per employee by

# region) to be later compared with those obtained by using ext.calibrated
benchmark <- svystatR(design= sbscal, num= ~va.imp2, den= ~emp.num, by= ~region)
benchmark

# Extract the 'externally' calibrated weights...
w <- weights(sbscal)

#...and add these 'externally' calibrated weights to the original survey data
sbs.ext <- data.frame(sbs, w.ext = w)

# NOTE: Now sbs.ext is just a data frame, without any knowledge of the
# calibration metadata formerly stored inside sbscal (i.e. the object
# calibrated by ReGenesees)
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HHHEHHHEHE AR

# Let ReGenesees digest the 'externally' calibrated weights, #

# then re-compute benchmark estimates and errors for testing #

HHHHHHHEHE A AR

# Simply pass survey data along with sampling design and calibration model

# metadata

sbscal.ext <- ext.calibrated(data= sbs.ext, ids= ~id, strata= ~strata,
weights= ~weight, fpc = ~fpc,
weights.cal= ~w.ext,
calmodel= ~y:nace.macro + emp.cl + emp.num - 1,
partition= ~dom3, sigma2= ~emp.num)

# Have a look at the output
sbscal.ext

# Now re-compute benchmark estimates and errors by means of new object

# ext.sbscal

test <- svystatR(design= sbscal.ext, num= ~va.imp2, den= ~emp.num, by= ~region)
test

B s S S
# Compare benchmark estimates and errors to those derived from #

# ext.calibrated return object #
B s S
benchmark

test

# ...and they are identical, as it must be.

# NOTE: All utility tools yield exactly the same results, e.g.
identical (weights(sbscal), weights(sbscal.ext))
identical(g.range(sbscal), g.range(sbscal.ext))

HEHHHHHHEEEHHBHEEEH BB EEEEEHEHHHEHEEHEEEEEEEE BB
# Show that the naive idea of directly passing the externally calibrated #
# weights to e.svydesign does NOT work properly for variance estimation #
S HHHHHE B HHEHEHEHEEHHEEHHEEEHE RS HEHHEH EEEEEEEE R R R
naive <- e.svydesign(data= sbs.ext, ids= ~id, strata= ~strata,

weights= ~w.ext, fpc = ~fpc)

# Estimated sampling errors derived by this naive design object...
svystatR(design= naive, num= ~va.imp2, den= ~emp.num, by= ~region)

#...do NOT match benchmark values, overestimating them:
benchmark

extractors Extractor Functions for Variability Statistics

Description

These functions extract standard errors (SE), variances (VAR), coefficients of variation (cv) and de-
sign effects (deff) from an object which has been returned by a survey statistic function (e.g.
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svystatTM, svystatR, svystatSs, svystatSR, svystatB, svystatQ, svystatlL, svystat,...).

Usage
SE(object, ...)
VAR(object, ...)
cv(object, ...)

deff(object, ...)

Arguments
object An object containing survey statistics.
Arguments for future expansion.
Details

With the exception of deff, all extractor functions can be used on any object returned by a survey
statistic function: the correct answer will be obtained whatever the call that generated the object.
For getting the design effect, object must have been built with option deff = TRUE or deff =
"replace”.

Value

A data structure (typically inheriting from classes matrix or data.frame) storing the requested
information.

Note

Package ReGenesees provides extensions of methods coef and confint (originally from package
stats) that can be used to extract estimates and confidence intervals respectively.

Author(s)

Diego Zardetto

See Also

Function coef to extract estimates and function confint to extract confidence intervals. Estimators
of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystatS, Ratios be-
tween Shares svystatSR, Multiple Regression Coefficients svystatB, Quantiles svystatQ, Com-
plex Analytic Functions of Totals and/or Means svystatL, and all of the above svystat.

Examples

# Creation of a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the average value added at the

# nation level (by default one gets the SE):
VA.avg <- svystatTM(des,~va.imp2,estimator="Mean")
VA.avg

# Extractions of some variance statistics from the
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# object above:
## 1) SE
SE(VA.avg)

## 2) CV
cv(VA.avg)

## 3) VAR
VAR(VA.avg)

# Design effects have to be requested in advance,
# i.e. the following invocation produces an error:
## Not run:
deff(VA.avg)

## End(Not run)

# ...while the following works:

VA.avg <- svystatTM(des,~va.imp2,estimator="Mean",6deff=TRUE)
deff(VA.avg)

# Further examples:

## Extract the statistic:

coef(VA.avg)

## Extract the confidence interval at 90%

## confidence level (the default would be 95%):

confint(VA.avg, level=0.9)

## note the argument 'level', which comes from confint function in package stats

fill.template Fill the Known Totals Template for a Calibration Task

Description
Given a template prepared to store the totals of the auxiliary variables for a specific calibration task,
computes the actual values of such totals from a sampling frame.

Usage

fill.template(universe, template, mem.frac = 10)

Arguments
universe Data frame containing the complete list of the units belonging to the target pop-
ulation, along with the corresponding values of the auxiliary variables (the sam-
pling frame).
template The template for the calibration task, an object of class pop.totals.
mem. frac A numeric and non-negative value (the default is 10). It triggers a memory-
efficient algorithm when universe is really huge (see ‘Details’ and ‘Performance’).
Details

Recall that a template object returned by function pop.template has a structure that complies
with the standard required by e.calibrate, but is empty, in the sense that all the known totals it
must be able to store are missing (NA). Whenever these totals are available to the user as such, that
is in the form of already computed aggregated values (e.g. because they come from an external
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source, like a Population Census), the ReGenesees package cannot automatically fill the template.
Stated more explicitly: the user himself has to bear the responsibility of putting the right values in
the right slots of the prepared template data frame. To this end, function pop. desc could be very
helpful.

A lucky alternative arises when a “sampling frame” (that is a data frame containing the complete
list of the units belonging to the target population, along with the corresponding values of the
auxiliary variables) is available. In such cases, indeed, the fill. template function is able to: (i)
automatically compute the totals of the auxiliary variables from the universe data frame, (ii) safely
arrange and format these values according to the template structure.

Notice that fill.template will perform a complete coherence check between universe and
template. If this check fails, the program stops and prints an error message: the meaning of the
message should help the user diagnose the cause of the problem. Should empty levels be present in
any factor variable belonging to universe, they would be dropped.

Argument mem. frac (whose value must be numeric and non-negative) triggers a memory-efficient
algorithm when universe is really huge. The only sound reason to ever change the value of this
argument from its default (mem. frac=10) is that an invocation of fill. template caused a memory-
failure (i.e. a messages beginning cannot allocate vector of size ...) on your machine. In
such a case, increasing the value of mem. frac (e.g. mem. frac=20) will provide a better chance of
succeeding (for more details, see ‘Performance’ section below).

Value

An object of class pop. totals storing the actual values of the population totals for the specified
calibration task, ready to be safely passed to e.calibrate.

Performance

Real-world calibration tasks (e.g. in the field of Official Statistics) can simultaneously involve
hundreds of auxiliary variables and refer to target populations of several million units. In such
circumstances, the naive aggregation of the calibration model.matrix of universe may turn out to
be too memory-demanding (at least in ordinary PC environments) and determine a memory-failure
error.

The alternative implemented in fill.template is to: (i) split universe in chunks, (ii) compute
partial sums of auxiliary variables chunk-by-chunk, (iii) update template by adding progressively
such partial sums. This alternative is triggered by parameter mem. frac, which also implicitly con-
trols the number of chunks. The function estimates the memory that would be used to store the
full model.matrix of universe and compares it to 4 GB: if the resulting ratio is bigger than
1/mem. frac, the memory-efficient algorithm starts; the number of chunks in which universe will
then be split is determined in such a way that the memory needed to store the model.matrix of
each chunk does not exceed a fraction 1/mem. frac of 4 GB.

Whenever fill. template switches to the memory-efficient "chunking" algorithm, a warning mes-
sage will signal it and will specify as well the number of chunks that are being processed.

Author(s)

Diego Zardetto

References

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.
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See Also

e.calibrate for calibrating weights, pop.template for the definition of the class pop.totals
and to build a "template" data frame for known population totals, pop.desc to provide a natural
language description of the template structure, and %into% for the compression operator for nested
factors.

Examples

# Load sbs data:
data(sbs)

# Build a design object:
sbsdes<-e.svydesign(data=sbhs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

HHHHHHHH A
# A simple example first. #
I

# Suppose you want to calibrate on the enterprise counts inside areas
# 1) Build the population totals template:
pop<-pop.template(sbsdes, calmodel=~area-1)

# Note: given the dimension of the obtained template...
dim(pop)

# ...the number of known totals to be stored is 24 (one for each area).

# 2) Use the fill.template function to (i) automatically compute

# such 24 totals from the universe (sbs.frame) and (ii) safely fill
# the template:

pop<-fill.template(universe=sbs.frame, template=pop)

pop

# 3) Lastly calibrate, e.g. with the unbounded linear distance and
# heteroskedastic effects proportional to emp.num:
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num,bounds=c(-Inf,Inf))

S
# A more involved (two-sided) example. #
S

Now suppose you have to perform a calibration process which
exploits as auxiliary information the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained by:
i) crossing nace2 and region;
ii) crossing emp.cl, region and nace.macro;

o O

# Due to the fact that nace2 is nested into nace.macro,

# the calibration model can be efficiently factorized as follows:

## 1) Add to the design object and universe the new compressed

# factor variable involving nested factors, namely:
sbsdes<-des.addvars(sbsdes,nace2.in.nace.macro=nace2 %into% nace.macro)
sbs.frame$nace2.in.nace.macro<-sbs.frame$nace2 %into% sbs.frame$nace.macro
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# 2) Build the template exploiting the new variable:
pop<-pop.template(sbsdes,
calmodel=~(emp.num+ent): (nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)

# Note: given the dimension of the obtained template...
dim(pop)

# ...the number of known totals to be stored is 792.

# 3) Use the fill.template function to (i) automatically compute

# such 792 totals from the universe (sbs.frame) and (ii) safely fill
# the template:

pop<-fill.template(universe=sbs.frame, template=pop)

# Note: out of the 792 known totals in pop, only non-zero entries are actually
# relevant

# 4) Lastly calibrate, e.g. with the unbounded linear distance and
# heteroskedastic effects proportional to emp.num:
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num,bounds=c(-Inf,Inf))

# Note: a global calibration task would have led to identical calibrated
# weights, but in a more memory-hungry and time-consuming way, as you can
# verify:
# 1) Build template:
pop.g<-pop.template(sbsdes,
calmodel=~(emp.numtent): (nace2:region + emp.cl:nace.macro:region)-1)
dim(pop.g)

# 2) Fill template:
pop.g <- fill.template(sbs.frame,pop.g)

# 3) Calibrate globally:
## Not run:
sbscal.g<-e.calibrate(sbsdes,pop.g,sigma2=~emp.num,bounds=c(-1E6,1E6))

# 4) Compare calibrated weights (factorized vs. global solution):
range(weights(sbscal)/weights(sbscal.g))

# ... they are equal.
## End(Not run)

B T
# Just a single example of the memory-efficient algorithm #

# triggered by argument 'mem.frac'. #
B s S
## Not run:

# First artificially increase the size of the sampling frame (e.g.

# up to 5 million rows):

sbs. frame.HUGE<-sbs.frame[sample(1:nrow(sbs.frame),b 5000000, rep=TRUE), ]
dim(sbs.frame.HUGE)

# Build the template:
pop<-pop.template(sbsdes,
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calmodel=~(emp.num+ent): (nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)
dim(pop)

# Fill the template by using the HUGE universe:
pop<-fill.template(universe=sbs.frame.HUGE, template=pop)

## End(Not run)

find.lon.strata Find Strata with Lonely PSUs

Description
Checks whether a stratified design object contains lonely PSUs: if this is the case, returns the lonely
strata levels.

Usage

find.lon.strata(design)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
Details

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. The suggested ReGenesees facility to handle the lonely PSUs
problem is the strata aggregation technique provided in function collapse.strata (for further
alternatives, see also ReGenesees.options).

Function find.lon.strata (originally a private function intended to be called only by collapse.strata)
is a simple diagnostic tool whose purpose is to identify the levels of the strata containing lonely
PSUs (lonely strata for short).

Value

The lonely strata levels, if design actually contains lonely PSUs; invisible (NULL) otherwise.

Author(s)

Diego Zardetto

See Also

collapse.strata for the suggested way of handling lonely PSUs, ReGenesees.options for a
different way to face the same problem (namely by setting variance estimation options), and fpcdat
for useful data examples.
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Examples

# Load sbs data:
data(fpcdat)

# A negative example first:

# Build a design object:
fpcdes<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2)
fpcdes

# Find lonely strata:
find.lon.strata(fpcdes)

# Recall that the difference between certainty PSUs (those sampled with
# probability 1, contained inside self-representing strata) and lonely PSUs
# rests on the fpc information passed to e.svydesign, e.g.:

# Build a new design object with the same data, now IGNORING fpcs:
fpcdes.nofpc<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,
weights=~w)
fpcdes.nofpc

# Find lonely strata:
find.lon.strata(fpcdes.nofpc)
# A trivial check: collapsing strata eliminates lonely PSUs
# Apply the collapse strata technique:
fpcdes.nofpc.clps<-collapse.strata(fpcdes.nofpc)
fpcdes.nofpc.clps

clps.strata.status

# Find lonely strata:
find.lon.strata(fpcdes.nofpc.clps)

# ...as it must be.

fit.gvf Fit GVF Models

Description

This function fits one or more GVF models to a set of survey statistics.

Usage
fit.gvf(gvf.input, model = NULL, weights = NULL)
## S3 method for class 'gvf.fit'

print(x, digits = max(3L, getOption("digits”) - 3L), ...)
## S3 method for class 'gvf.fits'
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fit.gvf
print(x, digits = max(3L, getOption("digits"”) - 3L), ...)
## S3 method for class 'gvf.fit.gr'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'gvf.fits.gr'
print(x, digits = max(3L, getOption("digits"”) - 3L), ...)

## S3 method for class 'gvf.fits'

x[...]
## S3 method for class 'gvf.fits'
x[[...]]

## S3 method for class 'gvf.fit'

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

## S3 method for class 'gvf.fits'

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

## S3 method for class 'gvf.fit.gr'

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

## S3 method for class 'gvf.fits.gr'

summary (object, correlation = FALSE, symbolic.cor = FALSE, ...)

Arguments

gvf.input An object of class gvf.input (or gvf.input.gr), containing the data to fit.

model The GVF model(s) to be fitted (see ‘Details’). NULL (the default) requires to fit
all the registered GVF models currently available in GVF . db.

weights Formula specifying the weights to be used for fitting (via weighted least squares),
if any. NULL (the default) means that ordinary least squares will be used. See
also ‘Details’.

X An object of class gvf.fits, storing fitted GVF models.

digits Minimal number of significant digits, see print.default.

object Any output of fit.gvf, storing one (more than one) fitted GVF model(s).

correlation Should the correlation matrix of the estimated parameters be returned and printed?

Logical, with default FALSE.

symbolic.cor Should the correlations be printed in symbolic form (see symnum) rather than as
numbers. Logical, with default FALSE.

Further arguments passed to or from other methods.

Details

Function fit.gvf fits one or more GVF models to a set of survey statistics. The rationale for fitting
multiple models to the same data is primarily for comparison purposes: the user is expected to
eventually choose his preferred model, in order to obtain sampling errors predictions.

Argument gvf. input specifies the set of (pre computed) estimates and errors to which GVF models
are to be fitted, as prepared by functions gvf. input and/or svystat.

One or more GVF models can be fitted simultaneously to the same data, depending on the way
argument model is passed.

Argument model can be either:

(1) NULL (the default) meaning all the registered models currently available in GVF . db;



fit.gvf 75

(2) any sub-vector of GVF.db$Model. id, i.e. an integer vector identifying an arbitrary selection of
registered models;

(3) an arbitrary (single) formula, i.e. any custom, user-defined GVF model.

When model is passed via options (1) or (2), function fit.gvf can take advantage of any additional
information available inside GVF . db, e.g. to warn the user in case a GVF model is not deemed to be
appropriate for the kind of estimates contained into gvf.input (see ‘Examples’).

Argument weights enables fitting the specified GVF model(s) via weighted least squares. By de-
fault weights = NULL and ordinary least squares are used. The weights must be passed by a formula
referencing variables belonging to gvf.input. For instance, to weight observations according to
reciprocals of squared CVs, one can use weights = ~I(CV*-2).

Value

An object containing one or more fitted GVF models, depending on the way argument model was
passed.

Let’s first focus on input objects of class gvf. input.

If model specifies a single GVF model, the output object will be of class gvf.fit and inherit from
class 1m.

If model specifies many GVF models, the output object will be of class gvf.fits and inherit from
class 1list. Hence, it will be possible to subset gvf.fits objects via methods [ and [[. Note,
moreover, that each component (in the sense of class 1list) of a gvf.fits object will be of class
gvf.fit.

When, instead, the input object has class gvf.input.gr, i.e. it stores “grouped” estimates and
errors, model fitting is performed separately for different groups. Therefore, applying fit.gvf al-
ways results in many fitted GVF models.

If model specifies a single GVF model, the output object will be of class gvf.fit.gr and inherit
from class 1ist. Each slot of the list will contain the same GVF model fitted to a specific group.
If model specifies many GVF models, the output object will be of class gvf.fits.gr and again
inherit from class 1ist. Each slot of the list will now contain a second list storing different GVF
models fitted to a specific group.

Author(s)

Diego Zardetto

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, GVF . db
to manage ReGenesees archive of registered GVF models, gvf. input and svystat to prepare the
input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots
for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and
simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Now we have at our disposal a set of estimates and errors
# of Absolute Frequencies:
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str(ee.AF)

# And the available registered GVF models are listed below:
GVF.db

S
# How to specify the GVF model(s) to fit? #
S

## (A) How to specify a xsingle* GVF model #i#

#### (A.1) Select one registered model using its 'Model.id' as reported in
#iHHH the GVF.db archive

# Let's fit, for instance, the GVF model with Model.id = 1:

m <- fit.gvf(ee.AF, model = 1)

# Inspect the result:
class(m)

m

summary (m)

# Now let's fit GVF model with Model.id = 4

m <- fit.gvf(ee.AF, model = 4)

# Beware of the NOTE reported when printing or summarizing this fitted model:
m

summary (m)

#i### (A.2) Specify the GVF model to fit by providing its formula directly, e.g.
#ittHH because it is not available in GVF.db (yet):

m <- fit.gvf(ee.AF, model = CV ~ I(1/Y*2) + I(1/Y) + Y + I(Y*2))

m

summary (m)

## (B) How to specify a *many* GVF models simultaneously ##

#### (B.1) Use a subset of column 'Model.id' of GVF.db

# Let's, for instance, fit all the available GVF models which are appropriate
# to Frequencies, as reported in column 'Estimator.kind' of GVF.db

mm <- fit.gvf(ee.AF, model = 1:3)

# Inspect the result:
class(mm)

length(mm)

mm

summary (mm)

# Note that you can subset the output fitted models as a list:
mm.31 <- mm[c(3,1)]

class(mm.31)

mm. 31

# and:
mm.2 <- mm[[2]]
class(mm. 2)

fit.gvf
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mm. 2

#i### (B.2) Not specifying any GVF model, or specifying model = NULL, causes
#iHH *allx the available models in GVF.db to be fitted simultaneously:
mm <- fit.gvf(ee.AF)

# Inspect the result:
class(mm)

length(mm)

mm

summary (mm)

HHHHHHHEHEE AR

# How to fit GVF model(s) via *weighted* least squares? #

HHHHHHARHEEE R A

# Weights can be specified by a formula. Of course, the 'weights' formula must
# reference variables belonging to gvf.input.

# Let's use the built-in GVF model with Model.id = 1 and weight observations
# according to reciprocals of squared CVs:

mw <- fit.gvf(ee.AF, model = 1, weights = ~I(CV*-2))

mw

# Compute ordinary least squares fit:
m <- fit.gvf(ee.AF, model = 1)
m

# Compare the results:
summary (mw)
summary (m)

HHHEHHAAHEEH A AR
# Fitting GVF model(s) to "grouped” estimates and errors: a quick ride. #
HEHHHHHHEEHEHEEEHEEHHHEHEHHEHEEHEEEHEHHHHEHREEEHHEEHEEHEHEHEHHEHHBHRE R
# Recall we have at our disposal the following survey design object

# defined on household data:

exdes

# Now use function svystat to prepare "grouped” estimates and errors

# of counts to be fitted separately (here groups are regions):

ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
class(ee.g)

ee.g

## Fit a *singlex registered GVF model separately inside groups ##
m.g <- fit.gvf(ee.g, model = 1)

# Inspect the result:
class(m.g)
length(m.g)

m.g

summary(m.g)

# Can subset the result as a list, e.g. to get the fitted model of region '7':
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m.g7 <- m.g[["7"]1]
class(m.g7)
summary(m.g7)

## Fit xmany* registered GVF models separately inside groups ##
mm.g <- fit.gvf(ee.g, model = 1:3)

# Inspect the result:
class(mm.g)
length(mm.g)

mm. g

summary (mm. g)

# Still can subset the result as a list, but now each component is a list
# itself. To get the fitted models of region '7', simply:

mm.g7 <- mm.g[["7"]]

class(mm.g7)

summary (mm.g7)

# And to isolate GVF fitted model number 2 for region '7', simply:
mm.g7.2 <- mm.g7[[2]]

class(mm.g7.2)

summary (mm.g7.2)

fpcdat A Small But Not Trivial Artificial Sample Data Set

Description

A small dataset mimicking sample data selected with a 2-stage, stratified, cluster sampling without
replacement. Allows to run R code contained in the ‘Examples’ section of the ReGenesees package
help pages.

Usage
data(fpcdat)

Format
A data frame with 28 observations on the following 12 variables.

psu Identifier of the primary sampling units, numeric

ssu Identifier of the second stage sampling units, numeric

stratum Stratification Variable, a factor with 5 levels: $.1,5.2,5.3,5.4,S.5
sr Strata type, integer with values @ (NSR strata) and 1 (SR strata)

fpc1 First stage finite population corrections, given as population sizes (in terms of psu clusters)
inside strata, numeric

fpc2 Second stage finite population corrections, given as population sizes (in terms of ssu clusters)
inside the corresponding sampled psu, numeric

X A numeric variable
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y A numeric variable

dom1 A variable defining unplanned estimation domains, factor with 3 levels: A, B, C

dom2 A variable defining unplanned estimation domains, factor with 6 levels: a, b, ¢, d, e, f
w Direct weights, numeric

z A numeric variable

pl.domain A variable defining planned estimation domains, factor with 3 levels: pd.1, pd.2,
pd.3

Details

Though very small, the fpcdat dataset concentrates a lot of interesting features. The sampling
design is a complex one, with both self-representing (SR) and not-self-representing (NSR) strata.
Sampling fractions are deliberately not negligible, in order to stress the effects of finite population
corrections on variance estimation. Moreover, being the observations so few, performing computa-
tions on the fpcdat dataset allows to check and understand easily all the effects of setting/changing
the global variance estimation options of the ReGenesees package (see e.g. ReGenesees.options).

See Also

ReGenesees.options for setting/changing variance estimation options.

Examples

data(fpcdat)
head(fpcdat)
str(fpcdat)

g.range Range of g-Weights

Description

Computes the range of the ratios between calibrated weights and initial weights (g-weights).

Usage

g.range(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details
This function computes the smallest interval which contains the ratios between calibrated weights
and initial weights.

Value

A numeric vector of length 2.
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Note

If cal.design has undergone k subsequent calibration steps (with k >= 2), the function will return
the range of the ratios between the output weights of calibration steps k and k - 1.

Author(s)

Diego Zardetto

See Also

weights to extract the weights from a design object, e.calibrate for calibrating weights and
bounds.hint to obtain a hint for calibration problems where range restrictions are imposed on the
g-weights.

Examples

# Creation of the object to be calibrated:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Calibration (partitioned solution) on the marginal distribution

# of age in 5 classes (age5c) inside provinces (procod)

# (totals in pop@6p) with bounds=c(0.5, 1.5):

descal@6p<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=c(0.5, 1.5),aggregate.stage=2)

# Now let's verify the actual range of the obtained g-weights:
g.range(descal@6p)

# which indeed is covered by c(0.5, 1.5), as required.

# Now calibrate once again, this time on the joint distribution of sex

# and marstat (totals in pop@3) with the global solution:

descal2<-e.calibrate(design=descal@6p,df.population=pop@3,
calmodel=~marstat:sex-1,calfun="1linear",bounds=bounds)

# Notice that the print method correctly takes the calibration chain
# into account:
descal?

# The range of the g-weights for the twice calibrated object is:
g.range(descal?)

#... which is equal to:
range(weights(descal2)/weights(descal@ép))

#... and must not be confused with:
range(weights(descal2)/weights(des))
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get.linvar Linearized Variable(s) of Complex Estimators by Domains

Description
Computes the linearized variable(s) of a Complex Estimator in subpopulations (domains). The
Complex Estimator can be any analytic function of Horvitz-Thompson or Calibration estimators.
Usage

get.linvar(design, expr, by = NULL, stack = FALSE, na.rm = FALSE)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata. Can be either uncalibrated or calibrated.
expr R expression defining the Complex Estimator (see svystatL for the basic syn-
tax; see also section ‘Details’).
by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) the estimator refers to the whole population.
stack If FALSE (the default), the function will return a matrix of domain-specific lin-
earized variables, with one column per domain. If TRUE, the domain-specific
linearized variables will be stacked without information loss and returned as
a single column. The stacked output format is only possible for uncalibrated
designs (see ‘Details’).
na.rm Allow missing values in the variables entering the estimator expression? The
default is FALSE.
Details

This function has been designed mainly for programmers or advanced users willing to build upon
ReGenesees: typical users are not expected to feel much need of it.

The ReGenesees package adopts the Taylor-series linearization technique to estimate the sampling
variance of nonlinear (smooth) estimators. Using this technique, it can handle any Complex Esti-
mator that can be expressed as an analytic function of Horvitz-Thompson or Calibration estimators.
This includes even user-defined estimators, through function svystatL [Zardetto, 15].

In the Taylor-series linearization approach, estimating the sampling variance of a Complex Esti-
mator amounts to estimating the sampling variance of the Horvitz-Thompson estimator of the total
of the linearized variable of the Complex Estimator under the sampling design at hand. Func-
tion get.linvar computes that linearized variable. If one is interested in estimating the sampling
variance of a Complex Estimator by domains (i.e. for subpopulations), then - owing to the Taylor
linearization technique - a different linearized variable has to be calculated for each domain. There-
fore, in the most general case, the output of function get.linvar will be a matrix of linearized
variables, with one column per domain.

If the input object design is calibrated, then the linearized variable produced by function get.linvar
correctly takes into account the theoretical properties of Calibration estimators (see, e.g., [Deville,
1999]). In particular, get.linvar computes the needed g-weighted residuals (see, e.g., equations
(8) and (9) of [Zardetto, 15]) by leveraging function get.residuals.
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The mandatory argument expr, which identifies the Complex Estimator, must be an object of class
expression. You can specify just a single Complex Estimator at a time, i.e. length(expr) must
be equal to 1. Any analytic function of estimators of Totals and Means derived from the input design
object design is allowed.

The basic syntax follows the same rules described for function svystatL. Inside expr, the estimator
of the Total of a variable is simply represented by the name of the variable itself. The reserved name
ones can be used to reference an artificial variable (which will be created on-the-fly, if not already
present) whose value is 1 for each sampling unit, so that its Total estimator actually estimates the
size of the population in terms of elementary units. Therefore, e.g., expression y/ones represents
the estimator of the Mean of variable y. Variables referenced inside expr must be numeric and
belong to design.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatL refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatL twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

As already noted, in the most general case, the output of function get.linvar will be a matrix of
linearized variables, with one column per domain. However, the linearized variable of any domain
estimator that is a function of Horvitz-Thompson estimators is identically equal to zero outside
the domain. Thanks to this property, and only for functions of HT estimators, the columns of the
output matrix can be stacked into one single column without information loss. Users may request
this convenient output format by specifying stack = TRUE. Unfortunately, the same result cannot
be obtained for functions of Calibration estimators, because the g-weighted residuals are generally
non-zero outside the active estimation domain. Therefore, argument stack does nothing if design
is calibrated.

Value

A matrix of linearized variables.

Author(s)

Diego Zardetto

References

Deville, J. C. (1999) “Variance Estimation for Complex Statistics and Estimators: Linearization
and Residual Techniques.”. Survey Methodology 25: 193-203.

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/jos20150013.

See Also

svystatL to calculate estimates and sampling errors of Complex Estimators, get.residuals to
compute residuals of interest variables w.r.t. the calibration model adopted to build a calibrated
object.


https://doi.org/10.1515/jos-2015-0013
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Examples

# Load sbs data:
data(sbs)

# Create a design object to be calibrated:
sbsdes<-e.svydesign(data= sbs, ids= ~id, strata= ~strata, weights= ~weight, fpc= ~fpc)

B S S
# Just some checks on the consistency of the numerical results #
# obtained by ReGenesees with well known theoretical properties. #
B R

## In the Taylor-series linearization approach, estimating the sampling variance of a
## Complex Estimator amounts to estimating the sampling variance of the Horvitz-Thompson
## estimator of the total of the linearized variable of the Complex Estimator under the
## sampling design at hand.

HHHEHEH

## Check 1 ##

SR

# Global estimate (i.e., no domains) of a nonlinear function of HT estimators:
# - Average value added per employee

# Compute the linearized variable of the estimator:
z <- get.linvar(sbsdes, expression(va.imp2/emp.num))

# Have a look:
head(z)

# Now add that variable to the input design object:
sbsdes <- des.addvars(shsdes, z = z)

# Now compute the estimated standard error of the HT total of the linearized variable:
svystatTM(sbsdes, ~z)

# And compare it to the estimated standard error of the complex estimator:
svystatL(sbsdes, expression(va.imp2/emp.num))

# ...which - in this case - can equivalently be obtained exploiting its ratio nature:
svystatR(sbsdes, num = ~va.imp2, den= ~emp.num)

# Test the equality of the results:
all.equal(svystatTM(sbsdes, ~z)$SE,

svystatL(sbsdes, expression(va.imp2/emp.num))$SE)
# OK

HHHEHHHAEEE

## Check 2 ##

HHEHHHHEHE

# Domain estimates of a nonlinear function of HT estimators:
# - Average value added per employee by NACE macro-sectors

# Compute the linearized variable(s) of the domain estimator(s):
z.dom <- get.linvar(sbsdes, expression(va.imp2/emp.num), by = ~nace.macro)

# Have a look:
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head(z.dom)
tail(z.dom)

# Note the staggered matrix-format of the result. Since you are dealing with HT estimators
# (namely sbsdes is not calibrated), you can opt for the more convenient (but equivalent)
# stacked format:

z.dom <- get.linvar(sbsdes, expression(va.imp2/emp.num), by = ~nace.macro, stack = TRUE)

# Have a look:
head(z.dom)
tail(z.dom)

# Now add that variable to the input design object:
sbsdes <- des.addvars(sbsdes, z.dom = z.dom)

# Now compute the estimated standard error of the HT total of the linearized variable by
# domains:
svystatTM(sbsdes, ~z.dom, by= ~nace.macro)

# And compare it to the estimated standard error of the complex estimator:
svystatL(sbsdes, expression(va.imp2/emp.num), by= ~nace.macro)

# ...which - in this case - can equivalently be obtained exploiting its ratio nature:
svystatR(sbsdes, num = ~va.imp2, den= ~emp.num, by= ~nace.macro)

# Test the equality of the results:
all.equal(svystatTM(sbsdes, ~z.dom, by= ~nace.macro)$SE,

svystatL(sbsdes, expression(va.imp2/emp.num), by= ~nace.macro)$SE)
# OK

S
# Now run the same checks for functions of Calibration Estimators #
S

# Build a population totals template and fill it with actual known totals computed from
# the sampling frame (sbs.frame):

pop <- pop.template(sbsdes, calmodel= ~ent:emp.cl + y:nace.macro-1, partition= ~region)
pop <- fill.template(sbs.frame, pop)

# Calibrate the weights:
sbscal <- e.calibrate(sbsdes, pop)
g.range(sbscal)

WA

## Check 3 ##

SR

# Global estimate (i.e., no domains) of a nonlinear function of CAL estimators:
# - Average value added per employee

# Compute the linearized variable of the estimator (the name gez should remind you of
# the g-weighted residuals of the HT linearized variable w.r.t. the calibration model):

gez <- get.linvar(sbscal, expression(va.imp2/emp.num))

# Have a look:
head(gez)

# Now add that variable to the initial *uncalibrated* design object:
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sbsdes <- des.addvars(sbsdes, gez = gez)

# Now compute the estimated standard error of the *HT totalx of the linearized variable:
svystatTM(sbhsdes, ~gez)

# And compare it to the estimated standard error of the complex *calibration* estimator:
svystatL(sbscal, expression(va.imp2/emp.num))

# ...which - in this case - can equivalently be obtained exploiting its ratio nature:
svystatR(sbscal, num = ~va.imp2, den= ~emp.num)

# Test the equality of the results:
all.equal(svystatTM(sbsdes, ~gez)$SE,

svystatL(sbscal, expression(va.imp2/emp.num))$SE)
# OK

HHHHHEEREEE

## Check 4 ##

HEHHHHEHE

# Domain estimates of a nonlinear function of CAL estimators:
# - Average value added per employee by NACE macro-sectors

# Compute the linearized variable(s) of the domain estimator(s):
gez.dom <- get.linvar(sbscal, expression(va.imp2/emp.num), by = ~nace.macro)

# Have a look:
head(gez.dom)
tail(gez.dom)

# As you see the matrix no longer has the staggered structure of the HT case. In fact, the
# calibration residuals are in general not @ outside the active domain. Therefore, you
# cannot opt for the more convenient stacked format!

# Let's thus add all the column of the linearized variable(s) matrix to the initial
# xuncalibrated* design object:
sbsdes$variables <- cbind(sbsdes$variables, gez.dom)

# Now compute the estimated standard error of the *HT totals* of the *domain-specificx
# linearized variables:
svystatTM(sbsdes, ~gez_Agriculture + gez_Industry + gez_Commerce + gez_Services)

# And compare it to the estimated standard errors of the complex *calibration* estimator
# by domains:
svystatL(sbscal, expression(va.imp2/emp.num), by= ~nace.macro)

# ...which - in this case - can equivalently be obtained exploiting its ratio nature:
svystatR(sbscal, num = ~va.imp2, den= ~emp.num, by= ~nace.macro)

# Test the equality of the results:

all.equal(
svystatTM(sbsdes, ~gez_Agriculture + gez_Industry + gez_Commerce + gez_Services)$SE,
svystatL(sbscal, expression(va.imp2/emp.num), by= ~nace.macro)$SE)

# OK
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get.residuals Calibration Residuals of Interest Variables

Description

Computes (scaled) residuals of a set of interest variables w.r.t. the calibration model adopted to
build a calibrated object.

Usage
get.residuals(cal.design, y, scale = c("no”, "w", "d", "g"))
Arguments
cal.design Object of class cal.analytic.
y Formula defining the variables of interest.
scale character specifying how to scale the residuals, can be one of: 'no' (the de-
fault), 'w', 'd"', 'g' (see ‘Details’).
Details

This function has been designed mainly for programmers or advanced users willing to build upon
ReGenesees: typical users are not expected to feel much need of it.

The residuals of an interest variable w.r.t. the linear model defined by the auxiliary variables used
for calibration play a central role in estimating the variance of Calibration Estimators (see, e.g.,
[Deville, 1999]). Notice that if object cal.design has been generated by running a partitioned
calibration task (see e.calibrate), the residuals will be correctly computed using the different
estimated regression coefficients pertaining to the different domains belonging to the partition.

The mandatory argument y behaves exactly the same way as it does in function svystatTM.

The scale argument allows to scale the computed residuals by multiplying them by different fac-
tors. By default scale="no", that is unscaled residuals are returned. Value "w" returns the resid-
uals times the calibrated weights; value "d" returns the residuals times the initial weights; finally,
value "g" returns the residuals times the g-weights (i.e. the ratios between calibrated and initial
weights). Notice that the semantics of argument scale are slightly modified when the input object
cal.design has been obtained by a multi-step calibration procedure (see Section *Note’ below).

Value

A matrix of residuals.

Note

If cal.design has undergone k subsequent calibration steps (with k >= 1), the function will return
the residuals computed w.r.t. the linear assisting model underlying the last (i.e. k-th) calibration
step. If k >= 2, the scale parameter will be interpreted as follows:

SCALE MEANING
"no"........ no scale;
"W last calibration weight (i.e. at step k);
"t second to last calibration weight (i.e. at step k - 1);

nn

gl .. ratio between last and second to last calibration weights.
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Author(s)

Diego Zardetto

References

Deville, J. C. (1999) “Variance Estimation for Complex Statistics and Estimators: Linearization
and Residual Techniques.”. Survey Methodology 25: 193-203.

See Also

weights to extract the weights from a design object, e.calibrate for calibrating weights and
g.range to get the range of the g-weights.

Examples

HHHHHHAEEERE AR AR AR
# Just some checks on the consistency of the numerical results #
# obtained by ReGenesees with well known theoretical properties. #
HHHEHHHEHEERE AR AR AR

# Load sbs data:
data(sbs)

# Create a design object to be calibrated:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

HHHHEHEH

## Property 1 ##

S

## If the calibration model has (implicitly or explicitly) an intercept
## the weighted sum of residuals must be zero.

# Suppose you calibrate on enterprise counts inside areas, i.e. a calibration
# model WITH intercept (though implicitly):
# calmodel= ~ area - 1

# First, build and fill the known totals template:
pop<-pop.template(sbsdes, calmodel= ~ area - 1)
pop<-fill.template(pop, universe=sbs.frame)

# Then, calibrate:
sbscal<-e.calibrate(sbsdes, pop)

# Now, get the residuals of any variable (e.g. y and emp.num) scaled with the
# direct weights:
de <- get.residuals(sbscal, ~ y + emp.num, scale="d")

# Lastly, compute the column sums...
colSums(de)

#...which is (numerically) zero, as it must be.
HHHHHHEEEE

## Property 2 #i#
HHHHEHHHHHA A
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## If the calibration model does not have (implicitly or explicitly) an
## intercept term the weighted sum of residuals is generally different from zero.

# Suppose you calibrate on employees counts inside areas, i.e. a calibration
# model WITHOUT intercept:
# calmodel= ~ emp.num:area - 1

# First, build and fill the known totals template:
pop<-pop.template(sbsdes, calmodel= ~ emp.num:area - 1)
pop<-fill.template(pop, universe=sbs.frame)

# Then, calibrate:
sbscal<-e.calibrate(sbsdes, pop)

# Now, get the residuals of any variable (e.g. y and region) scaled with the
# direct weights:
de <- get.residuals(sbscal, ~ y + region, scale="d")

# Lastly, compute the column sums...
colSums(de)

#...which is far from zero, as expected.

HHHH

## Property 3 ##

A

## In the Taylor linearization approach, estimating the variance of a

## Calibration Estimator amounts to estimating the variance of the HT total

## of its linearized variable (i.e. the g-scaled residual), under the sampling
## design at hand.

# Suppose you calibrate on the total number of employees and enterprises
# inside the domains obtained by:

# 1) crossing nace.macro and region;

# ii) crossing emp.cl and region;

# First, build and fill the population totals template:
pop<-pop.template(sbsdes,
calmodel=~(emp.num+ent): (nace.macrotemp.cl)-1,
partition=~region)
pop<-fill.template(universe=sbs.frame, template=pop)

# Then, calibrate:
sbscal<-e.calibrate(sbsdes,pop)

# Now, compute the linearized variable of the Calibration Estimator of the
# total of any variable (e.g. va.imp2):
Zz_va.imp2 <- get.residuals(sbscal, ~ va.imp2, scale="g")

# Now, treat z_va.imp2 as an ordinary variable and compute the standard error
# of its HT total:

sbsdes<-des.addvars(sbsdes, z_va.imp2 = z_va.imp2)

SE(svystatTM(sbsdes, ~z_va.imp2))

# Lastly, compute directly the standard error of the Calibration Estimator...
SE(svystatTM(sbscal, ~va.imp2))
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#...and they are identical, as it must be.

H+

Obviously the same result would hold for domain estimates (e.g. the total
of va.imp2 for the "Agriculture” nace.macro).

H

# Compute the linearized variable of the Calibration Estimator of the domain
# total:
z_va.imp2.Agr <- get.residuals(shscal, ~ I(va.imp2*(nace.macro=="Agriculture”)),

scale="g")

# Now, treat z_va.imp2.Agr as an ordinary variable and compute the standard
# error of its HT total:

sbsdes<-des.addvars(sbsdes, z_va.imp2.Agr = z_va.imp2.Agr)
SE(svystatTM(sbsdes, ~z_va.imp2.Agr))

# Lastly, compute directly the standard error of the Calibration Estimator
# by domain...

SE(svystatTM(sbscal, ~va.imp2, ~nace.macro))

#...and the "Agriculture” SEs are identical, as it must be.

getBest Identify the Best Fit GVF Model

Description

Given a set of competing fitted GVF models, this function selects the best model according to a
given criterion.

Usage
getBest(object,
criterion = c("R2", "adj.R2", "AIC", "BIC"), ...)
Arguments
object Typically, an object containing many fitted GVF models (i.e. of class gvf.fits
or gvf.fits.gr).
criterion The quality criterion to be used for model selection. Default is R*2.
Further arguments passed to or from other methods.
Details

Given a set of competing fitted GVF models, this function selects the best model according to a
given criterion.

Four goodness-of-fit criteria are available: R*2, adjusted R*2, AIC, and BIC (see getR2).

If object is a set of GVF models fitted to grouped data (i.e. of class gvf.fits.gr), the function
will return the fitted GVF model with best average score in the given criterion over the groups.
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Value

A single GVF fitted model.

Methodological Warning

Each one of the available criteria has its own specificities and limitations (e.g. it is senseless to use
AIC to compare two GVF models with different response variables). It is up to the user to select
the measure which is appropriate to his goals.

Author(s)

Diego Zardetto

See Also

GVF . db to manage ReGenesees archive of registered GVF models, gvf. input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Inspect available estimates and errors of counts:
str(ee.AF)

# List available registered GVF models:
GVF.db

## (A) A *a setx of GVF models fitted to the same data ##
# Fit example data to all registered GVF models:

mm <- fit.gvf(ee.AF)

summary (mm)

# Get the best model according to adjusted R*2:
mm.best <- getBest(mm, criterion = "adj.R2")
mm.best

# NOTE: The *firstx model has been selected. A thorough model comparison
# by means of diagnostic plots would have led to the same result:
plot(mm, 1:3)

## (B) a xset of* GVF models fitted to *groupedx data ##
# We have at our disposal the following survey design object on household data:
exdes

# Use function svystat to prepare *groupedx estimates and errors of counts

# to be fitted separately (here groups are regions):

ee.g <- svystat(exdes, y=~ind, by=~ageSc:marstat:sex, combo=3, group=~regcod)
str(ee.g)

# Fit all registered GVF model number separately inside groups:
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mm.g <- fit.gvf(ee.g)
summary (mm. g)

# Get the best model according to R*2:
mm.g.best <- getBest(mm.g)
mm.g.best

# NOTE: Again, the xfirst* model has been selected. A thorough model comparison
# by means of diagnostic plots would have led to the same result:
plot(mm.g, 1:3)

getR2 Quality Measures on Fitted GVF Models

Description

These functions extract goodness-of-fit measures from fitted GVF models.

Usage
getR2(object, adjusted = FALSE, ...)

## S3 method for class 'gvf.fits'
AIC(object, ...)

## S3 method for class 'gvf.fits'

BIC(object, ...)

Arguments
object An object containing one or more fitted GVF models.
adjusted Should the adjusted R*2 be computed? The default is FALSE

Further arguments passed to or from other methods.

Details

These functions compute three goodness-of-fit measures on fitted GVF models: R*2, AIC, and BIC.
Such measures can help compare the relative quality of competing GVF models, hence facilitating
model selection (see also function getBest).

Though object can also be a single fitted GVF model, these functions are principally meant to
compare different GVF models fitted to the same data (i.e. the same estimates and errors).

To request the adjusted R*2, use function getR2 and specify adjusted = TRUE.

Value

If object is a single GVF model (class gvf.fit), the requested quality measure.

If object is a set of GVF models fitted to the same data (class gvf.fits), a vector whose elements
store the requested quality measure for each GVF model.

If object is a single GVF model fitted to "grouped" data (class gvf.fit.gr), a list whose compo-
nents store the requested quality measure for the corresponding groups.
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If object is a set of GVF models fitted to "grouped" data (class gvf.fits.gr), a list whose com-
ponents store vectors whose elements report the requested quality measure for each GVF model of
each group.

Methodological Warning

Each one of the provided quality measures has its own specificities and limitations (e.g. it is sense-
less to use AIC to compare two GVF models with different response variables). It is up to the user
to select the measure which is appropriate to his goals.

Author(s)

Diego Zardetto

See Also

GVF . db to manage ReGenesees archive of registered GVF models, gvf. input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Inspect available estimates and errors of counts:
str(ee.AF)

# List available registered GVF models:
GVF.db

## (A) A *singlex fitted GVF model ##
# Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

# Compute some goodness-of-fit measures:
getR2(m)
AIC(m)

## (B) A *a setx of GVF models fitted to the same data ##
# Fit example data to all registered GVF models:
mm <- fit.gvf(ee.AF)

# Compute some goodness-of-fit measures:
getR2(mm, adjusted = TRUE)
BIC(mm)

## (C) a *singlex GVF model fitted to xgroupedx data ##
# We have at our disposal the following survey design object on household data:
exdes

# Use function svystat to prepare *groupedx estimates and errors of counts
# to be fitted separately (here groups are regions):



GVEdb 93

ee.g <- svystat(exdes, y=~ind, by=~ageSc:marstat:sex, combo=3, group=~regcod)
str(ee.g)

# Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee.g, 1)

# Compute some goodness-of-fit measures:
getR2(mm)
AIC(mm)

## (D) a *set of* GVF models fitted to *grouped* data ##
# Fit all registered GVF model number separately inside groups:
mm.g <- fit.gvf(ee.g)

# Compute some goodness-of-fit measures:
getR2(mm.g, adjusted = TRUE)
BIC(mm.g)

GVF.db Archive of Registered GVF Models

Description

GVF.db is the archive of registered (i.e. built-in and/or user-defined) Generalized Variance Func-
tions models supported by ReGenesees. Special accessor functions allow to customize, maintain,
extend, update, save and reset such archive.

Usage
GVF.db

GVF.db$insert(GVF.model, Estimator.kind = NA, Resp.to.CV = NA, verbose = TRUE)
GVF.db$delete(Model.id, verbose = TRUE)

GVF.db$get(verbose = TRUE)

GVF.db$assign(value, verbose = TRUE)

GVF.db$reset(verbose = TRUE)

Arguments
GVF.model A GVF model, expressed as a formula object or as a character string (see ‘De-
tails’).
Estimator.kind Character string identifying the kind of estimators for which the GVF model is
deemed to be appropriate (see ‘Details’).

Resp.to.CV Character string representing the function which maps the response of the GVF
model (namely: variable 'resp’) to the coefficient of variation (namely: variable
"CV?), see ‘Details’.

Model. id Unique integer key identifying the GVF model.
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value An exported copy of GVF . db, as returned by GVF . db$get ().
verbose Enables printing of a summary description of the result (the default is TRUE).

Format

Each row of the GVF.db data frame represents a registered GVF model, with relevant information
on the following 4 variables:

Model.id A unique integer key identifying the GVF model, integer.

GVF.model A character string specifying the GVF model formula, character. See also ‘Details’.

Estimator.kind A character string identifying the kind of estimators for which the GVF model is
deemed to be appropriate, character. See also ‘Details’.

Resp.to.CV A character string which represents the function mapping the response of the GVF

model (namely: variable ‘resp’) to the coefficient of variation (namely: variable ’CV’), character.

See also ‘Details’.

Details

GVF.db stores information about Generalized Variance Functions models supported by ReGene-
sees. When starting a new work session with ReGenesees, GVF . db contains few built-in GVF mod-
els (currently 5, see sections ‘Source’ and ‘Examples’). The content of GVF . db can be customized
by means of special accessor functions:

ACCESSOR FUNCTION PURPOSE

GVF.db$insert........... Register a new GVF model by adding a new row to the
GVF.db archive

GVF.db$delete........... Unregister a GVF model by deleting the corresponding
row from GVF.db

GVF.db$get.............. Get the current version of GVF.db (e.g. to copy/save a
customized archive for later usage)

GVF.db$assign........... Overwrite the current version of GVF.db (e.g. to use a

customized archive which was exported in a previous
ReGenesees session)

GVF.db$reset............ Reset GVF.db to its default version (i.e. the one with
built-in GVF models only)

Information about registered GVF models stored inside GVF.db will be accessed and used by Re-
Genesees Generalized Variance Functions facilities, e.g. functions fit.gvf or predictCV.

GVFE.dbSinsert()

Function GVF.db$insert has just a single mandatory argument: GVF.model. This can be either a
two-sided formula or a character string which would be transformed into a (well formed) two-sided
formula by function as. formula.

The GVF.model formula to be inserted into GVF.db must be new (i.e. not already present into the
archive) and can involve only variables contained inside gvf. input objects, namely:

1 'y
(2) 'SE'
(3) 'cv
(4) 'VAR'

(5) 'DEFF'
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Moreover, since GVF models are intended to model variances in terms of estimates, the response
term of GVF.model must involve some of 'SE', 'CV', 'VAR', and the linear predictor must involve

1 Y 1 .

Optional argument Estimator.kind can be used to specify the kind of estimators for which the
GVF .model is deemed to be appropriate. There are currently only 11 valid values for Estimator.kind,

namely:
(1) 'Total'
(2) 'Mean’

(3) 'Frequency'

(4) 'Absolute Frequency'

(5) 'Relative Frequency'

(6) 'Ratio’

(7) 'Share'

(8) 'Share Ratio'

(9) 'Regression Coefficient'
(10) 'Quantile'

(11) 'Complex Estimator'

Note that category 'Frequency' has to be understood as an aggregation of categories 'Absolute
Frequency' and 'Relative Frequency', thus being appropriate for GVF models which are deemed
to work well for estimators of both kind of frequencies.

One of the primary motivations for building and fitting a GVF model is to exploit the fitted model
to predict the sampling error associated to a given estimate, instead of having to compute directly
an estimate of such sampling error. Optional argument Resp. to.CV is relevant to that scope.

Indeed, different GVF models can actually specify as response term (call it 'resp' for definiteness)
different functions of variables 'SE', 'CV', and 'VAR', but ReGenesees will always adopt variable
'CV' as a pivot. Thus, when registering a new GVF model, the user can provide via argument
Resp.to.CV the function which transforms the response of the model, 'resp', into the pivot mea-
sure of variability, 'CV'. A look to the default content of GVF.db should make the latter statement
clear (see ‘Examples’).

Note that while Resp.to.CV is passed as a character string, that string is expected to represent a
well-formed mathematical expression (otherwise function predictCV would not work). Moreover,
only variables 'resp' and 'Y' are allowed to appear inside Resp.to.CV (which is enough, since
'"VAR' and 'SE' can be expressed in terms of 'CV' and 'Y").

If the user does not specify Resp. to.CV when registering a new GVF model, he will be not able to
use function predictCV for predicting CV values based on the fitted GVF model.

Lastly, note that the Model . id of a newly inserted GVF model will automatically be set, by adding
1 to the previous maximum of Model. id.

GVF.db$delete()
Function GVF.db$delete has just a single mandatory argument: Model.id. It must match the
integer key of the (already existing) GVF model you want to drop from GVF . db.

Note that, after deleting a GVF model from GVF . db, values of column Model. id will be automati-
cally renumbered, so as to range always from 1 to nrow(GVF . db).
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GVFE.db$get()

Function GVF . db$get has no mandatory arguments. When invoked, the function returns the current
content of GVF . db, so that it can be assigned and saved/exported for later usage (see ‘Examples’).
Should the current content of GVF . db happen to be empty, the function would inform the user and
return NULL. The return value of GVF . db$get has class "GVF . db_exported”, and inherits from class
"data.frame”.

GYVF.db$assign()

Function GVF.db$assign has just a single mandatory argument: value. The object passed to argu-
ment value can only be a previously exported copy of GVF . db, i.e. an object of class GVF . db_exported.
The function overwrites the current version of GVF.db with value. As a result, after invoking
GVF .db$assign, the content of GVF.db is value.

GVFE.dbSreset()
Function GVF.db$reset has no mandatory arguments and simply restores the default version of
GVF.db (i.e. the one containing built-in GVF models only).

Author(s)

Diego Zardetto

Source

Built-in GVF models for frequencies (i.e. those with Model.id 1, 2, and 3) are discussed in Chapter
7 of [Wolter 07], along with their theoretical justification. Built-in GVF models for totals (i.e. those
with Model. id 4, and 5) lack a rigorous justification, but have sometimes been used successfully on
a purely empirical basis. For instance, Istat surveys on structural business statistics adopted models
of that kind to summarize standard errors in publications and to allow their approximate evaluation
on a custom basis.

References

Wolter, K.M. (2007) “Introduction to Variance Estimation”, Second Edition, Springer-Verlag, New
York.

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, gvf.input
and svystat to prepare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit

to get diagnostic plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fit-
ted GVF model and simultaneously refit it, and predictCV to predict CV values via fitted GVF
models.

Examples

# Print the current content of GVF.db (invoking
# print(GVF.db) would do the same):
GVF.db
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# Inspect the structure of the GVF.db data frame:
data.class(GVF.db)

str(GVF.db)

dim(GVF.db)

nrow(GVF.db)

S
# Accessor functions #
S

# Delete the 3rd model:

GVF.db$delete(3)

# Print GVF.db (note that Model.id has been renumbered,
# so as to range always from 1 to nrow(GVF.db))

GVF.db

# Now delete the 1st model:
GVF.db$delete(1)
GVF.db

# Reset GVF.db to its default values:
GVF.db$reset()
GVF.db

# Insert a new tentative GVF model for Totals:

GVF.db$insert(CV ~ I(1/Y*2) + I(1/Y) + Y + I(Y*2), "Total”, "resp")

GVF.db

# (notice that invoking GVF.db$insert() with first argument of type character,
# i.e. GVF.model="CV~I(1/Y*2)+I(1/Y)+Y+I(Y*2)", would have obtained exactly the
# same result)

# Now suppose you have somehow validated your newly added model,

# and you want to save your current, enhanced GVF.db in order to

# be able to use it later in a subsequent ReGenesees session.

### This can be achieved as follows:

### START
# 1. You must first get a copy of it, by using accessor function
# GVF.db$get:

myGVF.db <- GVF.db$get()

myGVF . db

data.class(myGVF.db)

# 2. Then, you must save the copy to a .RData workspace, in order
# to be able to load it later when needed, e.g.:

## Not run:

save(myGVF.db, file="custom.GVF.Archive.RData")

## End(Not run)

# 3. Starting a new ReGenesees session will set the default GVF.db,
# which we can simulate in this example as follows:
GVF.db$reset()
GVF.db

# 4. Now you can load your previously saved customized GVF.db...
## Not run:

97
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load("”custom.GVF.Archive.RData")

## End(Not run)
# ...so that myGVF.db is back into your .GlobalEnv:
myGVF . db

# 5. Lastly, you must overwrite GVF.db with your custom
# GVF archive myGVF.db via function GVF.db$assign:
GVF.db$assign(myGVF.db)
GVF.db

### Now your custom GVF archive is ready to be used by ReGenesees.
#it# STOP

# Illustrate some GVF.db$insert checks by trying crazy models
# or ill-specified attributes

# Examples start: reset GVF.db to its default values
GVF.db$reset()
GVF.db

# GVF model must be "syntactically new"”...
## Not run:
GVF.db$insert(log(CV*2) ~ log(Y))

## End(Not run)

# ...if this is the case, it can even be "equivalent” to old ones: e.g.

# the following is identical to model number 5 and will produces identical
# estimates and predictions (as you may want to check):
GVF.db$insert(I(sqrt(VAR)/Y) ~ I(1/Y) + Y, "Total”, Resp.to.CV = "resp")
GVF.db

# GVF model must have a response term

## Not run:

GVF.db$insert(~ log(Y))

## End(Not run)

# GVF model response must involve some of 'SE', 'CV', 'VAR'
## Not run:

GVF.db$insert(DEFF ~ log(Y))

## End(Not run)

# GVF model predictor must involve 'Y'

## Not run:

GVF.db$insert (VAR ~ SE)

## End(Not run)

# If passed, Resp.to.CV can only involve 'resp' and 'Y'

## Not run:

GVF.db$insert(I(sqrt(VAR)/Y) ~ I(1/Y) + Y + I(Y*2), Resp.to.CV = "sqrt(VAR)/Y")

## End(Not run)

# Examples end: reset GVF.db to its default values:
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GVF.db$reset()

gvf.input Prepare Input Data to Fit GVF Models

Description

Transforms a set of computed survey statistics into a suitable (data. frame-like) data structure, in
order to fit a Generalized Variance Function model.

Usage

gvf.input(design, ..., stats = list(...))

## S3 method for class 'gvf.input'

plot(x, ...)
Arguments
design The design object (of class analytic or inheriting from it) from which the input
survey statics are supposed to have been derived.
For function gvf. input, objects containing survey statistics. For plot, further
arguments passed to or from other methods.
stats A list storing survey statistic objects (see ‘Details’).
X The object of class gvf. input to plot.
Details
Given a set of survey statistic objects (via arguments ‘. ..’ or stats) and a design object (design)

from which those statics are supposed to have been derived, function gvf.input builds a data
structure that can be fed to ReGenesees GVF model fitting function fit.gvf.

b}

Argument ‘...’ can be bound to an arbitrary number of objects. These objects must be out-
put of survey statistics functions, i.e. svystatTM, svystatR, svystatS, svystatSR, svystatB,
svystatQ, svystatL, svySigma, and svySigma2.

All input objects passed to . . ." must derive from estimators of the same kind (as returned by func-
tion estimator.kind). For the same reason, objects of mixed kind (see estimator.kind) are not
allowed. Since function svystatL can actually handle estimators of different kinds, objects of kind
‘Complex Estimator’ are the only exception to the rule.

Argument stats can be used as an alternative to argument . ..’ : one has only to store the survey
statistic objects into a list and bind such list to stats. Note that, if both are passed, argument
stats will prevail on ‘. ..’ (see ‘Examples’).

Should any input object be a survey statistic derived from a design object other than design, the
function would raise an error.

The plot method for gvf. input objects produces a matrix of scatterplots with polynomial smoothers.
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Value

An object of class gvf.input, inheriting from class data.frame: basically a data frame supplied
with appropriate attributes.

Each row of the data frame contains an estimate along with its estimated sampling error, expressed
in terms of standard error, coefficient of variation, variance, and - whenever available - design

effect.

The data frame has the following structure:

name The name of the original estimate, factor.

Y The value of the original estimate, numeric.

SE The standard error of the original estimate, numeric.

CV The coefficient of variation of the original estimate, numeric.

VAR The variance of the original estimate, numeric.

DEFF The design effect of the original estimate (if available), numeric.

Note that by inspecting the attributes of a gvf.input object, one can always identify which design
object and which kind of estimator generated that object (see ‘Examples’).

Author(s)

Diego Zardetto

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, svystat
as a useful alternative to prepare the input for GVF model fitting, GVF . db to manage ReGenesees
archive of registered GVF models, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load sbs data:
data(sbs)

# Create a design object...
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

# ...and use it to compute some survey statistics:
va<-svystatTM(sbsdes,~va.imp2)
va.reg<-svystatTM(sbsdes,~va.imp2,~region)
va.area<-svystatTM(sbsdes,~va.imp2,~area)

# Now suppose you want to fit a GVF model on the estimates and errors computed
# above: you must prepare your input as follows:
ee<-gvf.input(sbsdes,va,va.reg,va.area)

# Inspect the obtained data structure:

ee

str(ee) # Note the "design” and "stats.kind” attributes
plot(ee)

# Note that, instead of argument '...'
# as follows:

, you could have used argument 'stats'’
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va.list<-list(va,va.reg,va.area)
ee2<-gvf.input(sbsdes,stats=va.list)

# ...obtaining exactly the same result:

identical(ee,ee2)

# Note also that, if both are passed, argument 'stats' prevails on ' e
# indeed, while:

gvf.input(sbsdes,va.reg)

# we would get again:

gvf.input(sbsdes,va.reg,stats=va.list)

gvf.misc Miscellanea: Methods for Fitted GVF Models

Description

These methods extract information from fitted GVF model(s).

Usage

## S3 method for class 'gvf.fit'
coef(object, ...)

## S3 method for class 'gvf.fits'
coef(object, ...)

## S3 method for class 'gvf.fit.gr'
coef(object, ...)

## S3 method for class 'gvf.fits.gr'
coef(object, ...)

## S3 method for class 'gvf.fit'

residuals(object, ...)

## S3 method for class 'gvf.fits'
residuals(object, ...)

## S3 method for class 'gvf.fit.gr'
residuals(object, ...)

## S3 method for class 'gvf.fits.gr'
residuals(object, ...)

## S3 method for class 'gvf.fit'
fitted(object, ...)

## S3 method for class 'gvf.fits'
fitted(object, ...)

## S3 method for class 'gvf.fit.gr'

fitted(object, ...)
## S3 method for class 'gvf.fits.gr'
fitted(object, ...)

## S3 method for class 'gvf.fit'
predict(object, ...)
## S3 method for class 'gvf.fits'
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predict(object, ...)
## S3 method for class
predict(object, ...)
## S3 method for class
predict(object, ...)

## S3 method for class

effects(object, ...)
## S3 method for class
effects(object, ...)
## S3 method for class
effects(object, ...)
## S3 method for class
effects(object, ...)

## S3 method for class

rstandard(model, ...)
## S3 method for class
rstandard(model, ...)
## S3 method for class
rstandard(model, ...)
## S3 method for class
rstandard(model, ...)

## S3 method for class

rstudent(model, ...)
## S3 method for class
rstudent(model, ...)
## S3 method for class
rstudent(model, ...)
## S3 method for class
rstudent(model, ...)

## S3 method for class

anova(object, ...)
## S3 method for class
anova(object, ...)
## S3 method for class
anova(object, ...)
## S3 method for class
anova(object, ...)

## S3 method for class
vcov(object, ...)
## S3 method for class
vcov(object, ...)
## S3 method for class
vcov(object, ...)
## S3 method for class
vcov(object, ...)

'gvf.

'gvf.

'gvf.

'gvf.

'gvf.

'gvf.

'gvf.

'gvf.

'gvf.

gvf.

gvf.
gvf.
gvf.

gvf.

gvf.

gvf.

gvf.

gvf.

gvf.

gvf.

gvf.

gvf.

fit.gr'

fits.gr'

fit'
fits'
fit.gr'

fits.gr'

fit'
fits'
fit.gr'

fits.gr'

fit'
fits'
fit.gr'

fits.gr'

fit'
fits'
fit.gr'

fits.gr'

fit'
fits'
fit.gr'

fits.gr'

gvf.misc
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Arguments
object An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).
model An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).
Further arguments passed to or from other methods (see corresponding .Im meth-
ods).
Details

These methods can be used to extract information from fitted GVF model(s).

For more details on their usage, please read the help pages of the methods with same name defined
on class .Im by package stats (e.g. coef, fitted, etc.).

Value

The requested information, wrapped into an R object whose structure depends on the class of the
input fitted GVF model(s) (i.e. arguments object and/or model).

Author(s)

Diego Zardetto

See Also

GVF . db to manage ReGenesees archive of registered GVF models, gvf . input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Inspect available estimates and errors of counts:
head(ee.AF)
summary (ee.AF)

# List available registered GVF models:
GVF.db

## (A) A *singlex fitted GVF model ##
# Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

# Extract some information:
coef(m)
fitted(m)

## (B) A *a setx of GVF models fitted to the same data ##
# Fit example data to registered GVF models for frequencies (i.e. number 1:3):
mm <- fit.gvf(ee.AF, 1:3)
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# Extract some information:
r.mod <- residuals(mm)
lapply(r.mod, head)

r.sta <- rstandard(mm)
lapply(r.sta, head)

r.stu <- rstudent(mm)
lapply(r.stu, head)

## (C) a xsingle* GVF model fitted to *grouped* data ##
# We have at our disposal the following survey design object on household data:
exdes

# Use function svystat to prepare *groupedx estimates and errors of counts

# to be fitted separately (here groups are regions):

ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
str(ee.g)

# Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee.g, 1)

# Extract some information:
coef(m.g)
fitted(m.g)

## (D) a *set of* GVF models fitted to *grouped* data ##

# Fit all registered GVF models for frequencies (i.e. number 1:3) separately
# inside groups:

mm.g <- fit.gvf(ee.g, 1:3)

# Extract some information:

coef(mm.g)

fitted(mm.g)

n.mean Sample Size Requirements and Power Calculations for Means

Description

These functions estimate the minimum sample size required to (i) satisfy specific precision con-
straints in the estimation of means and to (ii) attain specified levels of significance and power in a
statistical test that compares two means. The inverse problems of finding, given a specified sample
size, (iii) the expected precision of the estimator of the mean and (iv) the expected power or (v)
minimum detectable effect for the test that compares two means are also addressed.

Usage

n.mean(prec, prec.ind =
DEFF = 1, RR = 1,
F =1, hhSize = 1, AVEhh = F * hhSize,
old.clus.size = NULL, new.clus.size = NULL,

c("ME", "RME", "SE", "CV"), sigmaY¥, muY = NULL,
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N = NULL, alpha = 0.05, verbose = TRUE)

prec.mean(n, prec.ind = c("ME", "RME"”, "SE", "CV"), sigma¥Y, muY = NULL,
DEFF = 1, RR = 1,
F = 1, hhSize = 1, AVEhh = F x hhSize,
old.clus.size = NULL, new.clus.size = NULL,
N = NULL, alpha = 0.05, verbose = TRUE)

n.comp2mean(sigma¥, MDE, K1 = 1/2,
alpha = 0.05, beta = 0.2, sides = c("two-tailed”, "one-tailed"),
DEFF =1, RR =1,
F =1, hhSize = 1, AVEhh = F * hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)

pow.comp2mean(n, sigma¥, MDE, K1 = 1/2,
alpha = 0.05, sides = c("two-tailed”, "one-tailed"),
DEFF = 1, RR = 1,
F =1, hhSize = 1, AVEhh = F x hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)

mde.comp2mean(n, sigma¥, K1 = 1/2,
alpha = 0.05, beta = 0.2, sides = c("two-tailed”, "one-tailed"),
DEFF = 1, RR = 1,
F =1, hhSize = 1, AVEhh = F % hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)

Arguments

prec The precision level you want to attain in estimation.

prec.ind The precision indicator for which the specified precison level prec has to be at-
tained. The following uncertainty measures can be used as precision indicators:
Margin of Error ('ME', the default), Relative Margin of Error ('RME'), Stan-
dard Error ('SE'), and Coefficient of Variation ('CV', also known as Relative
Standard Error).

sigmaY Anticipated estimate of the standard deviation of interest variable Y for your
target (sub)population.

muY Anticipated estimate of the mean of interest variable Y for your target (sub)population.

DEFF Anticipated estimate of the design effect of the estimator of the mean.

RR Anticipated estimate of the response rate.

F Anticipated estimate of the proportion of your target subpopulation in the gen-
eral population that will be sampled.

hhSize Anticipated estimate of the average household size.

AVEhh Anticipated estimate of the average number of individuals belonging to the target

subpopulation per houshold.

old.clus.size Average number of households sampled per PSU in the survey you have used to
compute the input value for the DEFF argument.
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new.clus.size Average number of households to be sampled per PSU in the survey you are

planning.

N The size of your target (sub)population. Only needed if you don’t want to ne-
glect finite population corrections (which is the default behaviour if N = NULL).

alpha Significance level used to build confidence intervals (with confidence level equal
to 1 - alpha) or probability of Type I error (False Positive) for hypothesis test-
ing.

verbose Print on screen some description or just return the results?

n The sample size for which the expected precision or power or MDE must be
calculated (see ‘Details’).

MDE Minimum Detectable Effect for the difference between means.

K1 Ratio between the sample size of group 1 and the total sample size of groups 1
and 2 (defaults to 1/2, i.e. equal sized groups).

beta Probability of Type II error (False Negative) for hypothesis testing (so that Power
=1 - beta).

sides Do you want a 'two-tailed' test (the default) or a 'one-tailed’ test?

Details

These functions are intended as simple everyday tools for basic sampling design decisions and sur-
vey planning. They address sample size requirements and power calculations for means in surveys
(typically household surveys) adopting one- or two-stage sampling designs. The means acting as
estimation targets can be defined either in terms of individuals or in terms of households. Specific
arguments (such as hhSize, AVEhh, old.clus.size, and new.clus.size) can be tweaked to cover
different designs (one or two stages) and target populations (individual-level or household-level
means), see the ‘Examples’ section.

The formulas needed to guesstimate the minimum sample size required to satisfy specific precision
constraints in the estimation of a mean (function n.mean) or the expected precision of the estimator
of the mean given a specified sample size (function prec.mean) are available in many textbooks and
spreadsheet templates (see, e.g., [Rosner 2006], [Lance, Hattori 2016], [ILO 2014a], [ILO 2014b]).

The formula needed to guesstimate the minimum sample size required to attain specified levels
of significance and power in a statistical test that compares two means (function n.comp2mean)
can be derived from equation 8.27 on page 302 of [Rosner 2006], by extending it to real-world
complex sampling designs (see, e.g., arguments RR and DEFF). Functions pow.comp2mean and
mde . comp2mean solve the resulting equation for Power (= 1 - beta) and MDE given a specified fotal
sample size, n.

NOTE: For both pow.comp2mean and mde. comp2mean, argument n must be the fotal sample size,
namely the sum of the sample sizes of the two groups (group 1 and group 2) whose estimated means
need to be compared. The way the total sample size is allocated to the two groups is controlled by
argument K1.

NOTE: Despite most of the arguments to the above five functions come with default values, those
defaults must not be considered as suggested values: in general, users will need to specify actual
values that suit their specific design needs. For instance, the default value muY = NULL is not valid
when relative measures of precision are used ('RME' and 'CV").

NOTE: Arguments F, hhSize, and AVEhh are necessarily related to each other, as it is illustrated
by the expression of the default of AVEhh, thus it is not required to specify all of them. If all are
explicitly passed, the function will check that they comply with the identity AVEhh = F x hhSize.

NOTE: Most of the arguments to the above five functions are vectorized, meaning that users can
pass numeric vectors to them to investigate multiple design scenarios in a single shot (e.g. via MDE
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=c(750, 1000, 1250)). When vectors of length greater than 1 are passed to multiple arguments,
R recycling rule will kick in.

NOTE: Input values for sample size, n, and population size (if any), N, should be positive integers.
The functions will silently make them so, by using their round(abs( )) values. When both n and
N are specified, an error will be raised if n > N.

NOTE: Since, as shown in the ‘Examples’ section, the functions can be tweaked to cover different
designs (one or two stages) and target populations (individual-level or household-level means), users
who do not want to neglect finite population corrections must specify the population size N in terms
of the analytical units that are relevant to their analysis.

NOTE: Both functions n.mean and n.comp2mean return the ceiling of the analytically calculated
minimum sample sizes (which are not integers in general). This is conservative and will result in
slightly better sampling performances than the nominally requested ones (e.g. higher precision or
power, and smaller confidence intervals or MDEs).

Value

For n.mean, prec.mean, pow.comp2mean, and mde.comp2mean, a numeric vector whose length
depends on the length of the numeric inputs passed to the function (under R recycling rule).

For n.comp2mean, a list of length 3 with names n1, n2, and n, providing the required sample sizes
for group 1, group 2, and the overall sample. Each of the elements of the list is a numeric vector
whose length depends on the length of the numeric inputs passed to the function (under R recycling
rule).

Author(s)

Diego Zardetto

References

ILO (2014a) ILO-IPEC TOOLS. URL: https://www.ilo.org/resource/training-material/
interactive-tools-sampling-household-based-child-1labour-surveys.

ILO (2014b) ILO-IPEC TOOLS USER GUIDE. URL: https://www.ilo.org/sites/default/
files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_
Guidelines_2014.pdf.

Rosner, B. (2006) Fundamentals of biostatistics (7th ed.). Boston, MA: Brooks/Cole.

Lance, P., Hattori, A. (2016) Sampling and evaluation. Chapel Hill, North Carolina: MEASURE
Evaluation, University of North Carolina (2016).

See Also

Functions n.prop, prec.prop, n.comp2prop, pow.comp2prop, and mde.comp2prop provide the
same functionalities documented here, when the statistics of interest are proportions rather than
means.

Examples

HHHEHHEHEE A

# Reproducible example #

HHHHHHAEEE

# Solve the problem used as illustrating example in Diagram 1b on page 12 of the ILO-IPEC
# TOOLS USER GUIDE (which can be freely downloaded from ILO-IPEC TOOLS USER GUIDE URL in
# the References section above).


https://www.ilo.org/resource/training-material/interactive-tools-sampling-household-based-child-labour-surveys
https://www.ilo.org/resource/training-material/interactive-tools-sampling-household-based-child-labour-surveys
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Guidelines_2014.pdf
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Guidelines_2014.pdf
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Guidelines_2014.pdf
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* %

#
#
#
#

n.mean

This is the only example provided by the document for the estimate of a *meanx (which
the document, somewhat oddly, refers to as an <<indicator of amount>>):

.mean(prec= 20, prec.ind= "ME", sigmaY= 250, muY= 400, DEFF= 4.0, AVEhh= 0.75, RR= 0.9)

NOTE: We get 3557. The result of the ILO-IPEC template is a bit larger: 3704. This is
simply because the ILO-IPEC template approximates the 1 - ©.05/2 quantile of the
standard normal distribution with 2. Indeed, one can see that 3704 is exactly
equal to:

round( 3557 * (2 / 1.96)"2 )

A

#

Impact of Finite Population Corrections (fpc). #

MR R

#
#
#
n

The sample size above was obtained by neglecting finite population corrections. Now let's

assume we know the population size is in the ballpark of 100 thousand households. If we

correctly factor in the fpc terms, then the required sample size is reduced as follows:

.mean(prec= 20, prec.ind= "ME", sigmaY= 250, muY= 400, DEFF= 4.0, AVEhh= 0.75, RR= 0.9,
N= 100000)

AR AR

#

Power calculations for the comparison of two means #

AR

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

A new national assistance policy aims to increase by 7% the average monthly household
consumption, which was estimated to be equal to 362000 (in the country currency) by an
household survey conducted two years before. The DEFF of that estimate was reported to
be 3.5, and the same survey estimated the population standard deviation of the monthly
household consumption to be 461000. To evaluate the impact of the intervention, two
household surveys with the same sample sizes will be conducted before (T@) and after
(T1) the implementation of the policy. Assuming that (i) the average monthly household
consumption at T@ will still be close to 362000 and (ii) the new policy will be the only
driver of changes, success of the policy would require a value of at least 387340 at T1
(387340 = 362000 * 1.07), namely an increase of 25340. However,the government would like
the study to be able to detect a possibly *smaller* consumption increase of 20000.
Moreover, the government is confident the new policy cannot result in harming household
consumption (so a one-tailed test is deemed appropriate). Assuming 2@ households per EA
will be sampled as it was the case for the survey conducted two years before, and
anticipating a response rate of 0.9, and how many households must be selected to achieve
80% power for the detection of the sought-after consumption increase at significance
level 5%?

.comp2mean(sigmaY = 362000, MDE = 20000, sides = "one-tailed”, DEFF = 3.5, RR = 0.9,
old.clus.size= 20, new.clus.size= 20)

NOTE: The required sample size is 31520 households, 15760 at baseline (T@) and 15760 at
endline (T1). The EAs to be visited are 15760 / 20 = 788 per round.

What would be the implications of using designs with 15 or 12 households per EA, instead
of 20?

.comp2mean(sigmaY = 362000, MDE = 20000, sides = "one-tailed”, DEFF = 3.5, RR = 0.9,
old.clus.size= 20, new.clus.size= c(15, 12))

NOTE: When going from 20 to 15 or 12 households per EA, the required sample size is
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# expected to decrease to 25590 households (12795 per round) and 22032 households
# (11016 per round), respectively. Conversely, the EAs to be visited are expected to
# increase to 12795 / 15 = 853 and 11016 / 12 = 918 per round,respectively.

# How much sample size could be saved if the government resorts to detecting as significant
# a larger consumption increase of 25000, which is much closer to the actually intended
# goal of the policy?

n.comp2mean(sigma¥Y = 362000, MDE = 25000, sides = "one-tailed”, DEFF = 3.5, RR = 0.9,
old.clus.size= 20, new.clus.size= 20)

# NOTE: The required sample size would become 20200 households, 10100 per round. Therefore,
# 31520 - 20200 = 11320 households would be saved, 5660 per round.

# The above reduced sample size would, of course, imply a lower statistical power (i.e.
# smaller than the ideally desired 80%) for the detection of an increase of 20000 that
# might actually be induced by the policy. What would actually be the expected power for
# the detection of an effect of 20000 for n = 202007

pow.comp2mean(n = 20200, sigmaY = 362000, MDE = 20000, sides = "one-tailed”, DEFF = 3.5,
RR = 0.9, old.clus.size= 20, new.clus.size= 20)

# NOTE: The power would be reduced to about 63.5%.

n.prop Sample Size Requirements and Power Calculations for Proportions

Description

These functions estimate the minimum sample size required to (i) satisfy specific precision con-
straints in the estimation of proportions and to (ii) attain specified levels of significance and power
in a statistical test that compares two proportions. The inverse problems of finding, given a spec-
ified sample size, (iii) the expected precision of the estimator of the proportion, and (iv) the ex-
pected power or (v) minimum detectable effect for the test that compares two proportions are also
addressed.

Usage

n.prop(prec, prec.ind =
DEFF =1, RR =1,
F =1, hhSize = 1, AVEhh = F * hhSize,
old.clus.size = NULL, new.clus.size = NULL,
N = NULL, alpha = 0.05, verbose = TRUE)

C(HMEH’ IIRMEH’ ”SE”, “CV”), P 0.5’

prec.prop(n, prec.ind = c("ME", "RME", "SE", "CV"), P = 0.5,
DEFF =1, RR = 1,
F =1, hhSize = 1, AVEhh = F * hhSize,
old.clus.size = NULL, new.clus.size = NULL,
N = NULL, alpha = 0.05, verbose = TRUE)

n.comp2prop(P1, P2 = P1, MDE = abs(P2 - P1), K1 = 1/2,
alpha = 0.05, beta = 0.2, sides = c("two-tailed”, "one-tailed"),
pooled.variance = TRUE,
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pow.comp2prop(n, P1,

mde.comp2prop(n, P1,

n.prop
DEFF =1, RR =1,
F =1, hhSize = 1, AVEhh = F % hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)
P2 = P1, MDE = abs(P2 - P1), K1 = 1/2,
alpha = 0.05, sides = c("two-tailed”, "one-tailed”),
pooled.variance = TRUE,
DEFF = 1, RR = 1,
F =1, hhSize = 1, AVEhh = F % hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)
P2 = P1, K1 = 1/2,
alpha = 0.05, beta = 0.2, sides = c("two-tailed”, "one-tailed"”),
pooled.variance = TRUE,

Arguments

prec

prec.ind

DEFF
RR

hhSize
AVEhh

old.clus.size

new.clus.size

alpha

verbose

n

DEFF =1, RR = 1,

F = 1, hhSize = 1, AVEhh = F * hhSize,
old.clus.size = NULL, new.clus.size = NULL,
verbose = TRUE)

The precision level you want to attain in estimation.

The precision indicator for which the specified precison level prec has to be at-
tained. The following uncertainty measures can be used as precision indicators:
Margin of Error ('ME', the default), Relative Margin of Error ('RME"'), Stan-
dard Error ('SE'), and Coefficient of Variation ('CV', also known as Relative
Standard Error).

Anticipated estimate of the proportion for your target (sub)population.
Anticipated estimate of the design effect of the estimator of the proportion.
Anticipated estimate of the response rate.

Anticipated estimate of the proportion of your target subpopulation in the gen-
eral population that will be sampled.

Anticipated estimate of the average household size.

Anticipated estimate of the average number of individuals belonging to the target
subpopulation per household.

Average number of households sampled per PSU in the survey you have used to
compute the input value for the DEFF argument.

Average number of households to be sampled per PSU in the survey you are
planning.

The size of your target (sub)population. Only needed if you don’t want to ne-
glect finite population corrections (which is the default behaviour if N = NULL).

Significance level used to build confidence intervals (with confidence level equal
to 1 - alpha) or probability of Type I error (False Positive) for hypothesis test-
ing.

Print on screen some description or just return the results?

The sample size for which the expected precision or power or MDE must be
calculated (see ‘Details’).
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P1 Anticipated estimate of the proportion for group 1.

P2 Anticipated estimate of the proportion for group 2 (only needed when it differs
from P1).

MDE Minimum Detectable Effect for the difference between proportions.

K1 Ratio between the sample size of group 1 and the total sample size of groups 1
and 2 (defaults to 1/2, i.e. equal sized groups).

beta Probability of Type II error (False Negative) for hypothesis testing (so that Power
=1 - beta).

sides Do you want a 'two-tailed' test (the default) or a 'one-tailed’ test?

pooled.variance
Do you want to use the pooled estimator of the variance (the default) or the
unpooled one?

Details

These functions are intended as simple everyday tools for basic sampling design decisions and
survey planning. They address sample size requirements and power calculations for proportions
in surveys (typically household surveys) adopting one- or two-stage sampling designs. The pro-
portions acting as estimation targets can be defined either in terms of individuals or in terms of
households. Specific arguments (such as hhSize, AVEhh, old.clus.size, and new.clus.size)
can be tweaked to cover different designs (one or two stages) and target populations (proportions of
individuals or households), see the ‘Examples’ section.

The formulas needed to guesstimate the minimum sample size required to satisfy specific precision
constraints in the estimation of a proportion (function n.prop) or the expected precision of the
estimator of the proportion given a specified sample size (function prec.prop) are available in
many textbooks and spreadsheet templates (see, e.g., [Rosner 2006], [Lance, Hattori 2016], [ILO
2014], [UNICEF 2023]).

The formula needed to guesstimate the minimum sample size required to attain specified levels of
significance and power in a statistical test that compares two proportions (function n.comp2prop)
can be derived from equation 10.14 on page 381 of [Rosner 2006], by extending it to real-world
complex sampling designs (see, e.g., arguments RR and DEFF). Functions pow.comp2prop and
mde . comp2prop solve the resulting equation for Power (= 1 - beta) and MDE given a specified fotal
sample size, n.

NOTE: For both pow. comp2prop and mde. comp2prop, argument n must be the fotal sample size,
namely the sum of the sample sizes of the two groups (group 1 and group 2) whose estimated
proportions need to be compared. The way the total sample size is allocated to the two groups is
controlled by argument K1.

NOTE: Despite most of the arguments to the above five functions come with default values, those
defaults must not be considered as suggested values: in general, users will need to specify actual
values that suit their specific design needs. For instance, as illustrated in the ‘Examples’ section,
the Minimum Detectable Effect does not necessarily need to be equal to its default expression (MDE
=abs(P2 - P1)).

NOTE: Arguments F, hhSize, and AVEhh are necessarily related to each other, as it is illustrated
by the expression of the default of AVEhh, thus it is not required to specify all of them. If all are
explicitly passed, the function will check that they comply with the identity AVEhh = F * hhSize.

NOTE: Most of the arguments to the above five functions are vectorized, meaning that users can
pass numeric vectors to them to investigate multiple design scenarios in a single shot (e.g. via MDE
=c(0.06, 0.08, 0.10)). When vectors of length greater than 1 are passed to multiple arguments,
R recycling rule will kick in.
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NOTE: Input values for sample size, n, and population size (if any), N, should be positive integers.
The functions will silently make them so, by using their round(abs( )) values. When both n and
N are specified, an error will be raised if n > N.

NOTE: Since, as shown in the ‘Examples’ section, the functions can be tweaked to cover different
designs (one or two stages) and target populations (proportions of individuals or households), users
who do not want to neglect finite population corrections must specify the population size N in terms
of the analytical units that are relevant to their analysis.

NOTE: Both functions n.prop and n.comp2prop return the ceiling of the analytically calculated
minimum sample sizes (which are not integers in general). This is conservative and will result in
slightly better sampling performances than the nominally requested ones (e.g. higher precision or
power, and smaller confidence intervals or MDEjs).

Value

For n.prop, prec.prop, pow.comp2prop, and mde.comp2prop, a numeric vector whose length
depends on the length of the numeric inputs passed to the function (under R recycling rule).

For n.comp2prop, a list of length 3 with names n1, n2, and n, providing the required sample sizes
for group 1, group 2, and the overall sample. Each of the elements of the list is a numeric vector
whose length depends on the length of the numeric inputs passed to the function (under R recycling
rule).

Author(s)

Diego Zardetto

References

UNICEEF (2023) MICS7 TOOLS. URL: https://mics.unicef.org/tools#survey-design.

ILO (2014) ILO-IPEC TOOLS. URL: https://www.ilo.org/resource/training-material/
interactive-tools-sampling-household-based-child-1labour-surveys.

ILO (2014) ILO-IPEC TEMPLATE. URL: https://www.ilo.org/sites/default/files/2024-09/
Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Template_2014.
x1sx.

Rosner, B. (2006) Fundamentals of biostatistics (7th ed.). Boston, MA: Brooks/Cole.

Lance, P., Hattori, A. (2016) Sampling and evaluation. Chapel Hill, North Carolina: MEASURE
Evaluation, University of North Carolina (2016).

See Also

Functions n.mean, prec.mean, n.comp2mean, pow.comp2mean, and mde.comp2mean provide the
same functionalities documented here, when the statistics of interest are means rather than propor-
tions.

Examples

HHHHHHAEEE

# Reproducible example 1 #

SRR A

# Solve the illustrating example problem stored in sheet 'Sample Size(SS) for one domain'
# of the MICS7 Excel template (which can be freely downloaded from:

# https://mics.unicef.org/tools?round=mics7):


https://mics.unicef.org/tools#survey-design
https://www.ilo.org/resource/training-material/interactive-tools-sampling-household-based-child-labour-surveys
https://www.ilo.org/resource/training-material/interactive-tools-sampling-household-based-child-labour-surveys
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Template_2014.xlsx
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Template_2014.xlsx
https://www.ilo.org/sites/default/files/2024-09/Child_labour_Sampling_Tools_Tool_01_Sample_Size_and_Margin_of_Error_Template_2014.xlsx
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n.prop(prec= 0.12, prec.ind= "RME", P= ©.2, DEFF= 1.5, F= 0.09, hhSize= 5.0, RR= 0.9)

# NOTE: We get 3953. The result of the MICS7 template is a bit larger: 4115. This is

# simply because the MICS7 template approximates the 1 - ©.05/2 quantile of the
# standard normal distribution with 2. Indeed, one can see that 4115 is exactly
# equal to:

floor( 3953 * (2 / 1.96)*2 )

HHHEHHEEEERE

# Reproducible example 2 #

HHHHHHEEEE A

# Sheet 'RME and Expected Cases given SS' of the MICS7 Excel template contains one example
# of the reverse problem of finding the expected standard error for a given sample size.
# You can solve it as follows:

prec.prop(n= 4000, prec.ind= "SE", P= 0.2, DEFF= 1.5, F= 0.09, hhSize= 5.0, RR= 0.9)

# NOTE: This time, the result of the MICS7 template (0.01217) is xexactly* the same, since

# the standard error is a measure of precision that does *not* depend on the
# confidence level (so that MICS' approximation gnorm(1 - ©.05/2) = 2 plays no role
# here).

HHHEHHEEEE
# Reproducible example 3 #
HHHHHHAEEE A

H+

Solve the problem stored as illustrating example in the ILO-IPEC Excel template (which
can be freely downloaded from the ILO-IPEC TEMPLATE URL in the References section
above):

* 3

n.prop(prec= 0.03, prec.ind= "ME", P= 0.1, DEFF= 4, F= 0.15, hhSize= 5.0, RR= 0.9)

NOTE: We get 2277. The result of the ILO-IPEC template is a bit larger: 2370. This
simply because the ILO-IPEC template too approximates the 1 - 0.05/2 quantile of
the standard normal distribution with 2. Indeed, one can see that 2370 is exactly
equal to:

floor( 2277 x (2 / 1.96)"2 )

#
#
#
#

By using the additional input that the number of households per PSU was 16 for the
survey that generated the pre-estimates reported above, the ILO-IPEC template also
returns the estimated intraclass correlation coefficient (ICC) of the binary indicator
variable underlying the proportion: 27.3%.

* % R

ES

To obtain the same result, just use the arguments 'old.clus.size' and 'new.clus.size'
# as follows:

n.prop(prec= 0.03, prec.ind= "ME", P= 0.1, DEFF= 4, F= 0.15, hhSize= 5.0, RR= 0.9,
old.clus.size= 16, new.clus.size= 16)

# NOTE: Once more, the result is in agreement with the ILO-IPEC template.

NOTE: By making explicit the cluster size, we obtained a slightly larger sample size
than before (2288 vs 2277). This is because, when the user specifies a value for
'new.clus.size', the function returns a sample size that is guaranteed to be an
integer multiple of it.

* % R
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# NOTE: Following Kish's naming convention, ReGenesees uses the label 'ROH' (which stands
# for 'rate of homogeneity') for the ICC.

HHHEHHAEEE AR AR

# Impact of adjusting the survey design to accommodate a different #

# number of households per sampled PSU. #

HHHEHHHEEE A

# More generally, the argument 'new.clus.size' can be used to predict the impact on sample
# size requirements of changing the number of households per PSU. This is performed by
# leveraging the so-called *xICC portability assumptionx.

Suppose the survey you are designing will use 20 households per PSU, rather than the 16

used by the survey from which you obtained the anticipated estimates used so far. Since

this setting is expected to increase the DEFF, a larger sample size will be needed to

the meet the previous precision constraint of ME = 0.03:

.prop(prec= 0.03, prec.ind= "ME", P= 0.1, DEFF= 4, F= 0.15, hhSize= 5.0, RR= 0.9,
old.clus.size= 16, new.clus.size= 20)

So# % o o

# NOTE: As can be seen, when going from 16 to 20 households per PSU, the DEFF is expected
to increase from 4 to 4.8, thus bringing the sample size required to achieve the
# desired margin of error from 2288 to 2760 households.

H+

HHH A

# Impact of Finite Population Corrections (fpc). #
B S S s S

# The sample size above was obtained by neglecting finite population corrections. Now let's
# assume we know the population size is in the ballpark of 100 thousand households. If we
# correctly factor in the fpc terms, then the required sample size is reduced as follows:
n.prop(prec= 0.03, prec.ind= "ME", P= 0.1, DEFF= 4, F= @.15, hhSize= 5.0, RR= 0.9,

old.clus.size= 16, new.clus.size= 20, N= 100000)

SHEHHHHHHEEHEHEHEEHEEHHHEHAEHEEHHBHEEEEEHHHHHREEEEHEEHEEHHEHHEHHEHEEHEEEE

# Power calculations for the comparison of two proportions: example 1 #

AR AR R R

Suppose one wants to plan two household surveys to evaluate whether a proposed new
targeting strategy will increase the proportion of beneficiaries of a social assistance
program that are poor. The surveys will be conducted before (T@) and after (T1) the
implementation of the new strategy. From a previous assessment (T < T@, with a response
rate of 0.9), it is known that the proportion of poor households among beneficiaries was
around 73% and that the DEFF of this estimated proportion was 1.4. The new strategy
would be considered successful if, after the implementation of the new targeting
strategy, the proportion of poor households among beneficiaries equals or exceeds 80%.
Households will be selected from the list of beneficiaries (so F = 1) with the same
one-stage sampling design as the previous assessment, and the baseline and endline
surveys will have equal sample sizes (so K1 = 1/2). Moreover, it is believed that the new
strategy cannot result in harming the targeting performance (so a one-tailed test is
deemed appropriate). How many households must be sampled to achieve 80% power for the
detection of the sought-after effect at significance level 5%?

e R E E E E E E E L

n.comp2prop(P1 = .73, P2 = 0.80, sides = "one-tailed”, DEFF = 1.4, RR = 0.9)

# NOTE: The required sample size is 1410 households, 705 at baseline (TQ) and 705 at
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# endline (T1).

# NOTE: The default value hhSize = 1 (which implies AVEhh = F = 1) was used because the
# target proportion was defined in terms of households, rather than in terms of
# individuals.

# Suppose the available budget is not enough to survey the required 705 households per
# round, whereas a sample of 600 households per round (i.e. 1200 overall) would be feasible.
# What would be the expected power in that case?

pow.comp2prop(n = 1200, P1 = 0.73, P2 = 0.80, sides = "one-tailed”, DEFF = 1.4, RR = 0.9)

# NOTE: The power would be reduced to about 74.2%.

HEHHHHHHHEEE R HHHHREEEEHHHHH R HHHHREEE R EHEEEREEEE

# Power calculations for the comparison of two proportions: example 2 #

HHHEHHHEHEE AR AR AR

An assistance program aims to reduce by 20% the prevalence of stunted children under age
5 in a given target area. The historical prevalence before the intervention is estimated
at 35%, so bringing it down to 28% (a 20% reduction, resulting in a 7 percentage points
decrease) would be considered a full success. To evaluate the impact of the intervention,
two household surveys will be conducted before (T@) and after (T1) the implementation.
The surveys will have the same sample sizes, and it is desired that the study manages to
detect a possible reduction effect of 5 percentage points (thus somewhat xsmaller* than
the official target). In the target area, the proportion of children under age 5 in the
general population is estimated to be 15% and the average household size to be 5.6. The
latest household survey that estimated the prevalence of stunted children under age 5
reported a DEFF of 2.70, used a two-stage stratified cluster sampling design with 20
households per each sampled EA, and had a response rate of 92%. If the same sampling
design were adopted, how many households would be needed to achieve 80% power for the
detection of the sought-after minimum effect at significance level 5%?

e E E E EEE EEE R

n.comp2prop(P1 = .35, MDE = 0.05, sides = "one-tailed”, DEFF = 2.7, RR = 0.92,
F = 0.15, hhSize = 5.6, old.clus.size = 20, new.clus.size = 20)

# NOTE: The required sample size is 7880 households, 3940 at baseline (T@) and 3940 at
# endline (T1). The EAs to be visited are 3940 / 20 = 197 per round.

# What would be the implications of using a design with 15 households per EA, instead of
# 207?

n.comp2prop(P1 = .35, MDE = 0.05, sides = "one-tailed”, DEFF = 2.7, RR = 0.92,
F = 0.15, hhSize = 5.6, old.clus.size = 20, new.clus.size = 15)

NOTE: When going from 20 to 15 households per EA, the DEFF is expected to decrease from
2.70 to 2.25. As a result, the required sample size would become 6570 households,
3285 at baseline (T@) and 3285 at endline (T1). The EAs to be visited would become
3285 / 15 = 219 per round.
Therefore, the proposed design would save 655 (= 3940 - 3285) households per round,
but would require visiting 22 (= 219 - 197) additional EAs per round.

N

# Suppose that the available budget only allows to survey 5000 households, 2500 per round,
and that logistic constraints dictate to survey 15 households per EA. What would be the
# expected MDE of the study in that case, if a 80% power is desired?

H

mde.comp2prop(n= 5000, P1 = 0.35, sides = "one-tailed”, DEFF = 2.7, RR = 0.92,
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F = 0.15, hhSize = 5.6, old.clus.size = 20, new.clus.size = 15)

# NOTE: The MDE would be about 5.7 percentage points. This means that, if the assistance
# program actually results in the hoped-for 7 percentage points reduction, the study
will detect its effect as statistically significant with high probability (>= 80%).
However, should the program result in a smaller, yet not negligible, impact (e.g.
a reduction of 5 percentage points), the study will have less than 80% probability

#
#
#
# to detect it, because of the sample size constraint.

plot.gvf.fit Diagnostic Plots for Fitted GVF Models

Description

This function provides basic diagnostic plots for fitted GVF model(s).

Usage

## S3 method for class 'gvf.fit'
plot(x, which.more = 1:3, id.n = 3, labels.id = names(residuals(x)),
cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, Main = NULL, ...)

## S3 method for class 'gvf.fits'
plot(x, which.more = NULL, id.n = 3, labels.id = names(residuals(x)),
cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, Main = NULL, ...)

## S3 method for class 'gvf.fit.gr'
plot(x, which.more = 1:3, id.n = 3, labels.id = NULL,
cex.id = 0.75, label.pos = c(4, 2), cex.caption =1, ...)

## S3 method for class 'gvf.fits.gr'
plot(x, which.more = NULL, id.n = 3, labels.id = NULL,

cex.id = 0.75, label.pos = c(4, 2), cex.caption =1, ...)
Arguments

X An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).

which.more Select additional plots beyond the default one (‘Observed vs Fitted’). Can be
any subset of vector 1:6 with up to three elements.

id.n Number of points to be initially labelled in each plot, starting with the most
extreme.

labels.id Vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id Magnification of point labels.

label.pos Positioning of labels, for the left half and right half of the graph(s) respectively.

cex.caption Controls the size of caption.

Main Optional string to be added to automatic plot titles.

Other parameters to be passed through to plotting functions.
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Details

Diagnostic plots can be useful both for assessing the goodness of a GVF model fit qualitatively, and
for selecting the “best” GVF model among different alternatives.

This function can provide any of the following 7 plots:

(@) 'Observed vs Fitted'

(1) 'Residuals vs Fitted'

(2) 'Normal Q-Q'

(3) 'Scale-Location'

(4) 'Cook's distance'

(5) 'Residuals vs Leverage'

(6) 'Cook's distances vs Leverage/(1-Leverage)'

The ‘Residuals vs Fitted’ plot is special in that it will be always provided: this explains its zero-
th order in the list above. The rest of the list, namely plots 1:6, exactly matches the numbering
convention of function plot.1m.

Additional plots - beyond ‘Residuals vs Fitted’ - can be requested through argument which.more.
Any subset of 1:6 is allowed, provided its length does not exceed 3. Therefore, at most 4 plots
will be generated simultaneously.

Note that the default behaviour of this function do depend on whether input object x stores one or
more than one fitted GVF models. In the first case, plots @: 3 will be returned in a multiple plot with
a 2x2 layout. In the second case, only the default plot number @ will be returned, opening a new
graphics frame for each different GVF model.

Argument id.n specifies how many points have to be labelled, starting with the most extreme in
terms of residuals: this applies to all plots.

Argument Main is expected to be seldom (if ever) useful: its main purpose is programming consis-
tency at a deeper level.

All the other arguments have the same meaning as in function plot.1lm.

Author(s)

Diego Zardetto

References

See plot.1m and references therein.

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to
prepare the input for GVF model fitting, fit.gvf to fit GVF models, drop.gvf.points to drop
alleged outliers from a fitted GVF model and simultaneously refit it, and predictCV to predict CV
values via fitted GVF models.

Examples

# Load example data:
data(AF.gvf)

# Inspect available estimates and errors of counts:
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str(ee.AF)
# List available registered GVF models:

GVF.db

HHHHHHHH AR
# Diagnostic plots for fitted GVF model(s) #
HHH A A

## (A) Plots of a *singlex fitted GVF model #i#

# Fit example data to registered GVF model number one:

m <- fit.gvf(ee.AF, 1)

## Default call yields 4 plots:
plot(m)

# Play with argument 'which.more':

## which.more = NULL yields the "Observed vs Fitted” plot only:

plot(m, which.more = NULL)

## which.more = 1 adds the "Residuals vs Fitted” plot:

plot(m, which.more = 1)

## subsets of 1:6 with length <= 3 are allowed:
plot(m, which.more = c(1:2,4))

# Just for illustration, play with other parameters:

plot(m, id.n = 6, col = "blue", pch = 20)

## (B) Plots of *many* fitted GVF models #i#

# Fit example data to registered GVF models for frequencies (i.e. number 1:3):

mm <- fit.gvf(ee.AF, 1:3)

## Default call yields the "Observed vs Fitted” plot reported separately for

## each model in subsequent graphics frames:
plot(mm)

# Play with argument 'which.more':
## which.more = 1:3 yields subsequent 2x2 plots:
plot(mm, which.more = 1:3)

## again, subsets of 1:6 are allowed:
plot(mm, which.more = 1)

HHHHHHAEEERE AR AR
# Diagnostic plots for "grouped” fitted GVF model(s) #
WA

plot.gvf.fit

# We have at our disposal the following survey design object on household data:

exdes

# Use function svystat to prepare "grouped” estimates and errors of counts
# to be fitted separately (here groups are regions):
ee <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)

lapply(ee, head)
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## (C) Plots of a *singlex GVF model fitted to different groups ##
# Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee, 1)

## Default call yields 4 plots reported separately for each group
## in subsequent graphics frames:
plot(m.g)

## Play with argument 'which.more' to select different plots:
plot(m.g, which.more = c(1:2,4))

## (D) Plots of *many* GVF model fitted to different groups ##
# Fit all registered GVF models for frequencies separately inside groups:
mm.g <- fit.gvf(ee, 1:3)

## Default call yields the "Residuals vs Fitted” plot reported separately
## for each group in subsequent graphics frames:
plot(mm.g)

## Play with argument 'which.more' to add more plots:
plot(mm.g, which.more = 1:3, id.n = 6, col = "blue”, pch = 20)

PlotCI Visualize Domain Estimates and Confidence Intervals by Simple Plots
and Bar Charts

Description

These functions plot point estimates and confidence intervals by domains (subpopulations).

Usage

PlotCI(stat, level = 0.95, eb.len = 0.05, eb.col = "black”, eb.lwd = 1,
xlab = "Domain"”, ylab = "Estimate”, labels = NULL, ...)

BarPlotCI(stat, level = 0.95, eb.len = 0.05, eb.col = "black”, eb.lwd = 1,

xlab = "Domain”, ylab = "Estimate"”, names.arg = NULL, pch = "", ...)
Arguments
stat An object containing survey statistics.
level Confidence level for the confidence intervals to be plotted as error bars: the
default value is 0. 95.
eb.len Half length of the error bars cap (in inches). Defaults to 0. 05.
eb.col Color of the error bars. Defaults to 'black’.
eb.lwd Line width of the error bars. Defaults to 1.
xlab A label for the x axis. Defaults to 'Domain'.

ylab A label for the y axis. Defaults to 'Estimate’.
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labels Labels to be placed at the tick points (see axis for more details). Only relevant
for function P1otCI.

names.arg Vector of names to be plotted below each bar of the bar chart (see barplot for
more details). Only relevant for function BarPlotCI.

pch An optional plotting symbol to mark point estimates. By default no symbol is
plotted. Only relevant for function BarP1lotCI.

Other parameters to be passed through to basic plotting functions (plot for func-
tion P1otCI) and barplot for function BarP1otCI).

Details

Given a survey statistic object stat containing survey estimates and estimated sampling errors -
possibly by domains - these functions produce a simple plot (P1otCI) or a bar chart (BarP1lotCI)
depicting both point estimates and confidence intervals. Confidence intervals are depicted as error
bars (eb).

Argument stat can be any object which has been returned by calling a survey statistics function
(e.g. svystatTM, svystatR, svystats, svystatSR, svystatB, svystatQ, svystatL, svySigma,
and svySigma?2).

Author(s)

Diego Zardetto

See Also

The underlying workhorse functions plot and barplot.

Examples

HHHH
# PlotCI #
A

# Load household data:
data(data.examples)

# Create a design object:
des <- e.svydesign(data = example, ids = ~towcod + famcod,strata = ~SUPERSTRATUM,
weights = ~weight)

# Estimate average income by province:
M_income_procod <- svystatTM(des, ~income, ~procod, estimator = "Mean")

# Take a look:
M_income_procod

# Visualize estimates and confidence intervals:

PlotCI(M_income_procod, ylab = "Average Income”, xlab = "Province Code",
pch = 19, labels = levels(des$variables$procod),
main = "Average Income by Province")

# Estimate the total of variable yl1 by age classes:
T_yl_age5c <- svystatTM(des, ~y1, ~agebc)
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# Take a look:
T_y1_age5c

# Visualize estimates and confidence intervals. Since age class (the domain variable) is
# an ordered categorical variable, one may add a dashed tendency line:
PlotCI(T_y1_agebc, ylab = "Total y1", xlab = "Age Class”, pch = 19,

labels = levels(des$variables$age5c), main = "Total y1 by Age Class”,

ty = "o", 1ty = 2)

# Load sbs data:
data(sbs)

# Create a design object:
sbsdes <- e.svydesign(data = sbs, ids = ~id, strata = ~strata,
weights = ~weight, fpc = ~fpc)

# Estimate average value added per employee by region:
VA_per_employee_reg <- svystatR(sbsdes, num = ~va.imp2, den = ~emp.num, by = ~region)

# Take a look:
VA_per_employee_reg

# Compute population parameter from the business register (sbs.frame)
pop.par <- with(sbs.frame, tapply(va.imp2, region, sum) / tapply(emp.num, region, sum))

# Take a look:
pop.par

# Compare estimates and confidence intervals with population parameters:
PlotCI(VA_per_employee_reg, ylab = "Average Value Added per Employee”,
xlab = "Region”, pch = 19, labels = levels(sbsdes$variables$region),
main = "Average Value Added per Employee by Region”)
points(pop.par, pch = 19, col = "red")
legend("topleft”,

legend = c("Sample Estimate”, "Population Parameter"”),
col = c("black”, "red"),
pch = rep(19, 2),

text.col = "black”,
inset = c(0.05, 0.05)

# NOTE: This approach can be used to, e.g., compare uncalibrated estimates with the
corresponding population totals before the calibration step.

H

W
# BarPlotCI #
W

# Build a bar plot to visualize estimates and confidence intervals of average value added
# per employee by region (computed above):
BarPlotCI(VA_per_employee_reg, ylab = "Average Value Added per Employee”,

xlab = "Region”, pch = 19, col = adjustcolor(2:4, alpha.f = 0.3),

names.arg = levels(sbsdes$variables$region),

main = "Average Value Added per Employee by Region")
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# Estimate population count by 10 age classes:
Nind_agel@c <- svystatTM(des, ~agel@c)

# Take a look:
Nind_agel@c

# Visualize estimates and confidence intervals with a bar plot:
BarPlotCI(Nind_agel@0c, ylab = "Number of Individuals”, xlab = "Age Class”,
names.arg = levels(des$variables$agel@c), pch = 19,
col = "lightgoldenrodl”, eb.col = "blue”, border = "blue”,
main = "Population by Age Class")

pop.desc Natural Language Description of Known Totals Templates

Description

Provides a natural language description of a known totals data frame to be used for a calibration
task.

Usage
pop.desc(pop.totals, ...)

## S3 method for class 'pop.totals'
pop.desc(pop.totals, ...)

## S3 method for class 'spc.pop'

pop.desc(pop.totals, verbose = FALSE, ...)
Arguments
pop.totals An object of class pop. totals, be it a template or the actual known totals data

frame for the calibration task.
verbose Fully describe the control totals of a special purpose calibration task?

Parameters for future extensions (currently unused).

Details

Function pop. template generates a template (i.e. empty) data frame of class pop.totals, which
is appropriate to store the known totals of a given calibration task. Afterwards, the template data
frame must be filled with actual figures.

When the sampling frame of the survey is available and the actual population totals can be calcu-
lated from this source, function fill. template (i) automatically computes the totals of the aux-
iliary variables from the sampling frame, (ii) safely arranges and formats these values according
to the template structure. Therefore, function fill.template avoids any need for the user to
understand, comply with, or even be aware of, the structure of the template that is being filled.

On the contrary, when the population totals are available to the user as such, that is in the form
of already computed aggregated values (e.g. because they come from an external source, like a
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Population Census), it is up to the user to correctly fill the template, that is to put the right values in
the right slots of the prepared template.

Function pop . desc has been designed for users who cannot take advantage of function fill. template,
to help them understand the structure of the known totals template, in order to safely fill it with ac-
tual figures.

Invoking pop.desc will print on screen a detailed natural language description of the structure of
the input pop. totals object. Such description will clarify how known totals are organized inside
the template slots.

Value

The main purpose of the function is to print on screen, anyway it returns invisibly the input pop. totals
object (as print would do).

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop. template for the definition of the class pop.totals and
to build a template data frame for known population totals, fill.template to automatically fill the
template when a sampling frame is available.

Examples

## First prepare some design objects to work with:

# Load household data:

data(data.examples)

# Build a design object:

exdes<-e.svydesign(data=example,ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Load sbs data:

data(sbs)

# Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

## Now build some known totals templates that (after having been filled by
## actual figures) could be used to calibrate the design objects above,
## and explore the corresponding natural language description:

HHHHHEHE AR
## Some simple and small examples #i#
B s
expop<-pop.template(exdes,calmodel=~1)
expop
pop.desc(expop)

expop<-pop.template(exdes,calmodel=~sex)
expop

pop.desc(expop)

# equivalent to the one above



124

expop<-pop.template(exdes,calmodel=~sex-1)
expop
pop.desc(expop)

expop<-pop.template(exdes, calmodel=~x1+x2+x3,partition=~procod)
expop
pop.desc(expop)

expop<-pop.template(exdes,calmodel=~sex:marstat-1)
expop
pop.desc(expop)

# equivalent to the one above
expop<-pop.template(exdes,calmodel=~sex*marstat-1)
expop

pop.desc(expop)

# equivalent to the one above
expop<-pop.template(exdes,calmodel=~1,partition=~sex:marstat)
expop

pop.desc(expop)

expop<-pop.template(exdes,calmodel=~x1+age5c:marstat-1,partition=~regcod:sex)
expop
pop.desc(expop)

B

## Some more involved and bigger examples ##

HHHHHEHEE AR
expop<-pop.template(exdes,calmodel=~sex:agel@dc:regcod + sex:age5c:procod - 1)
expop
pop.desc(expop)

# equivalent to the one above (because procod is nested into regcod and

# agel@c is nested into age5c)

expop<-pop.template(exdes, calmodel=~agel@c+procod-1,
partition=~regcod:sex:age5c)

expop

pop.desc(expop)

# NOTE: Most of the entries of the template above will be structural zeros,

# as can be seen in what follows:
expop.HT<-aux.estimates(exdes, template=expop)
expop.HT

sum(expop.HT==0)

# Switch to sbs data
sbspop<-pop. template(sbsdes,
calmodel=~(emp.num + ent):(nace.macro + emp.cl) - 1, partition=~region)

# Can fill the template using the sampling frame...
sbspop<-fill.template(universe=sbs.frame,template=sbspop)
sbspop

# ...and invoke function pop.desc on the filled known totals data frame:
pop.desc(sbspop)

pop.desc
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sbspop <- pop.template(data=sbsdes,
calmodel=~((emp.num + ent):(nace2 + emp.cl:nace.macro))-1,
partition=~region:public)

sbspop

pop.desc(sbspop)

pop.fuse Fuse Control Totals Data Frames for Special Purpose and Ordinary
Calibration Tasks

Description
Allows to solve jointly a special purpose calibration task and an ordinary calibration task by fusing
their respective control totals.

Usage
pop.fuse(spc.pop, pop, design)

Arguments
spc.pop A control totals data frame prepared for a special purpose calibration task. Must
be of class spc. pop.
pop A known totals data frame for an ordinary calibration task. Must be of class
pop.totals.
design A design object prepared for a special purpose calibration task.
Details

ReGenesees 2.1 introduced support for ‘special purpose calibration’ tasks, i.e. facilities to cali-
brate survey weights so as to match complex, non-linear population parameters, instead of ordinary
population totals.

Currently, ReGenesees’ support for special purpose calibration tasks is limited to Multiple Regres-
sion Coefficients (see prep.calBeta and pop.calBeta), which includes calibration on Means as a
notable special case. Further support will likely be provided in future extensions.

Function pop. fuse allows you to run a calibration task that simultaneously involves as benchmarks:

* Complex population parameters (e.g. multiple regression coefficients).

* Ordinary population totals.

To achieve this goal, pop. fuse simply “fuses” the corresponding control totals data frames. The re-
sulting fused control totals data frame is indeed enough to automatically instruct function e. calibrate
to run the joint calibration task.

Argument spc. pop must be an object of class spc. pop, namely a control totals data frame prepared
for a special purpose calibration task (e.g. via function pop.calBeta for the case of calibration on
multiple regression coefficients).

Argument pop must be an object of class pop.totals, namely a known totals data frame for an
ordinary calibration task (e.g. generated using functions pop.template and fill. template).
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Argument design must be the survey design object that:
(i) was already prepared for the special purpose calibration task at hand, and
(ii) you want to calibrate simultaneously also on the ordinary population totals at hand.

Note that condition (i) requires that object design has actually been used to build object spc.pop
(see the ‘Examples’ section). Note, moreover, that condition (ii) requires that you eventually run
e.calibrate on object design (see the ‘Examples’ section).

Value

A fused data frame, with class spc.pop, encompassing control totals for both the special purpose
calibration task and the ordinary calibration task.

Note that printing this control totals data frame might not be very telling: to better understand its
structure you should instead leverage function pop.desc, for which a method dedicated to class
spc. pop is available.

Author(s)

Diego Zardetto

See Also

e.calibrate to calibrate weights, functions prep.calBeta and pop.calBeta to prepare survey
data and control totals for calibration on multiple regression coefficients, functions pop.template
and fill.template to generate and fill population totals templates for ordinary calibration tasks,
pop.desc to obtain a natural language description of control totals data frames.

Examples

# Function pop.fuse allows you to run a calibration task that simultaneously
# involves as benchmarks:

# (A) complex population parameters (e.g. multiple regression coefficients)
# (B) ordinary population totals

# You just have to:

## 1) prepare the survey desing and control totals data frame for (A)

## 2) create and fill the known totals data frame for (B)

## 3) fuse the control totals data frames produced in steps 1) and 2)!

# Load sbs data:

data(sbs)
# Create a design object:
sbsdes <- e.svydesign(data = sbs, ids = ~id, strata = ~strata,

weights = ~weight, fpc = ~fpc)

# (A) Suppose you know with satisfactory accuracy from some external source
# the regression coefficients of the following model:
model <- va.imp2 ~ emp.num + emp.cl

# Here, use the sbs sampling frame available in ReGenesees to simulate the
# external source and compute the values of the regression coefficients:
Beta <- coef(lm(model, data = sbs.frame))

Beta

## 1) Prepare the survey design and control totals for calibration (A):
sbsdes.A <- prep.calBeta(sbsdes, model, Beta)
pop.A <- pop.calBeta(sbsdes.A)
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# (B) Suppose you know the number of enterprises and employees by economic
# activity macro sectors

## 2) Create and fill the known totals data frame for calibration (B)

pop.B <- pop.template(sbsdes.A, calmodel = ~(ent + emp.num):nace.macro - 1)
# Note that, to create the template above, you could have used equally well
# the original object sbsdes.

pop.B <- fill.template(pop.B, universe = sbs.frame)

## 3) Lastly, fuse the control totals data frames produced in steps 1) and 2)
pop.AB <- pop.fuse(pop.A, pop.B, sbsdes.A)

# Note that, to create the fused control totals data frame above, you *MUST USEx

# the *PREPARED* design object sbsdes.A

# Have a look:

pop.desc(pop.AB)

# ...and recall you can set verbose = TRUE to see the full structure
# pop.desc(pop.AB, verbose = TRUE)

# Now you are ready to calibrate simultaneously on (A) and (B)

sbscal.AB <- e.calibrate(sbsdes.A, pop.AB)

# Note again that, to run the calibration on the *fusedx control totals, you
# *MUST USE* the *PREPARED* design object sbsdes.A

# Now, check that all the benchmarks are indeed matched:
# (A) Multiple regression cofficients:
svystatB(sbscal.AB, model)

Beta

# (B) Ordinary population totals:
svystatTM(sbscal.AB, ~ent + emp.num, ~nace.macro)
pop.B

# OK
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pop.plot Plot Calibration Control Totals vs Current Estimates

Description

Draw a scatter plot of calibration control totals vs current estimates.
Usage
pop.plot(pop.totals, ...)

## S3 method for class 'pop.totals'
pop.plot(pop.totals, design,

xlab = "Current Estimates”,

ylab = "Calibration Control Totals",
lcol = c("red”, "green", "blue"),
Iwd = c(1, 1, 1),

Ity = c(2, 1, 2),

verbose = TRUE, ...)
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## S3 method for class 'spc.pop'

pop.plot(pop.totals, design,
xlab = "Current Estimates”,
ylab = "Calibration Control Totals”,
lcol = c("red”, "green", "blue"),
lwd = c(1, 1, 1),
1ty = c(2, 1, 2),

verbose = TRUE, ...)
Arguments
pop.totals A known totals data frame for a calibration task. Must be of class pop.totals
(for ordinary calibration tasks) or spc. pop (for special purpose calibration tasks).
design A design object to compute estimates of the calibration control totals. Must be
of class of class analytic (or inheriting from it).
xlab A suggested label for the x axis. See also plot.
ylab A suggested label for the y axis. See also plot.
lcol Colors of reference lines, see ‘Details’. See also par.
1wd Width of reference lines, see ‘Details’. See also par.
1ty Type of reference lines, see ‘Details’. See also par.
verbose Print on screen minimum and maximum slopes?
Other parameters to be passed through to plotting functions.
Details

Function pop.plot draws a scatter plot of calibration control totals vs current estimates derived
from object design. This plot is sometimes very telling and may provide a first-level, rough as-
sessment of how hard the calibration problem at hand will turn out to be in terms of constrained
optimization.

A trivial calibration problem would correspond to points lying exactly on the y = x bisector line.
A moderate spread around the bisector line without evident and anomalous patterns is usually a
sign of a well behaved calibration task. Larger spreads signal increasing calibration complexity.
The maximum and minimum slopes of lines connecting the origin to the points in the scatter plot
provide often a reasonable clue about the minimum possible range for the calibration bounds [L,
U], see bounds.hint. Evident and anomalous patterns emerging from the scatter plot not only gen-
erally imply harder calibration tasks, but can even reveal signs of underlying biases in the auxiliary
variables. For instance, an extremely imbalanced pattern, with the overwhelming majority of points
lying below (or above) the y = x line would be a striking symptom of upward (or downward) bias
of the current estimates with respect to the true population totals.

In addition to the scatter plot of calibration control totals vs current estimates, function pop.plot
draws three useful reference lines: (1) the maximum slope line connecting the origin to the points,
(2) the y = x bisector line, and (3) the minimum slope line connecting the origin to the points.

If verbose = TRUE, the minimum and maximum slopes get printed on screen.

When the calibration control totals in pop.totals span different orders of magnitude (as it often
happens in enterprise surveys) it is beneficial to look at the plot in logarithmic scale, which can be
achieved by setting log = "xy" via argument . . ..

If pop. totals is of class spc. pop, i.e. it stores known totals for a special purpose calibration tasks,
which are all zero (see prep.calBeta), then just one reference vertical line at x = @ is added to the
scatter plot.
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If pop.totals is of class spc. pop but it is a fused data frame, encompassing simultaneous control
totals for a special purpose calibration task and an ordinary calibration task (see pop.fuse), than
two separate scatter plots are drawn.

Note that you can also pass to argument design the calibrated object obtained using pop. totals as
known totals data frame: if calibration perfectly converged, points will lie on the y = x bisector line,
otherwise the spread around the bisector line will provide a visual assessment of how significantly
the calibration task failed.

Value

The main purpose of the function is to draw a plot, anyway it returns invisibly the minimum and
maximum slopes whenever it is meaningful to do so (thus excluding non-fused special purpose
calibration task).

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop. template for the definition of the class pop. totals and
to build a template data frame for known population totals, fill. template to automatically fill the
template when a sampling frame is available, pop.desc to obtain a natural language description of
control totals data frames.

Examples

## First prepare some design objects to work with:
# Load household data:
data(data.examples)

# Build a design object:
exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Now suppose the known population totals for the calibration task
# are stored in object pop@7p:

class(pop@7p)

dim(pop@7p)

# These totals refer to the

# 1) Joint distribution of sex and agel@c (age in 10 classes)
# at the region level;

# 2) Joint distribution of sex and age5c (age in 5 classes)
# at the province level;

H

For a natural language description, run:
pop.desc(pop@7p)

H+

## Here is the totals vs estimates scatter plot:
pop.plot(pop@7p, exdes, pch = 20)

# ...or with a log-log scale:
pop.plot(pop@7p, exdes, pch = 20, log =

n

xy")
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# Now calibrate (e.g. with the unbounded linear function):
excal@7p <- e.calibrate(exdes, pop@7p)

# As calibration converged...
check.cal(excal@7p)

# ...the points now lie on the y = x bisector:
pop.plot(pop@7p, excald7p, pch = 20)

## You are encouraged to try the function on control totals for special
## purpose calibration tasks (both simple and fused, see ?prep.calBeta,
## ?pop.calBeta, and ?pop.fuse). It might be interesting.

pop.template Template Data Frame for Known Population Totals

Description

Constructs a “femplate” data frame to store known population totals for a calibration problem.

Usage
pop.template(data, calmodel, partition = FALSE)

Arguments
data Data frame of survey data (or an object inheriting from class analytic).
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model. FALSE (the default) implies no calibration domains.
Details

This function creates an object of class pop.totals. A pop.totals object is made up by the union
of a data frame (whose structure conforms to the standard required by e.calibrate for the known
totals) and the metadata describing the calibration problem.

The mandatory argument data must identify the survey data frame on which the calibration problem
is defined (or, as an alternative, an analytic object built upon that data frame). Should empty levels
be present in any factor variable belonging to data, they would be dropped.

The mandatory argument calmodel symbolically defines the calibration model you intend to use: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA). Note that, if the partition
formula involves two or more factors, their crossed levels will be ordered according to operator :
(that is, those from the rightmost variable will vary fastest).
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Value

An object of class pop. totals. The data frame it contains is a “template” in the sense that all the
known totals it must be able to store are missing (NA). However, this data frame has a structure that
complies with the standard required by e.calibrate (provided the latter is invoked with the same
calmodel and partition values used to create the template).

The operation of filling the template’s NAs with the actual values of the corresponding population
totals has, obviously, to be done by the user. If the user has access to a “sampling frame” (that is
a data frame containing the complete list of the units belonging to the target population along with
the corresponding values of the auxiliary variables), then he can exploit function fill. template
to automatically fill the template.

The pop.totals class is a specialization of the data.frame class; this means that an object built
by pop. template inherits from the data. frame class and you can use on it every method defined
on that class.

Author(s)

Diego Zardetto

References

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.

See Also

e.calibrate for calibrating weights, population.check to check that the known totals data frame
satisfies the standard required by e.calibrate, pop.desc to provide a natural language description
of the template structure, and fill. template to automatically fill the template when a sampling
frame is available.

Examples

# Creation of population totals template data frames for different
# calibration problems (if the calibration models can be factorized
# both a global and a partitioned solution are given):
data(data.examples)

# 1) Calibration on the total number of units in the population:

pop.template(data=example,calmodel=~1)

# 2) Calibration on the total number of units in the population

# and on the marginal distribution of marstat (notice that the
# total for the first level "married” of the marstat factor

# variable is missing because it can be deduced from

# the remaining totals):

pop.template(data=example,calmodel=~marstat)

# 3) Calibration on the marginal distribution of marstat (you
# must explicitly remove the intercept term in the
# calibration model adding -1 to the calmodel formula):
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pop.template(data=example,calmodel=~marstat-1)

# 4) Calibration (global solution) on the joint distribution of sex
# and marstat:
pop.template(data=example,calmodel=~sex:marstat-1)

# 4.1) Calibration (partitioned solution) on the joint distribution
# of sex and marstat:

# 4.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~marstat-1,partition=~sex)

# 4.1.2) Using marstat to define calibration domains:
pop.template(data=example, calmodel=~sex-1,partition=~marstat)

# 4.1.3) Using sex and marstat to define calibration domains:
pop.template(data=example,calmodel=~1,partition=~sex:marstat)

# 5) Calibration (global solution) on the total for the quantitative

# variable x1 and on the marginal distribution of the qualitative
# variable age5c, in the subpopulations defined by crossing sex
# and marstat:

pop.template(data=example,calmodel=~(age5c+x1-1):sex:marstat)

# 5.1) The same problem with partitioned solutions:
# 5.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):marstat,partition=~sex)

# 5.1.2) Using marstat to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):sex,partition=~marstat)

# 5.1.3) Using sex and marstat to define calibration domains:
pop.template(data=example,calmodel=~age5c+x1-1,partition=~sex:marstat)

population.check Compliance Test for Known Totals Data Frames

Description
Checks whether a known population totals data frame conforms to the standard required by e.calibrate
for a specific calibration problem.

Usage
population.check(df.population, data, calmodel, partition = FALSE)

Arguments

df .population Data frame of known population totals.

data Data frame of survey data (or an object inheriting from class analytic).
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the

model. FALSE (the default) implies no calibration domains.
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Details

The behaviour of this function depends on the outcome of the test. If df.population is found to
conform to the standard, the function first converts it into an object of class pop.totals and then
invisibly returns it. Failing this, the function stops and prints an error message: the meaning of the
message should help the user diagnose the cause of the problem.

The mandatory argument df . population identifies the known totals data frame for which compli-
ance with the standard is to be checked.

The mandatory argument data identifies the survey data frame on which the calibration problem is
defined (or, as an alternative, an analytic object built upon that data frame).

The mandatory argument calmodel symbolically defines the calibration model you intend to use: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA). Note that, if the partition
formula involves two or more factors, their crossed levels will be ordered according to operator :
(that is, those from the rightmost variable will vary fastest).

Value

An invisible object of class pop. totals. The pop.totals class is a specialization of the data. frame
class; this means that an object built by pop. template inherits from the data. frame class and you
can use on it every method defined on that class.

Note

The population.check function can be used to convert a known totals data frame that conforms
to the standard required by e.calibrate into an object of class pop.totals. The usefulness of
this conversion lies in the fact that, once you have known totals with this "certified format", you can
invoke e.calibrate without specifying the values for the calmodel and partition arguments
(this means that the function is able to extract them directly from the attributes of the pop. totals
object).

Author(s)

Diego Zardetto

References

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.
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See Also

e.calibrate for calibrating weights, pop. template for the definition of the class pop.totals and
to build a "template" data frame for known population totals, fill. template to automatically fill
the template when a sampling frame is available.

Examples

data(data.examples)

# Suppose you have to calibrate the example survey data frame

# on the totals of x1 by sex and you want the partitioned solution.

# Start creating a design object:

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Then build a template data frame for the known totals:
pop<-pop. template(data=example,calmodel=~x1-1,partition=~sex)
pop

class(pop)

# Now fill NAs with the actual values for the population
# totals (suppose 123 for sex="f" and 456 for sex="m"):
popl, "x1"]<-c(123,456)

pop

class(pop)

# Finally check if pop complies with the e.calibrate standard:
population.check(df.population=pop,data=example,calmodel=~x1-1,
partition=~sex)

# If, despite keeping the content unchanged, we altered the
# structure of the data frame (for example, by changing the
# order of its rows)...

pop.mod<-pop ; pop.mod[1,]<-pop[2,] ; pop.mod[2,]<-pop[1,]
pop

pop . mod

# ...we would obtain an error:

## Not run:

population.check(df.population=pop.mod,data=example,calmodel=~x1-1,
partition=~sex)

## End(Not run)

# Remember that, if the known totals have been converted

# into the pop.totals "format” by means of population.check,
# it is possible to invoke e.calibrate without specifying

# calmodel and partition:

class(pop@4p)

popQ4p

descal@4p<-e.calibrate(design=des,df.population=pop@4p,
calfun="logit",bounds=bounds, aggregate.stage=2)
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# ...this option is not allowed if the known totals
# are not of class 'pop.totals' even if they conform to the
# standard:

pop@4p.mod<-data.frame(popd4p)

class(pop@4p.mod)

pop@4p .mod

## Not run:

e.calibrate(design=des,df.population=pop@4p.mod,calfun="logit",
bounds=bounds, aggregate.stage=2)

## End(Not run)

predictCV Predict CV Values via Fitted GVF Models

Description

This function predicts the CV values associated to given estimates, based on fitted GVF model(s).

Usage

predictCV(object, new.Y = NULL, scale = NULL, df = Inf,
interval = c("none”, "confidence”, "prediction”), level = 0.95,
na.action = na.pass, pred.var = NULL, weights = 1)

Arguments

object An object containing one or more fitted GVF models.

new.Y A data frame storing new estimates whose CVs have to be predicted. If omitted
or NULL, CVs arising from the fitted GVF model(s) will be returned.

scale Scale parameter for standard error calculation. See also predict.1m.

df Degrees of freedom for scale. See also predict.1m.

interval Type of interval calculation. Can be abbreviated. See also predict.1m.

level Confidence (or tolerance) level for intervals. See also predict. 1m.

na.action Function determining what should be done with missing values in new.Y. The
default is to predict NA. See also predict.1lm.

pred.var The variance(s) for future observations to be assumed for prediction intervals.
See also predict.1m.

weights Variance weights for prediction. This can be a numeric vector or a one-sided

model formula. In the latter case, it is interpreted as an expression evaluated in
new.Y. See also predict.1m.
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Details

The main motivation for building and fitting a GVF model is to exploit the fitted model to predict
the sampling error associated to a given estimate, instead of having to compute directly an estimate
of such sampling error. Function predictCV is relevant to that scope.

Despite different GVF models can specify as response term (call it 'resp") different functions of
variables 'SE', 'CV', and 'VAR' (see e.g. [Wolter 07]), function predictCV adopts variable 'CV'
as a universal pivot. This means that predictCV can handle only fitted GVF models which are
registered (that is already stored inside GVF.db), and for which variable Resp.to.CV is not NA.
Indeed, it is variable Resp.to.CV of data frame GVF.db which tells predictCV how to transform
the response of an arbitrary GVF model (' resp') into the pivot measure of variability ('CV").

By default new.Y = NULL and CVs (and intervals, if any) obtained by transforming fitted response
values will be returned. If passed, argument new.Y must be a data frame storing new estimates
for which CVs have to be predicted. Such input estimates have to be stored in column Y of data
frame new.Y. Moreover, if object stores GVF model(s) fitted to grouped data (namely, it has class
gvf.fit.gr or gvf.fits.gr), then new.Y should also have columns identifying the groups to
which input estimates are referred (see ‘Examples’). The only exception is the following: if the
new.Y data frame has just the Y column, then CVs will be predicted for all groups (see ‘Examples’).
The function will check for consistency between groups available in object and in new.Y (see
‘Examples’).

If interval = "none"” (the default), the function will return predicted CVs only. Otherwise, lower
and upper bounds of confidence (or prediction) intervals around predicted CVs will be also pro-
vided. Use argument level to specify the desired confidence (or tolerance) level for those intervals.

All the other arguments have the same meaning as in function predict. 1m.

Value

If object is a single GVF model (classes gvf.fit and gvf.fit.gr), a data frame.

If object is a set of GVF models fitted to the same data (classes gvf.fits and gvf.fits.gr), a
list of data frames, one for each input GVF model.

The output data frame(s) will store input estimates new. Y plus additional columns:

CV.fit Predicted CV value, numeric.
CV.1lwr Lower bound of requested interval (if any), numeric.

CV.upr Upper bound of requested interval (if any), numeric.

Of course, lower and upper bounds for CVs will be reported only when interval != "none”.

Note

Please read the ‘Note’ section of predict.1m.

Author(s)

Diego Zardetto

References

Wolter, K.M. (2007) “Introduction to Variance Estimation”, Second Edition, Springer-Verlag, New
York.
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See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf. input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, and drop.gvf.points to drop alleged outliers from a fitted GVF
model and simultaneously refit it.

Examples

HHHHHHAEHE AR
# Simple examples to illustrate the syntax #
B
# Load example data:

data(AF.gvf)

# Inspect available estimates and errors of counts:
head(ee.AF)
summary (ee.AF)

# List available registered GVF models:
GVF.db

## (A) A xsinglex fitted GVF model ##
# Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

# Not passing 'new.Y' yield CVs from fitted response values:
p <- predictCV(m)

# Take a look:
head(p)
with(p, plot(CV, CV.fit, col = "blue"”, pch = 20))

# Now let's predict CV values for new estimates of counts

# e.g. Y = c(1000, 5000, 10000, 50000, 100000)

# First, put these values into a data frame:

new.Y <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000))
new.Y

# Then, compute predicted values and confidence intervals:
p <- predictCV(m, new.Y, interval = "confidence")
p

# NOTE: Should we ever need it, we could also use function predict
# to predict *responsex values instead of CVs:
predict(m, new.Y, interval = "confidence")

## (B) A *a setx of GVF models fitted to the same data ##
# Fit example data to registered GVF models for frequencies (i.e. number 1:3):
mm <- fit.gvf(ee.AF, 1:3)

# Let's predict CV values for the same new estimates of counts used above,
# i.e. Y = c(1000, 5000, 10000, 50000, 100000).

# Separate predictions will be obtained from the three fitted GVF models
pp <- predictCV(mm, new.Y, interval = "confidence")
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pp

# NOTE: The WARNING above arises from the third fitted GVF model and explains

# the appearance of NaN at the lower bound of the CV confidence interval
# for input Y = 100000. Indeed, the response of the third model is the
# squared CV (which ought to be *positivex), but the prediction for the
# lower endpoint of the confidence interval happens to be *negativex:
predict(mm, new.Y, interval = "confidence")

## (C) a *single* GVF model fitted to *grouped* data ##
# We have at our disposal the following survey design object on household data:
exdes

# Use function svystat to prepare *groupedx estimates and errors of counts
# to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)

# Inspect these grouped estimates and errors of counts:
lapply(ee.g, head)
lapply(ee.g, summary)

# Fit registered GVF model number one, separately inside regions '6', '7',
and '10"':
.g <- fit.gvf(ee.g, 1)

3 #

# Suppose we want to predict CV values for the same new estimates of counts used
# above, i.e. Y = c(1000, 5000, 10000, 50000, 100000).

# Obviously, we need tell to what groups (i.e. regions) should these Y values

# be referred. Therefore, input data frame new.Y should have columns identifying
# the groups (i.e. regions).

# Case 1: all known regions (i.e. regions '6', '7', and '10')

# Here we can exploit the exception described in section 'Details' and

# avoid building group variables explicitly:

# Predict:

p.g <- predictCvV(m.g, new.Y, interval = "confidence")

p.g

# Case 2: a subset of known regions (e.g. region '7' only)

# Here we must build group variables explicitly:

new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),
regcod = 7)

new.Y.g

# Predict:

p.g <- predictCV(m.g, new.Y.g, interval = "confidence")
p.g

# Case 3: a subset of known regions (e.g. region '7') *plus* some *unknownx
# region (e.g. region '11').
# Unknown groups will be tacitly *discarded=:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),
regcod = rep(c(7, 11), each = 5))
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new.Y.g

# Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")
p.g

# Case 4: only *unknown* regions (e.g. regions '11' and '12).

# This will raise an *errorx*:

new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),
regcod = rep(c(11, 12), each = 5))

new.Y.g

## Not run:
# Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")

## End(Not run)

# Case 5: *unknown* group variables (e.g. 'region' instead of 'regcod').
# This will raise an *errorx:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),
region = rep(c(11, 12), each = 5))
new.Y.g

## Not run:
# Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")

## End(Not run)

## (D) a *set ofx GVF models fitted to *grouped* data ##

# Fit all registered GVF models for frequencies (i.e. number 1:3) separately
# inside groups:

mm.g <- fit.gvf(ee.g, 1:3)

# Predict CV values for the same new estimates of counts used above,

# i.e. Y = c(1000, 5000, 10000, 50000, 100000), for all the regions:

# Again, here we can exploit the exception described in section 'Details’
# and avoid building group variables explicitly:

# Predict:
pp.g <- predictCV(mm.g, new.Y)
pp.g

# NOTE: The WARNING above explains the appearance of NaN for some predicted
# CV values stemming from the third GVF model. The reason causing this
# behaviour is exactly the same as discussed in previous example (B).

B S S s s s
# Estimating CVs: Prediction vs Direct Calculation #
IR
# Load example data:



140 prep.calBeta

data(AF.gvf)

# Fit available registered GVF models for frequencies:
mm <- fit.gvf(ee.AF, model=1:3)

# Get the best fitted model:
mbest <- getBest(mm, criterion="adj.R2")

mbest
# Note: adjusted R*2 used as a 'quick and dirty' criterion, as a thorough model
# comparison via diagnostic plots would have given the same result.

# Compute directly the estimates and errors of a set of absolute frequencies
# which did not belong to the previously fitted data ee.AF, e.g. the joint

# distribution of marstat and regcod:

marstat.regcod <- svystatTM(exdes, ~I(marstat:regcod))

marstat.regcod

# Predict CVs of the joint distribution of marstat and regcod
# by means of the selected GVF model:
# First, prepare data with which to predict:
newdata <- gvf.input(exdes, marstat.regcod)
# Then, compute CV predictions:
p.marstat.regcod <- predictCV(mbest, new.Y = newdata, interval="prediction")

# Inspect the results:
p.marstat.regcod

# Plot of computed and predicted CVs with prediction error bars:
# plot starts #
plot(p.marstat.regcod$Y, p.marstat.regcod$CV.fit, pch=19, col="red”,
ylim=range(p.marstat.regcod$CV.lwr, p.marstat.regcod$CV.upr, p.marstat.regcod$CV),
xlab="Absolute Frequency Estimate”, ylab="Coefficient of Variation”,
main="Estimated and GVF Predicted CVs\n(joint distribution of marstat and regcod)")
segments(x@=p.marstat.regcod$Y, y0=p.marstat.regcod$CV.lwr, yl=p.marstat.regcod$CV.upr,
col="red")
points(p.marstat.regcod$Y, p.marstat.regcod$CV, pch=0)
legend("topright”, title="CV Estimation Method”,
legend=c("Direct Estimate”, "GVF Predicted Value”, "GVF Prediction Interval”),
pch=c(0,19,124), col=c("black”, "red”, "red"), inset=rep(0.05, 2))
# plot ends #

prep.calBeta Calibration on Multiple Regression Coefficients

Description

Prepare survey data and control totals to run a calibration task on multiple regression coefficients.

Usage

prep.calBeta(design, model, Beta,
by = NULL, partition = FALSE, drop.z = TRUE)

pop.calBeta(design)
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Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata. For function pop.calBeta, a prepared design object as
returned by function prep.calBeta.
model Formula (or list of formulas) specifying the linear model(s) whose regression
coefficients will be used as calibration benchmarks (see ‘Details’).
Beta Numeric vector (or list of numeric vectors) of regression coefficients to be used
as calibration benchmarks (see ‘Details’).
by If regression coefficients are known at domain level (i.e. within subpopulations),
a formula specifying the domains (see ‘Details’). Specify NULL (the default
option) if the regression coefficients are known at the overall population level.
partition In case domains have been specified through argument by, should a partitioned
calibration task be performed? The default is FALSE, which selects a global
calibration task.
drop.z Can the prepared calibration variables (see ‘Details’) be dropped upon com-
pletion of the calibration task? Specify TRUE (the default) if you want to save
memory space.
Details

Special Purpose Calibration tasks
ReGenesees 2.1 introduced support for ‘special purpose calibration’ tasks, i.e. facilities to calibrate
survey weights so as to match complex population parameters, instead of ordinary population totals.

When calibration benchmarks come in the form of population parameters that are complex, non-
linear functions of auxiliary variables (like, in the present case, multiple regression coefficients),
calibration constraints have to be linearized first. This generates synthetic linearized variables
z, which are the actual calibration variables the calibration algorithm will eventually work on.
Typically, control totals for these synthetic linearized variables z will all be zero. See, e.g. [Lesage,
2011].

Put briefly:
 Function prep.calBeta generates and binds to design the synthetic linearized variables 7
needed for the calibration task.
* Then, given the prepared design object returned by prep.calBeta, function pop.calBeta

generates the control totals data frame for those z variables.

Of course, once prepared, survey data and control totals returned by the above functions will be fed
in input to function e.calibrate, which will run the calibration task.

Function prep.calBeta()
Function prep.calBeta makes it possible to:

1. Calibrate on regression coefficients of different linear models, each known at the overall pop-
ulation level.
2. Calibrate on regression coefficients of a single linear model, known possibly for different

subpopulations.

Note that, as detailed below, the key argument to switch from case 1. to case 2. is by. For extensive
illustration of both the above cases 1. and 2., please see the ‘Examples’ section.
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The mandatory argument model specifies the linear model(s) whose regression coefficients will be
used as calibration benchmarks. Use a formula object to specify a single linear model, or a 1list
of formula objects to specify several different linear models. For details on model specification,
see e.g. 1m.

The design variables referenced by model formula(s) must be numeric or factor and must not
contain any missing value (NA).

The mandatory argument Beta specifies the vector(s) of regression coefficients that will be used as
calibration benchmarks. Use a numeric vector to specify regression coefficients of a single linear
model, or a 1ist of numeric vectors to specify regression coefficients of several different linear
models. The Beta vector(s) must not contain any missing value (NA).

If argument model is passed as a list, argument Beta must be passed as a list too, and the length
of both must be the same. If this is the case, Beta vectors will be positionally tied to linear model
formulas contained in model.

Each vector of regression coefficients specified through Beta must be consistent with the corre-
sponding model, namely match its model matrix columns (as generated using actual design data).
Function prep.calBeta will check for this consistency and raise an informative error message in
case of failure.

Note that, in order to ensure consistency with model, not only the length, but also the order of Beta
elements matters. If in doubt, you can easily learn about the right ordering of Beta coefficients,
given model, by calling function svystatB as follows: svystatB(design, model). This will, of
course, return the estimated regression coefficients of model before calibration.

Note that each Beta vector can have names or not. If a Beta vector has names that match the ex-
pected ones (given the corresponding model formula), but appear in a different order, then function
prep.calBeta will suitably re-order them and inform you with a warning message.

As anticipated, argument by can be used to enable calibration on regression coefficients known at
domain level (i.e. within subpopulations).

If passed, by must be a formula: for example, the statement by=~B1:B2 defines as domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2. The
design variables referenced by by (if any) should be of type factor, otherwise they will be coerced.
Note that, to prevent obvious collinearity issues, the variables referenced by argument by must not
appear in the input model formula: otherwise, the program will stop and print an error message.

If you specify domains through argument by, you will be allowed to specify just a single linear
model through argument model. Instead, through argument Beta, you will have to specify domain-
level vectors of regression coefficients. Therefore, Beta will be necessarily passed as a listz. Note
that, in this case, the Beta list must have as many components as the domains defined through
argument by, and the two will be matched positionally by function prep.calBeta. Therefore, the
order of elements in the Beta list matters. Specifically, Beta vectors must appear in the same
order as the domains specified by argument by. You can easily learn about the right ordering of by
domains (and hence Beta elements) by calling function svystatB as follows: svystatB(design,
model, by). This will, of course, return the estimated regression coefficients of model within by
domains before calibration.

Lastly, if you specify domains through argument by, you will be allowed to decide whether design
should be prepared for a global or a partitioned calibration task (see e.calibrate). Recall that
partitioned calibration tasks are computationally more efficient, but produce exactly the same re-
sults. Note that, if you select partition = TRUE, than the calibration domains used to split the
global calibration task will be the same domains specified via argument by. More explicitly: func-
tion e.calibrate will eventually be called on prep.calBeta’s output object silently assuming
partition = by.

The synthetic linearized variables z prepared by prep.calBeta will eventually be used by function
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e.calibrate to solve the calibration task. Argument drop.z allows you to instruct e.calibrate
to drop these variables from its output object - or rather keep them within it - upon completion of the
calibration task. The default has been set to TRUE to reduce memory usage. In case you want to be
able to consistently trim weights after calibration via function trimcal, you must specify drop.z =
FALSE.

Function pop.calBeta()

Given the prepared design object returned by prep. calBeta, function pop.calBeta generates the
control totals data frame needed to run the calibration task. This dataframe suitably accomodates
the control totals of the synthetic linearized variables z prepared by prep.calBeta.

Note that the data frame object returned by pop.calBeta is already filled, with control totals that
are all zero, and it is ready to be directly passed to function e.calibrate (see the ‘Examples’
section).

Note, lastly, that printing this control totals data frame might not be very telling: to better under-
stand its structure you should instead leverage function pop . desc, for which a method dedicated to
‘special purpose calibration’ tasks is available (see the ‘Examples’ section).

Value

* For function pop.calBeta, an object of the same class as design, storing the freshly cre-
ated synthetic linearized variables z as columns of its $variables slot (see the ‘Examples’
section).

 For function pop. calBeta, a control totals data frame for those z variables, with class spc. pop
(see the ‘Examples’ section).

Linear Algebra Remark

Contrary to ordinary calibration tasks, the control totals of a ‘special purpose calibration’ task are
typically all zero. Therefore, calibration constraints of such tasks - unlike ordinary ones - define
a system of linear equations that is homogeneous. Homogeneous systems always admit the trivial
zero solution, which, in calibration terms, would mean output weights that are identically zero (and
thus statistically unacceptable). For this reason, the possibility that function e.calibrate ends up
with a false convergence of the special purpose calibration task cannot, in general, be ruled out.
Note that functions e.calibrate and check.cal are able to detect such false convergence events
and warn the user about it.

A satisfactory countermeasure to this issue is to set calibration bounds to any interval that does not
include zero (see argument bounds of e.calibrate).

A second, very attractive alternative would be to run the special purpose calibration task jointly
with some ordinary calibration task, as the joint calibration constraints would then define a non-
homogeneous system. This solution can be obtained straightforwardly using function pop. fuse.

Author(s)

Diego Zardetto

References

Lesage, E. (2011). “The use of estimating equations to perform a calibration on complex parame-
ters”. Survey Methodology. 37.
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See Also

e.calibrate to calibrate weights, svystatB to compute estimates and sampling errors of Multiple
Regression Coefficients, pop.desc to obtain a natural language description of control totals (in-
cluding those for special purpose calibration tasks), pop.fuse to fuse population totals prepared
for ordinary and special purpose calibration tasks.

Examples

# Load sbs data:

data(sbs)
# Create a design object:
sbsdes <- e.svydesign(data = sbs, ids = ~id, strata = ~strata,

weights = ~weight, fpc = ~fpc)

HHHHHARHE A A R
# Calibrate on the regression coefficients of a *single model* known at the #
# xoverall population levelx #
HHH A AR AR A A
# Suppose you know the coefficients of the following linear model, which you
# obtained fitting the model on some external source (e.g. Census or register
# data):

model® <- y ~ emp.num*emp.cl

# Here, use the sbs sampling frame available in ReGenesees to simulate the
# external source and compute the values of the regression coefficients:
B0 <- coef(lm(modeld, data = sbs.frame))

B0

# Now, prepare the survey design for calibration:
sbsdes@ <- prep.calBeta(design = sbsdes, model = modeld, Beta = B0)

# Have a look at the freshly created xsyntheticx auxiliary variables:
head(sbsdes@$variables)

# Then, prepare the control totals dataframe for the calibration task:
pop@ <- pop.calBeta(sbsdes®)

# Have a look...

class(popd)

pop.desc(pop®d)

# ...and note that all the control totals are zero!
pop@

# Lastly, calibrate:
sbscal® <- e.calibrate(sbsdes@, pop®)

# Check that calibration estimates of regression coefficients now match the
# input B@ values derived from the external source:

svystatB(sbscal@, model®)

Bo

# OK

HHHEHHHEEEEE AR AR AR
# Calibrate simultaneously on the regression coefficients of *different #
# models* known at the *overall population levelx #
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HEHHHHHHEHEHHH AR AR AR

# Suppose you know the coefficients of the following linear models, which you
# obtained fitting the models on some external sources

modell <- va.imp2 ~ emp.num:emp.cl + nace.macro - 1

model2 <- y ~ dom3 - 1

# Here, use the sbs sampling frame available in ReGenesees to simulate the
# external sources and compute the values of the regression coefficients:
B1 <- coef(lm(modell, data = sbs.frame))

B2 <- coef(lm(model2, data = sbs.frame))

## First, just for illustration, calibrate only on B1 regression coefficients:
sbsdes1 <- prep.calBeta(sbsdes, model = modell, Beta = B1)

pop1 <- pop.calBeta(sbsdes1)

sbscall <- e.calibrate(sbsdes1, popl)

# Check that calibration estimates of regression coefficients now match the
# input B1 values derived from the external source...
svystatB(sbscall, modell)

B1

# ...but, of course, do *notx match those of B2:
svystatB(sbscall, model2)

B2

# OK

## Second, just for illustration, calibrate only on B2 regression coefficients:
sbsdes2 <- prep.calBeta(sbsdes, model = model2, Beta = B2)

pop2 <- pop.calBeta(sbsdes?2)

sbscal2 <- e.calibrate(sbsdes2, pop2)

# Check that calibration estimates of regression coefficients now match the
# input B2 values derived from the external source...
svystatB(sbscal2, model2)

B2

# ...but, of course, do *not*x match those of B1:
svystatB(sbscal2, modell)

B1

# OK

## Now, calibrate *simultaneously* on *B1 and B2* regression coefficients
# Prepare the survey design for the joint calibration task:
sbsdes1_2 <- prep.calBeta(sbsdes, model = list(modell, model2), Beta = list(B1, B2))

# Prepare the control totals dataframe for the joint calibration task:
pop1_2 <- pop.calBeta(sbsdes1_2)

# Have a look to the control totals (note the presence of two models and
# Beta vectors):

pop.desc(pop1_2)

pop1_2

# Lastly, run the calibration:
sbscall_2 <- e.calibrate(sbsdes1_2, pop1_2)

# Check that calibration estimates of regression coefficients now match *bothx
# the B1 and B2 values derived from the external sources:
svystatB(sbscall_2, modell)
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B1

svystatB(sbscall_2, model2)
B2

# OK

HEHHHHHHEHEEHH A EHHEEHEEEEE AR AR
# Calibrate simultaneously on the regression coefficients of a *single modelx #
# known for xdifferent subpopulations* #
HEHHHHHHEHEHH AR AR AR
# NOTE: In this case, both xglobalx and *partitionedx calibration tasks are

# possible, and both will be illustrated below.

# Suppose you know the coefficients of the following linear model, which you
# obtained fitting the model on some external source (e.g. Census or register
# data) *within subpopulations* defined by some factor variable(s):

model <- va.imp2 ~ emp.num:emp.cl + nace.macro - 1

# Here, use the sbs sampling frame available in ReGenesees to simulate the

# external source and suppose the subpopulations are defined by variable 'dom3'.
# Thus, compute the values of the regression coefficients as follows:

B <- by(sbs.frame, sbs.frame$dom3, function(df) coef(lm(model, data = df)))

B

## Let's start with the *global* solution

# Prepare the survey design for the calibration task (note that the 'by'
# argument is used):

sbsdes.g <- prep.calBeta(sbsdes, model, Beta = B, by = ~dom3)

# Prepare the control totals for the calibration task:
pop.g <- pop.calBeta(sbsdes.g)

# Have a look to the control totals (note the presence of one Beta vector *for
# each domainx):

pop.desc(pop.g)

pop.g

# Run the calibration:
sbscal.g <- e.calibrate(sbsdes.g, pop.g)

# Check that calibration estimates of regression coefficients now match the
# input B values derived from the external source xfor each domainx:
svystatB(sbscal.g, model, ~dom3)

B

# 0K

## Let's proceed with the *partitioned* solution

# Prepare the survey design for the calibration task (note that 'by' and

# 'partition' arguments are used):

sbsdes.p <- prep.calBeta(sbsdes, model, Beta = B, by = ~dom3, partition = TRUE)

# Prepare the control totals for the calibration task:
pop.p <- pop.calBeta(sbsdes.p)

# Have a look to the control totals (note the presence of one Beta vector *for
# each domainx):
pop.desc(pop.p)
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pop.p

# Run the calibration:
sbscal.p <- e.calibrate(sbsdes.p, pop.p)

# Check that calibration estimates of regression coefficients now match the
# input B values derived from the external source *for each domainx:
svystatB(sbscal.p, model, ~dom3)

B

# OK

## Lastly, check that calibration weights obtained using the *global* and
## xpartitioned* solution are the same:

g.range(sbscal.g)

g.range(sbscal.p)

all.equal(weights(sbscal.g), weights(sbscal.p))

# OK

HHHHHHAREEE R
# BONUS TIP: Calibration on the mean (or on domain means) #
# of one variable or multiple variables. #
B s S
Since the domain mean of a numeric variable can be thought as a
regression coefficient (see the 'Examples' section of ?svystatB),
you can use the ReGenesees facilities documented above to
*calibrate on the mean (or on domain means)* of *one variable
or multiple variablesx.
NOTE: The examples below cover the following cases of calibration on:
(i) The overall mean of a single variable.
(ii) The means of a single variable within domains of just
one type.
(iii) The domain means of several variables, with multiple
and different domain types.

B S

# Load artificial household survey data and define a survey design:
data(data.examples)
exdes <- e.svydesign(data = example, ids = ~towcod + famcod,

strata = ~SUPERSTRATUM, weights = ~weight)
exdes <- des.addvars(exdes, ones = 1)

## CASE (i): Calibrate on the overall mean of a single variable

# Suppose you know with satisfactory accuracy the *average incomex of your
# target population (but you do *not* have reliable information on the

# *xtotal incomex, nor on the *total number of individualsx):

income.AVG <- 1270

# You can calibrate on xaverage incomex as follows:

exdes.new <- prep.calBeta(exdes, income ~ 1, Beta = income.AVG)
pop.new <- pop.calBeta(exdes.new)

excal.new <- e.calibrate(exdes.new, pop.new)

# Now, check that calibration estimate of average income now match the known
# value derived from the external source *without residual uncertaintyx:
svystatTM(excal.new, ~income, estimator = "Mean"”)

income.AVG



148 prep.calBeta

# ...while there is *residual uncertainty* in the estimates of the numerator and
# denominator totals:

svystatTM(excal.new, ~income + ones, estimator = "Total"”)

# OK

## CASE (ii): Calibrate on the means of a single variable within domains

# of just one kind

# You can calibrate on *domain means* along the lines illustrated above (note,
# however, that argument 'by' would provide an alternative way to achieve

# the same result).

# Suppose you know with satisfactory accuracy the xaverage incomex by the

# crossclassification of sex and marital status:

income.AVG.sex.marstat <- c(f.married = 1310, m.married = 1260,
f.unmarried = 1150, m.unmarried = 1200,
f.widowed = 1380, m.widowed = 1300)

# Run the calibration on *average income by sex:marstat* as follows:
exdes.new <- prep.calBeta(exdes, income ~ sex:marstat -1,
Beta = income.AVG.sex.marstat)
pop.new <- pop.calBeta(exdes.new)
excal.new <- e.calibrate(exdes.new, pop.new)

# Now, check that calibration estimates of average income by domains now match
# the known values derived from the external source #*without residual

# uncertainty*:

svystatTM(excal.new, ~income, ~sex:marstat, estimator = "Mean")
income.AVG.sex.marstat

# ...while there is *residual uncertainty* in the estimates of the numerator and
# denominator totals:

svystatTM(excal.new, ~income + ones, ~sex:marstat, estimator = "Total")

# OK

## CASE (iii): Calibrate on the domain means of several variables, with multiple
# and different domain types.

# Suppose you know with satisfactory accuracy:

# - the average income by sex:

# - the average income by marstat:

# - the average of variable z by age (variable 'age5c', 5 classes):
income.AVG.sex <- c("f" = 1245, "m" = 1250)

income.AVG.marstat <- c("married” = 1260, "unmarried” = 1230, "widowed” = 1290)
z.AVG.age5c <- c("1" =125, "2" =130, "3" = 135, "4" =125, "5" = 140)

# Run the calibration as follows:

exdes.new <- prep.calBeta(exdes, model = list(income ~ sex -1,
income ~ marstat -1,
z ~ agebc -1),

Beta = list(income.AVG.sex,
income.AVG.marstat,
z.AVG. age5c)

)
pop.new <- pop.calBeta(exdes.new)
excal.new <- e.calibrate(exdes.new, pop.new)

# Now, check that calibration estimates match the known domain means derived
# from the external source:
svystatTM(excal.new, ~income, ~sex, estimator = "Mean")
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income.AVG. sex

svystatTM(excal.new, ~income, ~marstat, estimator = "Mean”)
income.AVG.marstat

svystatTM(excal.new, ~z, ~agebc, estimator = "Mean")

z.AVG. age5c

# 0K

ReGenesees.options Variance Estimation Options for the ReGenesees Package

Description

This help page documents the options that control the behaviour of the ReGenesees package with
respect to standard error estimation.

Details

The ReGenesees package provides four options for variance estimations which can be freely set
and modified by the user:

-RG.ultimate.cluster
-RG.1lonely.psu
-RG.adjust.domain.lonely
-RG.warn.domain.lonely

When options("RG.ultimate.cluster"”) is TRUE, the ReGenesees package adopts the so called
“Ultimate Cluster Approximation” [Kalton 79]. Under this approximation, the overall sampling
variance for a multistage sampling design is estimated by taking into account only the contribution
arising from the estimated PSU totals (thus simply ignoring any available information about subse-
quent sampling stages). For without replacement sampling designs, this approach is known to un-
derestimate the true multistage variance, while - at the same time - overestimating its true first-stage
component. Anyway, the underestimation error becomes negligible if the PSUs’ sampling fractions
across strata are very small. When sampling with replacement, the Ultimate Cluster approach is no
longer an approximation, but rather an exact result. Hence, be options(”RG.ultimate.cluster”)
TRUE or FALSE, if one does not specify first-stage finite population corrections, ReGenesees will
produce exactly the same variance estimates.

When options(”RG.ultimate.cluster”) is FALSE, each sampling stage contributes and vari-
ances get estimated by means of a recursive algorithm [Bellhouse, 85] inherited and adapted from
package survey [Lumley 06]. Notice that the results obtained by choosing this option can differ
from the one that would be obtained under the "Ultimate Cluster Approximation" only if first-stage
finite population corrections are specified.

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. The suggested ReGenesees facility to handle the lonely PSUs
problem is the strata aggregation technique (see e.g. [Wolter 07] and [Rust, Kalton 87]) provided
in function collapse.strata. As a possible alternative, you can get rid of lonely PSUs also by
setting proper variance estimation options via options("”RG.lonely.psu"). The default setting is
"fail”, which raises an error if a lonely PSU is met. Option "remove” simply causes the software
to ignore lonely PSUs for variance computation purposes. Option "adjust” means that deviations
from the population mean will be used in variance estimation formulae, instead of deviations from
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the stratum mean (a conservative choice). Finally, option "average" causes the software to replace
the variance contribution of the stratum by the average variance contribution across strata (this
can be appropriate e.g. when one believes that lonely PSU strata occur at random due to uniform
nonresponse among strata).

The variance formulae for domain estimation give well-defined, positive results when a stratum
contains only a single PSU with observations falling in the domain, but are not unbiased.
Ifoptions("RG.adjust.domain.lonely”) is TRUE and options("RG.lonely.psu”) is "average"
or "adjust” the same adjustment for lonely PSUs will be used within a domain. Note that this ad-
justment is not available for calibrated designs.

If options("RG.warn.domain.lonely") is set to TRUE, a warning message is raised whenever an
estimation domain happens to contain just a single PSU belonging to a stratum. The default is
FALSE.

References
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York.
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See Also

e.svydesign and its self.rep.str argument for a "compromise solution" that can be adopted
when the sampling design involves self-representing (SR) strata, collapse.strata for the sug-
gested way of handling lonely PSUs, and fpcdat for useful data examples.

Examples

# Define a two-stage stratified cluster sampling without

# replacement:

data(fpcdat)

des<-e.svydesign(data=fpcdat, ids=~psu+ssu, strata=~stratum,weights="w,
fpc=~fpcl+fpc2)

# Now compare SE (or CV%) sizes under different settings:

## 1) Default setting, i.e. Ultimate Cluster Approximation is off
svystatTM(des, ~x+y+z,vartype=c("se","cvpct"))

## 2) Turn on the Ultimate Cluster Approximation, thus missing
#it the variance contribution from the second stage

#it (hence SR strata give no contribution at all):

old.op <- options("RG.ultimate.cluster”=TRUE)

svystatTM(des, ~x+y+z,vartype=c("se","cvpct"))

options(old.op)

## 3) The "compromise solution” (see ?e.svydesign) i.e. retaining
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#it only the leading contribution to the sampling variance (namely

## the one arising from SSUs in SR strata and PSUs in not-SR strata):

des2<-e.svydesign(data=fpcdat, ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2, self.rep.str=~sr)

svystatTM(des2, ~x+y+z,vartype=c("se", "cvpct"))

# Therefore, sampling variances come out in the expected

# hierarchy: 1) > 3) > 2).

# Under default settings lonely PSUs produce errors in standard

# errors estimation (notice we didn't pass the fpcs):

data(fpcdat)

des.lpsu<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,
weights=~w)

## Not run:

svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))

## End(Not run)

# This can be circumvented in different ways, namely:
old.op <- options(”"RG.lonely.psu”"="adjust")

svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

# or:

old.op <- options("”RG.lonely.psu”="average")
svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

# or otherwise by collapsing strata inside planned
# estimation domains:
des.clps<-collapse.strata(design=des.lpsu,block.vars=~pl.domain)

svystatTM(des.clps,~x+y+z,vartype=c("se","cvpct"))

sbs Artificial Structural Business Statistics Data

Description

The sbs data frame stores artificial sbs-like sampling data, while sbs. frame is the artificial sam-
pling frame from which the sbs units have been drawn. They allow to run R code contained in the
‘Examples’ section of the ReGenesees package help pages.

Usage
data(sbs)

Format

The sbs data frame mimics data observed in a Structural Business Statistics survey, under a one-
stage stratified unit sampling design. The sample is made up of 6909 units, for which the following
22 variables were observed:
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id Identifier of the sampling units (enterprises), numeric
public Does the enterprise belong to the Public Sector? factor with levels @ (No) and 1 (Yes)
emp.num Number of employees, numeric

emp.cl Number of employees classified into 5 categories, factor with levels [6,9] (9,197 (19, 49]
(49,9971 (99, Inf] (notice that small enterprises with less than 6 employees fell outside the
scope of the survey)

nace5 Economic Activity code with 5 digits, factor with 596 levels
nace2 Economic Activity code with 2 digits, factor with 57 levels
area Territorial Division, factor with 24 levels

cens Flag identifying statistical units to be censused (hence defining take-all strata), factor with
levels @ (No) and 1 (Yes)

region Macroregion, factor with levels North Center South

va.cl Class of Value Added, factor with 27 levels

va Value Added, numeric (contains NAs)

dom1 A planned estimation domain, factor with 261 levels (dom1 crosses nace2 and emp.cl)

nace.macro Economic Activity Macrosector, factor with levels Agriculture Industry Commerce
Services

dom2 A planned estimation domain, factor with 12 levels (dom2 crosses nace.macro and region)

strata Stratification Variable, a factor with 664 levels (obtained by crossing variables region,
nace2, emp.cl and cens)

va.imp1 Value Added Imputed1, numeric (NAs were replaced with average values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

va.imp2 Value Added Imputed2, numeric (NAs were replaced with median values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

y A numeric variable correlated with va
weight Direct weights, numeric
fpc Finite Population Corrections (given as sampling fractions inside strata), numeric

ent Convenience numeric variable identically equal to 1 (sometimes useful, e.g. to estimate the
total number of enterprises)

dom3 An unplanned estimation domain, factor with 4 levels

The sbs. frame sampling frame (from which sbs units have been drawn) contains 17318 units.

Examples

data(sbs)
head(sbs)
str(sbs)
str(sbs.frame)
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smooth.strat. jump Smooth Weights to Cope with Stratum Jumpers

Description

Given a stratified one-stage unit sampling design object, this function smooths survey weights to
mitigate estimation issues that may arise from stratum jumpers.

Usage
smooth.strat. jump(design, curr.strata, method = c("MinChange", "Beaumont"))
Arguments
design Object of class analytic containing the weights to be smoothed. It must be a
one-stage unit sampling design object. Moreover, it must be a non-calibrated
object. See ‘Details’.
curr.strata Formula identifying the current strata variable, as observed at survey-time (see
‘Details’).
method The smoothing method (see ‘Details’). The default method 'MinChange' smooths
the weight of stratum jumpers almost without affecting the weights of other
units. Method 'Beaumont' adopts a much more aggressive smoothing strategy,
which may result in significant modifications of the weights also for units that
are not stratum jumpers (see ‘Examples’).
Details

In business surveys, stratum jumpers are sampling units (e.g. firms or establishments) whose stra-
tum information observed at survey-time happens to differ from the stratum information that was
available in the sampling frame at design-time.

If the current value of the strata variable (i.e. the one observed at survey-time) is reliable, stratum
jumpers are evidence of frame imperfections (typically, the frame was not up-to-date). Empirically,
stratum jumpers are often units that underwent a fast growth in size from sampling-time to survey-
time.

In most enterprise surveys the sampling design is such that smaller firms receive a smaller inclusion
probability (and hence a larger design weight). Therefore, stratum jumpers often have a “too large”
weight, in the sense that they would have received a smaller weight had their actual size been known
at sampling-time. When these units also happen to have a large value of interest variable y, they
may become influential in estimation. Even though stratum jumpers may exist in household surveys
too, business surveys are much more exposed to the risk that stratum jumpers unduly influence
estimation, as their target populations are typically highly skewed with respect to many interest
variables. As a consequence, in business surveys, stratum jumpers can result in inefficient (and,
under some circumstances, even biased) design-based estimators.

Despite stratum jumpers are actually a concern only when both their design weight w and their y

value (as measured at survey-time) conspire to yield an influential value of w * y, function smooth.strat. jump
tries to mitigate their potential adverse impact by smoothing the weights without using any infor-

mation on y. Such a choiche is driven by two major aims. First, the methodology must preserve the
universality of the weights (i.e. the same weights must be used to compute estimates for whatever

interest variables y). Second, the methodology should not require explicit modeling efforts and be

easy enough to scale to production settings that need automated and replicable procedures.
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Argument design identifies the survey design object that is (possibly) affected by stratum jumpers
and contains the weights that will be smoothed. In case no stratum jumpers are found, the function
will raise an error. Object design can only be a one-stage unit sampling design. Moreover, it must
be a non-calibrated object. Should any of these conditions be false, the function would raise an
error. Note, lastly, that function smooth.strat. jump will not smooth further weights that have
already been smoothed. This is a deliberate design choice, devised to discourage over-smoothing
and cosmetic adjustments of the survey weights.

Formula curr.strata defines the current strata variable, as observed at survey-time. This is differ-
ent from the design strata variable used to build object design using function e.svydesign, as the
latter was measured at sampling-time. Function smooth.strat. jump will flag as stratum jumpers
all the units whose current stratum differs from the design one. Note that the function will handle
properly even design objects whose strata were collapsed for variance estimation purposes (via
collapse.strata), by accessing and using the original non-collapsed design strata. Note that, in
case current strata become available only after object design was created, you may use function
des.addvars to add this new column to the old object.

The weight smoothing process entails two steps:

1. The weights are smoothed according to a given method (see below): w => w1

2. The weights w1 of all units are scaled by a global factor so as to preserve the initial overall
sum of weights: wl ->w2 = scale x w1 with scale = sum(w)/sum(w1)

Argument method controls the smoothing algorithm. Two methods can be selected: 'MinChange'
(the default) and 'Beaumont' (which implements the proposal of [Beaumont, Rivest 09]). Note that
the methods only differ with respect to step 1., as step 2. is identical for both of them.

The step 1 working mechanism of these methods can be summarized as follows:

¢ ‘MinChange’

Only the weights of stratum jumpers are smoothed, by setting their value to the average weight of
units belonging to the same current stratum. Weights of all other units are left unchanged.

¢ ‘Beaumont’

The weights of all units are smoothed, by setting their value to the average weight of units belonging
to the same current stratum, with the exception of minimum weight units, whose weights are left
unchanged. Therefore all weights, excluding only minimum weights within each current stratum,
are smoothed. Note that this smoothing affects all current strata, even those that do not include any
stratum jumper.

In summary, both methods often lead to very similar smoothed weights for units that are stratum
jumpers. However method 'Beaumont' smooths the weights of all other (i.e. non stratum jumpers)
units much more aggressively than method 'MinChange' (which only minimally alters them in step
2. to preserve the overall sum of weights). Moreover, method 'MinChange' treats stratum jumpers
that grew in size and those that decreased in size on the same footing, whereas method 'Beaumont’
typically smooths the weights of the former more than those of the latter (owing to its minimum
weight preservation constraint, see ‘Examples’).

Note that every call to smooth.strat. jump generates, by side effect, a diagnostics data structure
named strat. jump.status into the .GlobalEnv (see ‘Examples’). This is a data frame with one
row for each stratum jumper unit, whith the following columns:
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Column Meaning

IDS. .o Unit identifier

W Initial weight

DES_STR................ Design stratum

DES_STR_W_AVG.......... Average of initial weights within the design stratum
CURR_STR. ...t Current stratum

CURR_STR_W_AVG......... Average of initial weights within the current stratum

N_JUMP_DES_CURR_STR. .. .Number of stratum jumpers that jumped between the
design stratum and the current stratum (NOTE: in any

direction)
W_SMOOTH_UNSC.......... Unscaled smoothed weight (as obtained after step 1)
W_SMOOTH............... Smoothed weight (scaled, as obtained after step 2)

Value

An object of the same class as design. The data frame it contains (stored in its $variables slot)
includes the smoothed weights columns and a column that flags the stratum jumpers. The name of
the smoothed weights column is obtained by pasting the name of the initial weights column with the
string " . smooth”. Stratum jumpers are identified by a new (logical) column named is. jumper.

Methodological Remark

Smoothing survey weights is a model-based approach, see [Beaumont 08] (e.g.method = 'Beaumont
basically models the smoothed weights as a function of the current strata using a one-way ANOVA
model plus constraints). Therefore Horvitz-Thompson-like estimators that use smoothed weights
- instead of design weights - cannot be guaranteed to be design-unbiased. Of course, the need
to smooth the weights arises precisely because the existence of stratum jumpers already signals a
departure from the ideal conditions of design-based inference.

As the design-unbiasedness of Horvitz-Thompson estimators in probability sampling rests on using
design weights that are reciprocals of inclusion probabilities, smoothing methods that change the
design weights the least appear preferable in a design-based perspective. For this reason, function
smooth.strat. jump adopts the 'MinChange' method by default. One could, nonetheless, argue
that the 'Beaumont' method could sometimes perform better (e.g. lead to more efficient estimates)
from a model-based perspective.

Regardless the choice of argument method, in order to reduce any possible design-bias introduced
by smoothing the weights, users are advised to calibrate the smoothed weights using any auxiliary
information available from external sources that are more up-to-date than the sampling frame.

Author(s)

Diego Zardetto

References

Beaumont, J. F. (2008). A new approach to weighting and inference in sample surveys. Biometrika,
95(3), 539-553.

Beaumont, J. F.,, Rivest, L. P. (2009). Dealing with outliers in survey data. In Handbook of statistics
(Vol. 29, pp. 247-279). Elsevier.
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See Also

e.svydesign to bind survey data and sampling design metadata and e.calibrate for calibrat-
ing smoothed survey weights by leveraging auxiliary information that is more up-to-date than the
sampling frame (a warmly suggested option).

Examples

HHHEHHEREEEEE AR R R
# Build [Beaumont, Rivest 09] example dataset, containing:
# - a first stratum 'A' that, at survey time, contains one large weight stratum
#  jumper received from design-stratum 'B'
- a second stratum 'B' that, at survey time, does not contain stratum jumpers

- a fourth stratum 'D' that, at survey time, does not contain stratum jumpers
- a fifth stratum 'E' that, at survey time, contains two stratum jumpers, both
received from design-stratum 'D', one with small and one with medium weight
AR AR R AR R
BR <- data.frame(
id = 1:90,
des.strata = factor(rep(c("A", "B", "C", "D", "E"), c(9, 41, 10, 20, 10))),
curr.strata = factor(rep(c("A", "B", "C", "D", "E"), c(10, 40, 10, 19, 11))),
w = c(rep(c(1, 31), c(9, 41)), c(27, 28, 22, 26, 11, 12, 13, 30, 17, 21), 2:21, 11:2)
)
BR$curr.stratal[61] <- "E"

#
#
#
# #
# #
# and enhance it with: #
# - a third stratum 'C' that, at survey time, does not contain stratum jumpers #
# #
# #
# #

# Have a look at the data:
BR

# Have a look at the jumps:
with(BR, table(des.strata, curr.strata))

# Use the BR data frame to build a one stage stratified unit sampling design:
BRdes <- e.svydesign(data=BR, ids=~id, strata=~des.strata, weights=~w)

## Now smooth the weights:

## Method: MinChange (the default)

M.smooth <- smooth.strat.jump(BRdes, ~curr.strata)
M.smooth

# Have a look at the new columns:
head(M. smooth$variables)

# Inspect the effects of smoothing on the stratum jumpers:
strat.jump.status

## Method: Beaumont
B.smooth <- smooth.strat.jump(BRdes, ~curr.strata, method = "Beaumont”)

B.smooth

# Inspect the effects of smoothing on the stratum jumpers:
strat.jump.status

## As anticipated, smoothed weights of stratum jumpers are mostly similar for
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## both methods. However the methods differ significantly when it comes to non
## stratum jumpers. This is clearly shown in the following plots.

## Plot 1 - START
opar <- par("mfcol” = c(1, 2))

# M.smooth

with(M.smooth$variables, plot(w, w.smooth, pch = c(19, 15)[1 + is.jumper],
col = c("black”, "red")[1 + is.jumper], cex = c(1,1.2)[1 + is.jumper],
xlab = "Original Weights”, ylab = "Smoothed Weights",
main = "method: MinChange"))

abline(@:1, col = "limegreen”, 1lwd = 2, 1ty = 2)

legend("topleft”,

legend = c("Stratum Jumper”, "Non Stratum Jumper"),
col = c("red”, "black"),

pch = c(15, 19),

bty = "n",

text.col = "black”,

inset = c(0.05, 0.05)

)

# B.smooth

with(B.smooth$variables, plot(w, w.smooth, pch = c(19, 15)[1 + is.jumper],
col = c("black”, "red")[1 + is.jumper], cex = c(1,1.2)[1 + is.jumper],
xlab = "Original Weights"”, ylab = "Smoothed Weights",
main = "method: Beaumont”))

abline(@:1, col = "limegreen”, lwd = 2, 1ty = 2)

legend("topleft”,

legend = c("Stratum Jumper"”, "Non Stratum Jumper"),
col = c¢("red”, "black"),

pch = ¢(15, 19),

bty = "n",

text.col = "black”,

inset = c(0.05, 0.05)

)

par(opar)
## Plot 1 - END

## Plot 2 - START
# M.smooth
with(M.smooth$variables, plot(w, pch = 20, col = curr.strata,
ylab = "Original and Smoothed Weights”,
main = "method: MinChange \n(colors identify different current strata)"))
with(M.smooth$variables, points(w.smooth, pch = @, col = curr.strata))

legend("topright”,

legend = c("Original Weight"”, "Smoothed Weight"),
col = rep("grey"”, 2),

pch = c(20, @),

text.col = "black”,

inset = c(0.01, 0.01)

)

# B.smooth
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with(B.smooth$variables, plot(w, pch = 20, col = curr.strata,

ylab = "Original and Smoothed Weights",

main = "method: Beaumont \n(colors identify different current strata)"))
with(B.smooth$variables, points(w.smooth, pch = @, col = curr.strata))

legend("topright”,

legend = c("Original Weight"”, "Smoothed Weight"),
col = rep("grey"”, 2),

pch = c(20, 0),

text.col = "black”,

inset = c(0.01, 0.01)

)

## Plot 2 - END

# Although, as seen above, non-negligible differences in smoothed weights exist
# at unit level, both methods perform similarly in terms of strata averages...
## Initial weights, design strata:

with(BR, tapply(w, des.strata, mean))

## Initial weights, current strata:
with(BR, tapply(w, curr.strata, mean))

## Smoothed weights, current strata, method MinChange:
with(M.smooth$variables, tapply(w.smooth, curr.strata, mean))

## Smoothed weights, current strata, method Beaumont:
with(B.smooth$variables, tapply(w.smooth, curr.strata, mean))

# ...as expected
svyDelta Estimation of a Measure of Change from Two Not Necessarily Inde-
pendent Samples
Description

Computes estimates and sampling errors of a Measure of Change from two not necessarily inde-
pendent samples. The Measure of Change can be any analytic function of Horvitz-Thompson or
Calibration estimators derived from the two samples.

Usage

svyDelta(expr, designl, design2, by = NULL,
des.INDEP = FALSE, rho.STRAT = c("Full”, "noJump”, "noStrat"),

vartype = c("se"”, "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95)

details(object, print.call = TRUE, ...)

## S3 method for class 'svyDelta'
coef(object, ...)

## S3 method for class 'svyDelta'
SE(object, ...)



svyDelta 159

## S3 method for class 'svyDelta'

VAR(object, ...)

## S3 method for class 'svyDelta'

cv(object, ...)

## S3 method for class 'svyDelta'

confint(object, ...)

Arguments

expr R expression defining the Measure of Change (see svystatL for the basic syn-
tax; see also section ‘Details’).

designi Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata related to the first sample. See ‘Details’.

design2 Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata related to the second sample. See ‘Details’.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population. See ‘Details’.

des.INDEP Have the samples in designl and design2 been selected independently? The
default is FALSE. See ‘Details’.

rho.STRAT To which extent should stratification be considered when estimating correla-

tions? The default is "Full”, which accommodates even dynamic stratifica-
tion but can sometimes be too computationally demanding. See ‘Details’ and
‘Methodological and Computational Remarks’ for alternatives.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
('cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

conf.int Compute confidence intervals for the estimates? The default is FALSE.
conf.lev Probability specifying the desired confidence level: the default value is 0. 95.
object An object created by invoking function svyDelta, about which details are sought.
print.call Print on screen the call of svyDelta that generated the input object?

Additional arguments to coef, ..., confint methods (if any). For function

details, arguments for future extensions (currently unused).

Details

Function svyDelta computes estimates and sampling errors of a Measure of Change from two not
necessarily independent samples.

For ‘Measure of Change’ we mean here any function that can be used to compare cross-sectional
estimates of two population parameters derived from two samples. The easiest Measure of Change
is the simple difference between the estimators of the same population parameter referred to two
distinct survey occasions. Estimating this difference and its sampling variance is central to hy-
pothesis testing (e.g. for impact evaluation). More complex Measures of Change can of course
be considered, for instance nonlinear ones, like the relative difference between two estimators. In
addition, the cross-sectional estimators being compared in the Measure of Change can themselves
be complex (i.e. expressed as nonlinear functions of Horvitz-Thompson or Calibration estimators).

Function svyDelta can accommodate all the cases sketched above.

When the two samples being analyzed are independent, estimating the sampling variance of a simple
Measure of Change is fairly straightforward: one just has to add variance estimates derived from
the two samples. The problem becomes non-trivial when the two samples are not independent,
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because sampling covariance terms come into play. Yet, the analysis of non-independent samples is
often required in concrete applications, including panel studies (with or without sample rotation),
repeated cross-sectional surveys making use of coordinated samples, quasi-experimental designs in
which control and treatment groups share some level of sampling information (e.g. observations are
taken within same PSUs), etc.

If the samples in designl and design2 are not independent, function svyDelta estimates the
needed sampling covariance terms following the method of [Berger, Priam 16]. Note that this
method derives design-based covariance estimates from estimates of correlation (rho), which are
computed in the first place.

If the Measure of Change is complex, svyDelta automatically linearizes it. Automatic linearization
is performed as function svystatL would do, along the lines illustrated in [Zardetto, 15], see also
section ‘Methodological and Computational Remarks’ below.

The mandatory argument expr, which identifies the Measure of Change, must be an object of class
expression. You can specify just a single Measure of Change at a time, i.e. length(expr) must
be equal to 1. Any analytic function of estimators of Totals and Means derived from the two input
design objects design1 and design?2 is allowed.

The basic syntax follows the same rules described for function svystatL. Inside expr, the estimator
of the Total of a variable is simply represented by the name of the variable itself. The reserved name
ones can be used to reference an artificial variable (which will be created on-the-fly, if not already
present) whose value is 1 for each sampling unit, so that its Total estimator actually estimates the
size of the population in terms of elementary units. Therefore, expression y/ones represents the
estimator of the Mean of variable y. Variables referenced inside expr must be numeric and belong
to design1 and/or design2.

To unequivocally associate each variable either to design1 or to design2, suffixes '.1"' and '.2'
must always be used. This makes it possible to reuse the same variable names across the two
samples. For instance, expression(y.1 -y.2), represents the difference between the Totals of
y estimated from design1 and design2, respectively. Similarly, expression((y.1-y.2) /y.1)
represents the relative difference of the same Totals (using the estimate derived from the first sample
as reference value). Along the same vein, the difference between the Means of y estimated from
designl and design2 can be specified as expression(y.1/ones.1-y.2/ones.2). Likewise,
expression(y.1/x.1-y.2/x.2) represents the difference between estimates of a Ratio derived
from design1 and design2.

The mathematical expression of the Measure of Change, as specified by argument expr, can involve
‘parameters’, that is symbols representing given, non-random, scalar, numeric values. For each
parameter appearing in expr, the value corresponding to its symbol will be searched following R
standard scoping rules.

Although function svyDelta is very general and flexible, when the samples are non-independent
(i.e. des.INDEP = FALSE, see below), some restrictions exist on arguments design1 and design2:

1. Objects design1 and design2 must be either both stratified or both unstratified: mixed cases
are not allowed.

2. Objects design1 and design2 must be either both element sampling designs or both cluster
sampling designs: mixed cases are not allowed.

3. Objects designl and design2 can be both uncalibrated, both calibrated, or even one uncali-
brated and the other calibrated (i.e. mixed cases are allowed).

The method of [Berger, Priam 16] can handle non-independent samples with fixed (i.e. non-random)
overlap (including the limiting cases of no overlap and full overlap, for which it reproduces “classi-
cal” covariance estimates). Therefore, in order for function svyDelta to work properly, it is a fun-
damental requirement that the overlapping portion of design1 and design2 can be unequivocally
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identified. To this end, the identifiers of sampling units originally used by function e. svydesign
to define objects design1 and design2 (or, if they are calibrated, their uncalibrated counter-
parts) must be consistent. Note that function svyDelta will use those same identifiers as keys to
merge the survey data of design1 and design2 and thereby identify their overlapping subsample.
Since, for multi-stage designs, the method of [Berger, Priam 16] resorts to the ultimate cluster ap-
proximation, in those cases the fundamental piece of information actually concerns the identifier of
the PSUs of design1 and design2: it is crucial that the latter can be used to identify PSUs that are
common to both samples.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svyDelta refer to the whole population. If specified, estimation domains
must be defined by a formula, following the usual syntactic and semantic rules (see e.g. svystatL).
Variables referenced in by must be common to both design1 and design2, and suffixes '.1' and
'. 2" must not be used for them.

Concerning domain estimation, a methodological caveat is in order. Since the method of [Berger,
Priam 16] handles non-independent samples assuming their overlap is fixed, in case designl and
design2 are not independent one should use svyDelta only for planned estimation domains,
namely domains that can be obtained by aggregation of sampling strata. In any case, even con-
sidering unplanned estimation domains, point estimates produced by svyDelta will still be correct.

Argument des. INDEP must be used to tell svyDelta whether the samples in design1 and design?2
were selected independently or not (the default is FALSE). Note that this argument is indeed neces-
sary, because in finite population sampling there is always a chance that two independent samples
have a non-null overlap. Therefore, in case of any overlap in design1 and design2, function
svyDelta will behave differently depending on the value you specify for des. INDEP:

* If des.INDEP = FALSE, then any overlap will be regarded as non-accidental and intended by
design, thereby triggering the method of [Berger, Priam 16] for calculating the correlation
terms needed to estimate the sampling variance of the Measure of Change.

 If des.INDEP = TRUE, then any overlap will be regarded as accidental and not intended by
design, thereby leading to the sampling variance estimate of the Measure of Change that is
appropriate for independent samples.

Note that, when the samples are declared to be independent by setting des. INDEP = TRUE, even the
above restrictions 1. and 2. on objects design1 and design2 are obviously lifted, and function
svyDelta can be used to compare estimators coming from arbitrarily mixed sampling designs (e.g.
stratified element vs. unstratified cluster).

When non-independent samples with sizable overlap are concerned (e.g. for rotating panel surveys),
the method of [Berger and Priam 2016] may become computationally demanding, especially for
highly stratified unit sampling designs (see section ‘Methodological and Computational Remarks’).
In such cases, if the invocation of svyDelta with the default setting rho.STRAT = "Full” resulted
in unaffordable computation time or memory-failure on your machine, you might want to resort to
lighter, but approximate, alternatives:

e If rho.STRAT = "noJump”, then function svyDelta will disregard the contribution of units
that changed stratum from design1 to design2 (if any) when estimating correlation terms
(rho). Note that, in case no such units actually exist, the result will be the same that would
be obtained with the default setting rho.STRAT = "Full”, only it will be achieved using much
less computing time and memory.

* If rho.STRAT = "noStrat”, then function svyDelta will entirely disregard stratification when
estimating correlation terms (rho). This sometimes results in huge computing time and mem-
ory savings.
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In the light of the above, setting rho. STRAT = "noJump” seems a very sound option in many concrete
large-scale applications (see section ‘Methodological and Computational Remarks’).

Note, in any case, that both the approximations rho.STRAT = "noJump” and rho.STRAT = "noStrat”
are restricted to correlation terms only: all the other terms involved in the estimator of the sampling

variance of the Measure of Change will still be calculated by properly and fully taking into account

the stratification of design1 and design2.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

Function details provides more details about the results of function svyDelta. It takes in input an
object returned by svyDelta, and prints on screen that object together with additional diagnostic
information. This additional information (see also section ‘Methodological and Computational
Remarks’) is stored in a data frame with one row and the following columns:

Column Meaning

nt........ Sample size of designl (in terms of elements or PSUs, depending
on the sampling design)

n2........ Sample size of design2 (in terms of elements or PSUs, depending
on the sampling design)

nc........ Size of the overlapping sample between designl and design2

overlap...Rate of overlap: nc / ( (n1 + n2) / 2)

Vioo.o..o... Estimated sampling variance of the linearized Measure of Change,
arranged in standard difference form, w.r.t. designl: V1(L.1)

V2...... .. Estimated sampling variance of the linearized Measure of Change,
arranged in standard difference form, w.r.t. design2: V2(L.2)

Vind...... Estimated sampling variance of the linearized Measure of Change,
as would be obtained if designl and design2 were independent: V1 + V2

rho....... Estimated sampling correlation between L.1 and L.2

CoV....... Estimated sampling covariance between L.1 and L.2:
rho x sqrt(V1) * sqrt(V2)

Voo, Estimated sampling variance of the linearized Measure of Change

w.r.t. designl and design2 jointly: V1 + V2 - 2 x CoV

Note that the same data frame is also invisibly returned by function details.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Methodological and Computational Remarks

The method proposed by [Berger and Priam 2016] estimates correlations (rho) using the estimated
residual variance-covariance matrix of a suitable multivariate regression model. The explanatory
variables of this multivariate regression model encode information about stratification, and overlap
of the two samples. However, the estimation approach remains fully design-based (i.e. not model-
based), because the multivariate regression model is exploited only to make calculations easier,
whereas its validity is never assumed, nor used, for inferential purposes.

As already mentioned, the method of [Berger and Priam 2016] assumes instead that (i) the size
of both samples and, importantly, of their overlapping subsample is fixed, and that (ii) sampling
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fractions are negligible in both samples. For multi-stage designs, both conditions (i) and (ii) should
be fulfilled at the PSU-level.

When stratified designs are concerned, the method is flexible enough to handle dynamic stratifica-
tion. More explicitley, the sample at time 2 can include new strata that were not present at time 1,
and sampling units that are common to both samples can belong to different strata at time 1 and 2.
However, as already mentioned, this flexibility comes with a computational cost, which can become
prohibitive for highly stratified sampling designs.

If no units exist that changed stratum from design1 to design2, then correlations can be estimated
exactly using a more parsimonious multivariate regression model than the one of [Berger and Priam
2016] (i.e. a model with less interaction terms). This is triggered by rho.STRAT = "noJump”. This
option allows for remarkable savings in computing time and memory usage, and typically results in
a very good approximation when a moderate number of units actually changed stratum.

In extreme cases, the option of entirely disregarding stratification when estimating correlations
(triggered by setting rho.STRAT = "noStrat”) can sometimes be the only viable solution, at least
in ordinary computing environments. Unfortunately, however, the inferential effect of this approxi-
mation (e.g. whether it leads to over-estimation or under-estimation) is unclear.

Complex Measures of Change, expressed as nonlinear functions of Horvitz-Thompson or Cali-
bration estimators derived from the two samples, are inherently challenging, and would still be
so even for independent samples. To estimate the sampling variance of a complex Measure of
Change, svyDelta automatically linearizes the estimator specified by argument expression, call
it Delta. Automatic linearization is performed as in function svystatL, along the lines illustrated
in [Zardetto, 15]. Put briefly:

1. Woodruff transforms of the estimator Delta are derived with respect to design1 and design2,
respectively.
2. In case any of the two input designs is calibrated, the Woodruff transform associated to it and

computed in step 1. includes the appropriate residuals of the involved variables with respect
to the calibration model.

3. The linearized expression of the Measure of Change Delta is re-arranged in standard differ-
ence form, L.Delta = L.1 - L.2, where L.1 and L.2 are linear functions of the previously
computed Woodruff transforms with suitable signs.

4. The method of [Berger and Priam 2016] is applied to L.Delta to derive the estimate of the
correlation between L.1 and L.2 (this is the rho value that can be extracted using function
details).

5. The other terms of the variance of L.Delta are estimated using the respective sampling designs
separately.

6. The overall estimate of the variance of L.Delta is re-constructed using the terms computed in
steps 4. and 5.

Author(s)

Diego Zardetto
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See Also

Estimators of Complex Analytic Functions of Totals and/or Means svystatL. Estimators of Totals
and Means svystatTM, Ratios between Totals svystatR, Shares svystatS, Ratios between Shares
svystatSR, Multiple Regression Coefficients svystatB, Quantiles svystatQ, and all of the above

svystat.

Examples

HHHHHARHE
# Basic usage and trivial consistency checks. #
B

## Load two non-independent stratified samples of xelementary units*, s1 and s2,

## with 40% overlap (see ?Delta.el)
data(Delta.el)

# Define the design objects

# s

des1 <- e.svydesign(ids = ~id, strata = ~strata, weights
des1

# s2
des2 <- e.svydesign(ids = ~id, strata = ~strata, weights
des2

~w, data

~w, data

s1)

s2)

# Estimate the difference between cross-sectional estimates of the Total of

# variable y
d <- svyDelta(expression(y.2 - y.1), desl, des2)
d

# Now, to know if the difference is statistically significant at alpha

# just see whether the confidence interval covers @
confint(d)
# it does not, thus the difference is significant

# Have a look at the details, e.g. the estimated correlation rho

details(d)
# ...so rho ~ 0.2

# Can check some of that figures in the details above:
Y1 <- svystatTM(des1, ~y)

Y1

VAR(Y1) # Equal to V1 in details above

Y2 <- svystatTM(des2, ~y)
Y2
VAR(Y2) # Equal to V2 in details above

coef(d)
coef(Y2) - coef(Y1) # Exactly matched, as it must be

## Function svyDelta handles *cluster samples* essentially the same way.

## is this time the identifier of PSUs.

0.05,

The key
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## Load two non-independent stratified *cluster samples*, sclusl and sclus2,
## with 50% overlap at the PSU-level (see ?Delta.clus)
data(Delta.clus)

# Define the design objects

# sclusi

dclusl <- e.svydesign(ids = ~id, strata = ~strata, weights = ~w, data = sclusl)
dclusi

# sclus2
dclus2 <- e.svydesign(ids = ~id, strata = ~strata, weights = ~w, data = sclus2)
dclus?2

# Estimate the difference between cross-sectional estimates of the Total of
# variable y

d <- svyDelta(expression(y.2 - y.1), dclusl, dclus2)

d

# Check statistical significance at alpha = 0.05
confint(d)
# strongly significant (would be so at alpha = ©0.01 too)

# Have a look at the details, e.g. the estimated correlation rho
details(d)

# ...so, this time, rho ~ 0.9

# NOTE: If one compared the estimates assuming independence, i.e. disregarding

# sampling correlations, the difference would be wrongly considered
# statistically not significant (see the size of Vind above).
# In fact:

d <- svyDelta(expression(y.2 - y.1), dclusl, dclus2, des.INDEP = TRUE)
details(d)

# Check statistical significance at alpha = 0.05
confint(d)
# non-significant, as anticipated.

S
# Complex Measures of Change. #
B

## Relative difference (percent) between Totals of y at time 2 and time 1:
d <- svyDelta(expression( 100 * (y.2 - y.1) / y.1 ), desl, des2)
details(d, print.call = FALSE)

## Difference between Means of y at time 2 and time 1:
d <- svyDelta(expression( y.2/ones.2 - y.1/ones.1 ), desl, des2)
details(d, print.call = FALSE)

## Relative difference between Ratios Y/X at time 2 and time 1:
d <- svyDelta(expression( (y.2/x.2 - y.1/x.1) / (y.1/x.1) ), desl, des2)
details(d, print.call = FALSE)

# NOTE: For the cases above, you may want to perform the same checks illustrated
# for the simple difference between Totals, using suitable ReGenesees
# functions
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HHHEHHHEHEE AR

# Examples with calibrated objects. #

HHHHHHEREEE A

# Suppose that:

# (1) Population size was N = 500 at time 1, and N = 501 at time 2
# (2) Total of x was X = 1810 at time 1, and X = 1770 at time 2

# Calibrate on the auxiliary information (1) and (2) above:

# designi

des1 <- des.addvars(des1, ones = 1)

pop1 <- pop.template(desl, calmodel = ~ ones + x - 1)
pop1[,] <- c(500, 1810)

pop1

descall <- e.calibrate(des1, popl)

# design2

des2 <- des.addvars(des2, ones = 1)

pop2 <- pop.template(des2, calmodel = ~ ones + x - 1)
pop2[,]1 <- c(501, 1770)

pop2

descal2 <- e.calibrate(des2, pop2)

# Compare the estimates of change:

## Calibration estimators

d <- svyDelta(expression(y.2 - y.1), descall, descal2)
details(d, print.call = FALSE)

## Horvitz-Thompson estimators
d <- svyDelta(expression(y.2 - y.1), desl, des2)
details(d, print.call = FALSE)

# Technically, you can estimate changes in mixed situations, comparing e.g.

# Horvitz-Thompson estimators at time 1 with Calibration estimators at time 2:
## Mix HT and CAL

d <- svyDelta(expression(y.2 - y.1), desl, descal2)

details(d, print.call = FALSE)

HHHHHHARHE AR A

# Dynamic stratification and computational efficiency. #
B

## Stratification of s1 and s2 is static (see ?Delta.el).

# Therefore the full complexity setting (rho.STRAT = "Full”, the default), and
# the alternative and *much more efficient settingx which disregards stratum-
# changer units (if any) in estimating correlations (rho.STRAT = "noJump”) will
# yield identical results:

## rho.STRAT = "Full”
d <- svyDelta(expression(y.2 - y.1), desl, des2)
details(d, print.call = FALSE)

## rho.STRAT = "noJump”
d <- svyDelta(expression(y.2 - y.1), desl, des2, rho.STRAT = "noJump")
details(d, print.call = FALSE)
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## identical results, as it must be.

## Now check the implications of dynamic stratification.
# Simulate new strata at time 2 (new level "C"):
levels(s2$strata) <- c("A", "B", "C")

# and stratum-changer units from s1 to s2:

s2$stratal4] <- "C"

s2$stratal14] <- "A"

s2$stratal16] <- "C"

s2$stratal20] <- "C"

# Have a look at the resulting rotation structure of s1 and s2:

s <- merge(sl1, s2, by = "id", all = TRUE, suffixes = c("1", "2"))
s <- s[order(s$stratal, s$strata2), ]

s

# Check that strata are dynamic: one unit jumped from "A" to "C", one from "B"
# to "A", and one from "B" to "C":
with(s, table(stratal, strata2, useNA = "ifany"))

# Now recreate object des2 using the updated s2 data
des2 <- e.svydesign(ids = ~id, strata = ~strata, weights = ~w, data = s2)

# And re-do the comparison:

## rho.STRAT = "Full”

d <- svyDelta(expression(y.2 - y.1), desl, des2)
details(d, print.call = FALSE)

## rho.STRAT = "noJump”
d <- svyDelta(expression(y.2 - y.1), desl, des2, rho.STRAT = "noJump”)
details(d, print.call = FALSE)

## The results are slightly different, as expected.
## However, the approximation obtained adopting option rho.STRAT = "noJump”
## is *very good*, and - importantly - xfar more efficientx (computation is way

## less memory-hungry and remarkably faster).

## You may want to run the same comparison using real-world stratified samples
## to really appreciate the efficiency gain.

svySigma Estimation of the Population Standard Deviation of a Variable

Description

Computes estimates and sampling errors of the Population Standard Deviation of a numeric variable
(in subpopulations too).

Usage

svySigma(design, y, by = NULL,
fin.pop = TRUE,
vartype = c("se”, "cv”, "cvpct”, "var"),
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conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

## S3 method for class 'svySigma'

coef(object, ...)

## S3 method for class 'svySigma'

SE(object, ...)

## S3 method for class 'svySigma'

VAR(object, ...)

## S3 method for class 'svySigma'

cv(object, ...)

## S3 method for class 'svySigma'

confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula identifying the numeric interest variable.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

fin.pop If TRUE (the default) the estimation target is the finite population formula of the
standard deviation, i.e. the one with N - 1 at denominator in the expression of
the variance. If FALSE the estimation target is the standard deviation with N at
denominator in the expression of the variance.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
('cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0. 95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

na.rm Should missing values (if any) be removed from the variable of interest? The
default is FALSE (see ‘Details’).

object An object of class svySigma.
Additional arguments to coef, ..., confint methods (if any).

Details

Function svySigma computes estimates and sampling errors of the Population Standard Deviation
of a numeric variable. These estimates play an important role in many contexts, including sample
size guesstimation and power calculations.

As the Population Standard Deviation is a complex estimator, svySigma automatically linearizes
it to estimate its sampling variance. Automatic linearization is performed as function svystatL
would do, along the lines illustrated in [Zardetto, 15]. This, of course, also entails the usage of the
residuals technique when the input design object is calibrated (i.e. of class cal.analytic).

The mandatory argument y identifies the variable of interest. The design variable referenced by y
must be numeric.

If variable y is binary (i.e. has only values @ and 1), the estimated Population Standard Devia-
tion coincides with the classical Bernoulli expression sqrt(p*(1 - p)), where p is the estimated
proportion of population units with y = 1 (see ‘Examples’).
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The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svySigma refer to the whole population. If specified, estimation domains
must be defined by a formula, following the usual syntactic and semantic rules (see e.g. svystatTM).

Argument fin.pop allows the users to select which standard deviation formula they prefer as esti-
mation target. If fin.pop = TRUE (the default) the finite population version of the standard deviation
formula will be used, namely the one with N - 1 at denominator in the expression of the variance
[Sarndal, Swensson, Wretman 92]. If fin.pop = FALSE the standard deviation formula with N at
denominator in the expression of the variance will be used.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default def f=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the sampling variance of the estimator under the actual sampling design
and the sampling variance that would be obtained for an ’equivalent’ estimator under a hypothetical
simple random sampling without replacement of the same size. To obtain an estimate of the design
effect comparing to simple random sampling “with replacement”, one must use deff="replace”.
See svystatTM for further details.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References
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See Also

Function svySigma2 to estimate the Population Variance of a numeric variable. Estimators of
Complex Analytic Functions of Totals and/or Means svystatL. Estimators of Totals and Means
svystatTM, Ratios between Totals svystatR, Shares svystatS, Ratios between Shares svystatSR,
Multiple Regression Coefficients svystatB, Quantiles svystatQ, and all of the above svystat.
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Examples

## Load sbs data and create a design object:

data(sbs)

sbsdes <- e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the population standard deviation of value added (variable
# 'va.imp2'):
svySigma(sbsdes, ~va.imp2, vartype = "cvpct”, conf.int = TRUE, deff = TRUE)

# Compare with the true value computed from the sampling frame ('sbs.frame'):
sqrt(var(sbs.frame$va.imp2))

# The same as above, by classes of macro-class of economic activity ('nace.macro'):
svySigma(sbsdes, ~va.imp2, ~nace.macro, vartype = "cvpct”, conf.int = TRUE)

# Compare with the true value computed from the sampling frame ('sbs.frame'):
sqrt(tapply(sbs.frame$va.imp2, sbs.frame$nace.macro, var))

## An example with a binary variable

# Load household data and create a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Build the indicator variable of the 'widowed' marital status:
des<-des.addvars(des, is.widowed = as.numeric(marstat == "widowed"))

# Estimate and store the population proportion of widowed people:

svystatTM(des, ~is.widowed, estimator = "Mean”)
# which of course is equal to what one would get directly:
svystatTM(des, ~marstat, estimator = "Mean”)

# Store only the estimated proportion
p.widowed <- coef(svystatTM(des, ~is.widowed, estimator = "Mean"))

# Now estimate the population variance of the binary variable 'is.widowed' *with
# fin.pop = FALSE*x, and verify that it *exactlyx equals the Bernoulli expression
# sqrt(p.widowed * (1 - p.widowed))

svySigma(des, ~is.widowed, fin.pop = FALSE, conf.int = TRUE)

sqrt(p.widowed * (1 - p.widowed))

# ...as it must be.

svySigma?2 Estimation of the Population Variance of a Variable

Description

Computes estimates and sampling errors of the Population Variance of a numeric variable (in sub-
populations too).
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svySigma2(design, y, by = NULL,

fin.pop = TRUE,
vartype = c("se"”, "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

n n

= FALSE)

## S3 method for class 'svySigma2'

coef(object,

)

## S3 method for class 'svySigma2'

SE(object,

## S3 method for class 'svySigma2'

VAR(object,

D)

## S3 method for class 'svySigma2'

cv(object,

## S3 method for class 'svySigma2'

confint(object,

Arguments

design

y
by

fin.pop

vartype

conf.int
conf.lev
deff

na.rm

object

Details

L)

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

Formula identifying the numeric interest variable.

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

If TRUE (the default) the estimation target is the finite population formula of the
variance, i.e. the one with the N - 1 denominator. If FALSE the estimation target
is the population variance with the N denominator.

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
("cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is @. 95.
Should the design effect be computed? The default is FALSE (see ‘Details’).

Should missing values (if any) be removed from the variable of interest? The
default is FALSE (see ‘Details’).

An object of class svySigma2.

Additional arguments to coef, ..., confint methods (if any).

Function svySigma2 computes estimates and sampling errors of the Population Variance of a nu-
meric variable. These estimates play an important role in many contexts, including sample size
guesstimation and power calculations.

As the Population Variance is a complex estimator, svySigma2 automatically linearizes it to esti-
mate its sampling variance. Automatic linearization is performed as function svystatL would do,
along the lines illustrated in [Zardetto, 15]. This, of course, also entails the usage of the residuals
technique when the input design object is calibrated (i.e. of class cal.analytic).
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The mandatory argument y identifies the variable of interest. The design variable referenced by y
must be numeric.

If variable y is binary (i.e. has only values @ and 1), the estimated Population Variance coincides
with the classical Bernoulli expression px (1 - p), where p is the estimated proportion of population
units with y = 1 (see ‘Examples’).

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svySigma?2 refer to the whole population. If specified, estimation domains
must be defined by a formula, following the usual syntactic and semantic rules (see e.g. svystatTM).

Argument fin.pop allows the users to select which population variance formula they prefer as esti-
mation target. If fin.pop = TRUE (the default) the finite population version of the variance formula
will be used, namely the one with the N - 1 denominator [Sarndal, Swensson, Wretman 92]. If
fin.pop = FALSE the population variance formula with the N denominator will be used.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default def f=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the sampling variance of the estimator under the actual sampling design
and the sampling variance that would be obtained for an ’equivalent’ estimator under a hypothetical
simple random sampling without replacement of the same size. To obtain an estimate of the design
effect comparing to simple random sampling “with replacement”, one must use deff="replace”.
See svystatTM for further details.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References
Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.
Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/j0s20150013.
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See Also

Function svySigma to estimate the Population Standard Deviation of a numeric variable. Estimators
of Complex Analytic Functions of Totals and/or Means svystatL. Estimators of Totals and Means
svystatTM, Ratios between Totals svystatR, Shares svystatS, Ratios between Shares svystatSR,
Multiple Regression Coefficients svystatB, Quantiles svystatQ, and all of the above svystat.

Examples

## Load sbs data and create a design object:

data(sbs)

sbsdes <- e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the population variance of value added (variable 'va.imp2'):
svySigma2(sbsdes, ~va.imp2, vartype = "cvpct”, conf.int = TRUE, deff = TRUE)

# Compare with the true value computed from the sampling frame ('sbs.frame'):
var(sbs.frame$va.imp2)

# The same as above, by classes of macro-class of economic activity ('nace.macro'):
svySigma2(sbsdes, ~va.imp2, ~nace.macro, vartype = "cvpct”, conf.int = TRUE)

# Compare with the true value computed from the sampling frame ('sbs.frame'):
tapply(sbs.frame$va.imp2, sbs.frame$nace.macro, var)

## An example with a binary variable

# Load household data and create a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Build the indicator variable of the 'widowed' marital status:
des<-des.addvars(des, is.widowed = as.numeric(marstat == "widowed"))

# Estimate and store the population proportion of widowed people:

svystatTM(des, ~is.widowed, estimator = "Mean")
# which of course is equal to what one would get directly:
svystatTM(des, ~marstat, estimator = "Mean")

# Store only the estimated proportion
p.widowed <- coef(svystatTM(des, ~is.widowed, estimator = "Mean"))

# Now estimate the population variance of the binary variable 'is.widowed' *with
# fin.pop = FALSE*x, and verify that it *exactlyx equals the Bernoulli expression
# p.widowed * (1 - p.widowed)

svySigma2(des, ~is.widowed, fin.pop = FALSE, conf.int = TRUE)

p.widowed * (1 - p.widowed)

# ...as it must be.

svystat Compute Many Estimates and Errors in Just a Single Shot
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Description

Computes many estimates and errors (e.g. for disparate estimation domains) in just a single shot,
primarily to use them in fitting GVF models. Can handle estimators of all kinds.

Usage
SVystat(deSign, kind = C(”TM”, ”RH’ Hsll’ HSRH’ HBH’ HQH’ HLH, ”Sigma”’ Ilsigmazll),
by = NULL, group = NULL, forGVF = TRUE,

combo = -1, ...)

## S3 method for class 'gvf.input.gr'
plot(x, ...)

## S3 method for class 'svystat.gr'

coef(object, ...)

## S3 method for class 'svystat.gr'

SE(object, ...)

## S3 method for class 'svystat.gr'

VAR(object, ...)

## S3 method for class 'svystat.gr'

cv(object, ...)

## S3 method for class 'svystat.gr'

deff(object, ...)

## S3 method for class 'svystat.gr'

confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

kind character specifying the summary statistics function to call: it may be 'TM'
(i.e. svystatTM, the default), 'R' (i.e. svystatR), 'S' (i.e. svystatS), 'SR’
(i.e. svystatSR), 'B' (i.e. svystatB), 'Q' (i.e. svystatQ), 'L' (i.e. svystatL),
'Sigma’' (i.e. svySigma), and 'Sigma2' (i.e. svySigma2).

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

group Formula specifying a partition of the population into "groups": the output will
be returned separately for each group. If NULL (the default option) the output is
returned as a whole.

forGVF Select TRUE (the default) if you want to use the output to fit a GVF model.
Otherwise, the output will be simply a set of summary statistics objects.

combo An integer which is only meaningful if by is passed. Requests to compute
outputs for all the domains determined by crossing the by variables up fo a given
order (see ‘Details’).
For function svystat, additional arguments to the summary statistic function
implied by kind. Otherwise, further arguments passed to or from other methods.

X The object of class gvf.input.gr to plot.

object An object of class svystat.gr containing survey statistics.
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Details

This function can compute al/l the summary statistics provided by ReGenesees, and is principally
meant to return a lot of them in just a single shot.

If forGVF = TRUE the output will be ready to feed ReGenesees GVF fitting infrastructure, otherwise
it will consist simply of a set of summary statistic objects.

Use argument kind to specify the summary statistic you need. The default value 'TM' selects
function svystatTM, which yields Totals and Means. All the arguments needed by the summary
statistic function implied by kind (e.g. argument y for svystatTM when kind = 'TM') will be
passed on through argument *. .. .

As usual in summary statistics, argument by can be used to request domain estimates.

The group formula (if any) specifies a way of partitioning the population into groups: the output
will be reported separately for each group. In the GVF context, a “grouped” output will permit to fit
separate GVF models inside different groups (and hence to compute separate variance predictions
for different groups).

Note that group and by share identical syntax and semantics as model formulae, despite they have
different purposes in function svystat (as explained above).

Parameter combo is only meaningful if by is passed. Its purpose is to allow computing estimates
and errors simultaneously for many estimation domains.

If the by formula involves n variables, specifying combo =m requests to compute outputs for all
the domains determined by all the interactions of by variables up to order m (with -1 <=m <= n), as

follows:

COMBO MEANING

m=-1....... 'no combo', i.e. treat 'by' formula as usual (the default);

m= 0....... 'order zero' combination, i.e. just a single domain:
the whole population;

m= 1....... 'order zero' plus 'order one' combinations, the latter being
all the marginal domains defined by 'by' variables;

m= n........ combinations of any order, the maximum being the one with

all 'by' variables interacting simultaneously.

The plot method can be used only when forGVF = TRUE and produces a matrix (or many matrices,
if group is passed) of scatterplots with polynomial smoothers.

Methods coef, SE, VAR, cv, deff, and confint can be used only when forGVF = FALSE, to extract
estimates and variability statistics.

Value

An object storing estimates and errors, whose detailed structure depends on input parameters’ val-
ues.

If forGVF = FALSE, a set of summary statistics possibly stored into a list (with class svystat.gr in
the most general case).

If forGVF = TRUE and argument group is not passed, an object of class gvf. input.

If forGVF = TRUE and argument group is passed, an object of class gvf.input.gr. This is a list of
objects of class gvf.input, each one pertaining to a different population group.

Author(s)

Diego Zardetto
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See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, gvf. input
as an alternative to prepare the input for GVF model fitting, GVF . db to manage ReGenesees archive
of registered GVF models, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots for
fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and simul-
taneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

# Load sbs data:
data(sbs)

# Create a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

S R I I I B I
# svystat as an alternative way to compute 'ordinary' summary statistics #
HHHEHHHEHEBEHEH AR AR AR
## Total number of employees

svystat(sbsdes, y=~emp.num, forGVF=FALSE)

# equivalent to:

svystatTM(sbsdes, y="emp.num)

## Average number of employees per enterprise
svystat(sbsdes,y=~emp.num,estimator="Mean", forGVF=FALSE)
# equivalent to:

svystatTM(shsdes, y=~emp.num,estimator="Mean")

## Average value added per employee by economic activity macro-sector

## (nace.macro):
svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~nace.macro, forGVF=FALSE)
# equivalent to:

svystatR(sbsdes,num=~va.imp2,den=~emp.num, by=~nace.macro)

## Counts of employees by classes of number of employees (emp.cl) crossed
## with economic activity macro-sector (nace.macro):

svystat(sbsdes, y=~emp.num,by=~emp.cl:nace.macro, forGVF=FALSE)

# equivalent to:

svystatTM(shsdes, y=~emp.num,by=~emp.cl:nace.macro)

## Provided forGVF = FALSE, you can use estimator.kind on svystat output:

stat<-svystat(shsdes,kind="R", num=~va.imp2,den=~emp.num,by=~emp.cl:nace.macro,
group=~region, forGVF=FALSE)

stat

estimator.kind(stat, sbsdes)

HHHEHHABEEEE AR AR
# Understanding syntax and semantics of argument 'combo' #
HHHEHHHEEE AR AR
# Load household data:

data(data.examples)

# Create a design object:
houdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
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weights=~weight)

# Add convenience variable 'ones' to estimate counts:
houdes<-des.addvars(houdes,ones=1)

## To facilitate understanding, let's for the moment keep forGVF = FALSE.
## Let's use estimates and errors of counts of individuals by sex and

## five age classes (age5c):

svystat (houdes, y="ones,by=~age5c: sex, forGVF=FALSE)

## Now let's play with argument 'combo':
# combo = -1
# -> 'no combo', i.e. treat 'by' formula as usual
svystat (houdes, y="~ones,by=~age5c: sex, forGVF=FALSE, combo=-1)

# combo = @
# -> 'order zero' combination, i.e. just a single domain: the whole population
svystat (houdes, y=~ones,by=~age5c: sex, forGVF=FALSE, combo=0)

# combo = 1

# -> 'order zero' plus 'order one' combinations, the latter being all the
# marginal domains defined by 'by' variables

svystat(houdes, y=~ones,by=~age5c: sex, forGVF=FALSE, combo=1)

# combo = 2
# -> since 'by' has 2 variables, this means combinations of any order up to
# the maximum

svystat(houdes, y=~ones,by=~age5c: sex, forGVF=FALSE, combo=2)

# combo = 3
# -> yields an error, as 'combo' cannot exceed the number of 'by' variables
# (2 in this example)
## Not run:
svystat(houdes, y=~ones,by=~age5c: sex, forGYF=FALSE, combo=3)

## End(Not run)

HHHEHHHEEEE AR R A
# svystat as an alternative way to prepare input data for GVF models #
HHHHHHARHEE A AR
## The same estimates and errors of the last example above, now with
## forGVF = TRUE: note the different output data format

svystat (houdes, y="ones,by=~age5c: sex, combo=2)

## Note that the agile command above is indeed equivalent to the following
## lengthier, cumbersome statement:
gvf.input(houdes,
svystatTM(houdes, y="~ones),
svystatTM(houdes, y=~ones,by=~age5c),
svystatTM(houdes, y=~ones,by=~sex),
svystatTM(houdes, y=~ones, by=~age5c:sex)

)

HHHEHHHEHHEHHHHAEA A
# Using argument 'group' to prepare input data #
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# for separate GVF models #

B S

## The same estimates and errors of the last example above, now prepared
## separately for different regions (regcod):

svystat(houdes, y=~ones,by=~age5c: sex, combo=2, group=~regcod)

## Again the same estimates and errors, prepared separately for groups
## defined crossing marital status (marstat) and region:
svystat (houdes, y=~ones,by=~age5c: sex,combo=2, group=~marstat:regcod)

## NOTE: Output has class "gvf.input.gr”. This will tell ReGenesees' GVF

#i fitting facilities to handle estimates and errors pertaining to
## different groups independently of each other.

## NOTE: Parameter combo allows svystat to gather a huge amount of estimates and

## errors in just a single slot, as the number of estimation domains grows
#it exponentially with the number of by variables.

## See, for instance, the following example:

out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex:regcod, combo=4)

dim(out)

head(out)

plot(out)

HHHHHHAREE R
# Minor details: accessor functions and plotting #
HHHEHHARHEE SRR R
## Accessor functions work only when forGVF = FALSE
# Average value added per employee by nace.macro:
out <- svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~nace.macro, forGVF=FALSE)
out
# Access CV values and confidence intervals:
cv(out)
confint(out)

# The same as above, separately for regions:

out <- svystat(sbsdes,kind="R", num=~va.imp2,den=~emp.num,by=~nace.macro,group=~region, forGVF=FALSE)
out

# Access CV values and confidence intervals:

cv(out)

confint(out)

## Plot function works only when forGVF = TRUE
# Counts of individuals by sex, marstat and age5c, and all their interactions:
out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex,combo=3)
# Plot GVF input:
plot(out)

# The same as above, grouped by region:

out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex,combo=3, group=~regcod)
# Plot GVF inputs, separately by groups (regions):

plot(out)
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svystatB

Estimation of Population Regression Coefficients in Subpopulations

Description

Computes estimates, standard errors and confidence intervals for Multiple Regression Coefficients

in subpopulations.

Usage

svystatB(design, model, by = NULL,

## S3 method
coef(object,
## S3 method
SE(object,

## S3 method
VAR(object,

## S3 method

n n

vartype = c("se"”, "cv", "cvpct"”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

na.rm

cv(object,

## S3 method
deff(object,
## S3 method
confint(object,

= FALSE)

for class 'svystatB'

)

for class 'svystatB'
for class 'svystatB'
L)

for class 'svystatB'

for class 'svystatB'

)

for class 'svystatB'

L)

## S3 method for class 'svystatB'

summary (object,

Arguments

design

model

by
vartype
conf.int
conf.lev

deff

na.rm

object

L)

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

Formula specifying the linear model whose coefficients have to be estimated.

Formula specifying the variables that define the "estimation domains" (see ‘De-
tails”). If NULL (the default option) estimates refer to the whole population.

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
('cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is @. 95.
Should the design effect be computed? The default is FALSE (see ‘Details’).

Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

An object of class svystatB.

Additional arguments to coef, ..., confint methods (if any).
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Details

This function computes weighted estimates for Multiple Regression Coefficients using suitable
weights depending on the class of design: calibrated weights for class cal.analytic and direct
weights otherwise. Standard errors are calculated using the Taylor linearization technique.

The mandatory argument model identifies the regression model whose population coefficients have
to be estimated (for details on model specification, see e.g. 1m). The design variables referenced
by model should be numeric or factor (variables of other types - e.g. character - will need to be
converted in advance, e.g. using function des.addvars).

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatB refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to compute
estimates for domains B1 and B2 separately, you have to call svystatQ twice. The design variables
referenced by by (if any) should be of type factor, otherwise they will be coerced. Note that, to
prevent obvious collinearity issues, the variables referenced by argument by must not appear in the
input model formula: otherwise, the program will stop and print an error message.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

For nonlinear estimators, the design effect is estimated on the linearized version of the estimator
(that is for the estimator of the total of the linearized variable, aka "Woodruff transform").

When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in model variables should be avoided. If na.rm=FALSE (the default) they gen-
erate an error. If na.rm=TRUE, observations containing NAs in model variables are dropped, and
estimates get computed on non missing values only. This implicitly assumes that missing values hit
interest variables completely at random: should this not be the case, computed estimates would be
biased.

The summary method invoked on regression coefficients (say b) estimated via svystatB, gives p-
values and significance codes for the component-wise test b = @. Such values are computed assum-
ing that the distribution of the regression coefficients estimators is normal (which is asymptotically
true for large scale surveys). This assumption has the advantage of overcoming the problem of
choosing the "right" statistic and assessing its "right" number of degrees of freedom when using
data from a complex survey (see e.g. [Korn, Graubard 1990]).
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Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values. In special cases (see Section ‘Collinearity, Aliasing and Impacts in Domain Estima-
tion’), a list object.

Collinearity, Aliasing and Impacts in Domain Estimation

Function svystatB overcomes problems arising from exact collinearity between model variables
via ‘aliasing’ (see the ‘Examples’ Section). Put simply, aliasing discards redundant (i.e. collinear)
regressors, yielding exact estimates and standard errors for non-aliased regression coefficients (namely,
the same results that would be obtained with a reduced - no collinearity - model). Note that for the
way aliasing works, the order of the terms in the linear model formula definitely matters.

Collinearity between variables may manifest itself in subsets of the sample, and with different
patterns across subsets. In domain estimation, this phenomenon can have an impact on the structure
of svystatB’s output. In fact, owing to aliasing, the estimable regression coefficients - for the same
input linear model - can be different across domains. In such cases, the domain estimates produced
by svystatB can no longer be stored in a data.frame, and the output object will instead be a
list (see the ‘Examples’ Section). Note that for these svystatB’s return objects (whose class is
svystatB.by.list) no variance extractors are currently available.

Note also that, for the reasons above, the usage of svystatB via function svystat is restricted: it
is not allowed to specify svystat’s arguments by and group when kind == "B".

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

European Commission, Eurostat, (2013). “Handbook on precision requirements and variance esti-
mation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579

Korn, E.L., Graubard, B.I. (1990) “Simultaneous testing of regression coefficients with complex
survey data: Use of Bonferroni t statistics”. The American Statistician, 44, 270-276.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystats,
Ratios between Shares svystatSR, Quantiles svystatQ, Complex Analytic Functions of Totals
and/or Means svystatL, and all of the above svystat.

Examples

HHHEHHABEEE AR R
# A simple regression model with a single predictor. #
# Let's compare the estimated regression coefficient #
# to its true value computed on the sampling frame. #
HHHHHHAREE R AR

# Load sbs data:
data(sbs)
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# Create a design object:

sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

# The population scatterplot of y vs emp.num reveals a linear

# behaviour:

plot(sbs.frame$emp.num, sbs.frames$y,
col=rgb(50,205,50,100,maxColorValue=255),pch=16)

# Compute the population fit of the linear regression
# model y~emp.num-1 (no intercept):
pop.fit<-1lm(y~emp.num-1,data=sbs.frame)
abline(pop.fit,col="red"”,lwd=2,1ty=2)

# The obtained population R-squared is quite significant
# (greater than 0.7):

pop.R2<-summary(pop.fit)$r.squared

pop.R2

# The population regression coefficient is:
B<-coef (pop.fit)
B

# Now let's estimate B on the basis of the sbs sample and

# let's build a 95% confidence interval for the obtained estimate:

svystatB(sbsdes,y~emp.num-1,conf.int=TRUE)
# Thus, the confidence interval covers the true value of B.

# Notice that using ReGenesees Complex Estimators function
# svystatL, you would have obtained exactly the same results:
sbsdes<-des.addvars(sbsdes, y4emp.num=yxemp.num,
emp.num.sg=emp.num*2)
svystatL (sbsdes,expression(y4emp.num/emp.num.sq),
conf.int=TRUE)

HHHH A
# A multiple regression example. #
B

Let's estimate the coefficients of a model describing
value added (variable va.imp2) as a linear function
of number of employees by region and of nace.macro:

O T # H H

# To obtain p-values and significance codes for the
# component-wise test t=0, you can exploit the

# summary method:

summary (b)

# Notice that estimators normality is assumed.

B S S S R s

<- svystatB(sbsdes,va.imp2~emp.num:region+nace.macro,vartype="cvpct")

svystatB
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# Obtaining domain means via regression. #
HHHHHHAREEE R

# The domain mean of a numeric variable can be thought
# as a regression coefficient. Suppose you need the

# average number of employees by macro-sector, you can
# do as follows:

svystatB(sbsdes, emp.num~nace.macro-1)

# ...which, indeed, gives exactly the same results of:
svystatTM(sbsdes, y=~emp.num,by=~nace.macro,estimator="Mean")

HHHHHHAEEE
# Handling collinearity. #
SRR A

# Function svystatB overcomes problems arising from exact

# collinearity between model variables via 'aliasing'.

# To understand how aliasing works, let's build a manifestly
# redundant linear model:

svystatB(sbsdes, y~emp.num+I(2*emp.num)+I(3*va.imp2)+va.imp2-1)

# The obtained warning message shows that order definitely matters
# in aliasing, indeed:
svystatB(sbsdes,y~emp.num+I(2*xemp.num)+va.imp2+I(3*va.imp2)-1)

# Notice also that aliasing gives exact estimates and standard errors
# for non-aliased regression coefficients (i.e. the same results that
# would be obtained with a reduced - no collinearity - model):
svystatB(sbsdes,y~emp.num+va.imp2-1)

SHEHHHHHHEEHEEHHEEHEEHBHHHEHREEEEHEEHE R
# Handling missing values in model variables. #
AR AR AR

# Load fpcdat:
data(fpcdat)

# Now, let's introduce some NAs in survey data:
fpcdat$ylc(1,3)I<-NA
fpcdat$x[c(3,5)I<-NA

# Create a design object:
fpcdes<-e.svydesign(data=fpcdat, ids=~psu+ssu, strata=~stratum,weights="w,
fpc=~fpci+fpc2)

# Let's estimate regression coefficients of model z~y+x
# na.rm=FALSE (the default) leads to an error:
## Not run:
svystatB(fpcdes,z~y+x)

## End(Not run)

# whereas na.rm=TRUE simply drops all the cases
# with missing data in model variables:
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svystatB(fpcdes,z~y+x,na.rm=TRUE)

HHHEHHAEEEEE R
# Handling non positive weights. #
HHHEHHEHEE A

# Non positive direct weights are not allowed, anyway some
# calibrated weights can sometimes turn out to be <= @. The
# corrisponding observations would be dropped by svystatB.

# Prepare a template for population totals:
pop<-pop.template(fpcdes,~z+pl.domain-1)

# Fill it with silly values in order to obtain some negative g-weights:
pop[1,1<-c(20000,90,10,90)

# Calibrate:
fpccal<-e.calibrate(fpcdes, pop)

# We got 2 negative calibrated weights:
g.range(fpccal)
sum(weights(fpccal)<=0)

# Now, let's estimate regression coefficients of model z~y+x
# and pay attantion to the warnings:
svystatB(fpccal, z~y+x,na.rm=TRUE)

HHHHHHEEEEE AR AR AR
# Domain estimates of simple and multiple regression coefficients. #
B S S R

# Estimate the coefficients of the simple regression y ~ emp.num by domains
# obtained crossing region and nace.macro:

bb <- svystatB(sbsdes, model= va.imp2 ~emp.num, by= ~region:nace.macro)

bb

# Obtain p-values and significance codes via the summary method:
summary (bb)

# You have yet another method to estimate domain means of numeric variables.
# Suppose you need the average number of employees by macro-sector, you can
# do as follows:

svystatB(sbsdes, model= emp.num ~1, by= ~nace.macro)

# ...which gives exactly the same results of:
svystatB(sbsdes, model= emp.num ~nace.macro -1)

# ...and, of course, of:

svystatTM(sbsdes, y= ~emp.num, by= ~nace.macro, estimator= "Mean")

# One multiple regression example:
svystatB(sbsdes, model =y ~ va.imp2 + emp.num, by = ~region:nace.macro)
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# A case of differential aliasing across domain (note the warning messages).
# A list-like object is returned:
svystatB(sbsdes, va.imp2 ~emp.num:emp.cl + nace.macro, by= ~region:public)

svystatL

Estimation of Complex Estimators in Subpopulations

Description

Computes estimates, standard errors and confidence intervals for Complex Estimators in subpopu-
lations. A Complex Estimator can be any analytic function of (Horvitz-Thompson or Calibration)
estimators of Totals and Means.

Usage

svystatlL (design, expr, by = NULL,

## S3 method
coef(object,
## S3 method
SE(object,

## S3 method
VAR(object,

## S3 method
cv(object,

## S3 method
deff(object,
## S3 method
confint(object,

Arguments

design

expr
by

vartype
conf.int
conf.lev

deff

na.rm

object

n n

vartype = c("se"”, "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

for class 'svystatL'

)

for class 'svystatL'
for class 'svystatL'
L)

for class 'svystatL'

for class 'svystatL'

)

for class 'svystatL'

)

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

R expression defining the Complex Estimator (see ‘Details’).

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
("cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is 0. 95.
Should the design effect be computed? The default is FALSE (see ‘Details’).

Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

An object of class svystatL.
Additional arguments to coef, ..., confint methods (if any).
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Details

This function computes weighted estimates for Complex Estimators using suitable weights depend-
ing on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors are calculated using the Taylor linearization technique.

Function svystatL can handle any user-defined estimator that can be expressed as an analytic func-
tion of Horvitz-Thompson or Calibration estimators of Totals or Means, by automatically linearizing
them (see [Zardetto, 15] for details).

The mandatory argument expr, which identifies the Complex Estimator, must be an object of class
expression. It can be specified just a single Complex Estimator at a time, i.e. length(expr) must
be equal to 1. Any analytic function of estimators of Totals and Means is allowed.

Inside expr the estimator of the Total of a variable is simply represented by the name of the variable
itself. To represent the estimator of the Mean of a variable y, the expression y/ones has to be used
(ones being the convenience name of an artificial variable - created on-the-fly - whose value is 1
for each elementary sampling unit, so that its Total estimator actually estimates the size of the pop-
ulation). Variables referenced inside expr must obviously belong to design and must be numeric.
At a minimal level, svystatL can be used to estimate Totals, Means, Ratios, etc., thus reproducing
the same results achieved by using the corresponding dedicated functions svystatTM, svystatR,
etc. For instance, calling svystatL (design, expression(y/x)) is equivalent to invoking svystatR(design,
~y, ~x), while using svystatL(design, expression(y/ones)) or

svystatTM(design, ~y, estimator = "Mean") achieves an identical result.

The mathematical expression of a Complex Estimator, as specified by argument expr, can involve
‘parameters’, that is symbols representing given, non-random, scalar, numeric values. For each
parameter appearing in expr, the value corresponding to its symbol will be searched following R
standard scoping rules, see e.g. the first example in Section ‘Examples’ for a practical illustration.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatL refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatL twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

For nonlinear estimators, the design effect is estimated on the linearized version of the estimator
(that is for the estimator of the total of the linearized variable, aka "Woodruff transform").

When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.
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Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Warning

When the linearized variable corresponding to a Complex Estimator is ill defined (because the esti-
mator gradient is singular at the Taylor series expansion point), SE estimates returned by svystatL
are NaN.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Zardetto, D. (2015) “ReGenesees: an Advanced R System for Calibration, Estimation and Sam-
pling Error Assessment in Complex Sample Surveys”. Journal of Official Statistics, 31(2), 177-203.
doi:10.1515/jos20150013.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

European Commission, Eurostat, (2013). “Handbook on precision requirements and variance esti-
mation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystats,
Ratios between Shares svystatSR, Multiple Regression Coefficients svystatB, Quantiles svystatQ,
and all of the above svystat.

Examples

HEHHHHHHHEH AR AR
# A first example: the Ratio Estimator of a Total. #
HHHEHHHEHEE A

# Creation of a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Recall that ratio estimators of Totals rely on auxiliary

# information. Thus, suppose you want to estimate the total
# of income and suppose you know from an external source that
# the population size is, say, 1E6:

pop <- 1E6
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# To obtain the ratio estimator of total income, you can do as follows:
## A) Directly plug the numeric value of pop into expr
svystatL(des, expression(1E6 * (income/ones)), vartype = "cvpct”)

## B) Treat pop as a parameter and let R find its actual value (1E6) inside
#i# the calling environment of svystatL (the .GlobalEnv)
svystatL(des, expression(pop * (income/ones)), vartype = "cvpct"”)

# NOTE: Method B) can be very useful for simulation purposes, as it avoids
# having to directly type in numbers when invoking svystatL (something
# that only a human in an interactive R session could do).

# By comparing the latter result with the ordinary estimator of the mean...
svystatTM(des, ~income, vartype="cvpct")

# ...one can appreciate the variance reduction stemming from the correlation
# between numerator and denominator:
Corr(des, expression(income), expression(ones))

HHHHHHAEEEHE R AR
# A complex example: estimation of the Population Standard #
# Deviation of a variable. #
HHHEHHEEHEEEE R R

# Creation of another design object:

data(sbs)

sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Suppose you want to estimate the standard deviation of the
# population distribution of value added (va.imp2):
sbsdes<-des.addvars(sbsdes,va.imp2.sq=va.imp2-2)
svystatL (sbsdes,expression( sqrt( (ones/(ones-1))*
( (va.imp2.sq/ones)-(va.imp2/ones)*2 )
)
), conf.int=TRUE)

# The estimate above and the associated confidence interval (which
# involves the estimate of the sampling variance of the complex

# estimator) turn out to be very sound: indeed the TRUE value of the
# parameter is:

sd(sbs.frame$va.imp2)

HHHHHE
# Estimation of Geometric and Harmonic Means. #
S

## 1. Harmonic Mean

# Recall that the the harmonic mean of a positive variable,
# say z, can be computed as 1/mean(1/z). Thus, for instance,
# to get a survey estimate of the harmonic mean of emp.num,
# you can do as follows:
sbsdes<-des.addvars(sbsdes,emp.num.m1=1/emp.num)
h<-svystatL(sbsdes,expression( ones/emp.num.ml ),



svystatL 189

conf.int=TRUE)

# You can easily verify that the obtained estimate is close
# to the true value (as computed from the sampling frame) and
# covered by the 95% confidence interval:

1/mean(1/sbs. frame$emp.num)

## 2. Geometric Mean

# Recall that the the geometric mean of a non negative variable,

# say z, can be computed as exp(mean(log(z))). Thus, for instance,

# to get a survey estimate of the geometric mean of emp.num,

# you can do as follows:

sbsdes<-des.addvars(sbsdes, log.emp.num=1log(emp.num))

g<-svystatL(sbsdes,expression( exp(log.emp.num/ones) ),
conf.int=TRUE)

g

# You can easily verify that the obtained estimate is close
# to the true value (as computed from the sampling frame) and
# covered by the 95% confidence interval:
exp(mean(log(sbs.frame$emp.num)))

## 3. Comparison with the arithmetic mean

# If you compute the arithmetic mean estimate:
a<-svystatTM(sbsdes,~emp.num,estimator="Mean")
a

#...you easily verify the expected hierachy,
# i.e. harmonic <= geometric <= arithmetic:
H<-coef (h)

G<-coef(g)

A<-coef(a)

stopifnot(H <= G && G <= A)

HEHHHHHHEEHEHEEEEEEH A EHEBHEEEERHHHHHREEEEHEEHEEHHEHHHREHE
# Further complex examples: estimation of Population Regression #
# Coefficients (for a model with a single predictor). #
S HHHHHE AR P BB HE R HHE R EEHEEHHE S HEHHE

# Suppose you want to estimate of the slope of the population
# regression y vs. emp.num. You can do as follows:

## 1. No intercept model: y ~ emp.num - 1
# Get survey estimate:
sbsdes<-des.addvars(sbsdes, y4emp.num=yxemp.num,
emp.num. sg=emp.num*2)
svystatL (sbsdes,expression(y4emp.num/emp.num.sq),
conf.int=TRUE)

# Compare with the actual slope from the population fit:
pop.fit<-Im(y~emp.num-1,data=sbs.frame)

coef (pop.fit)

# ...a very good agreement.
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H

## 2. The model with intercept: y ~ emp.num
# Get survey estimate:
svystatL(sbsdes,expression( (ones*yd4emp.num - y*emp.num)/
(ones*emp.num.sq - emp.num*2)
),
conf.int=TRUE)

# Compare with the actual slope from the population fit:
pop.fit<-Im(y~emp.num,data=sbs.frame)
coef (pop.fit)

# ...again a very good agreement.

Notice that both results above could be obtained also
by using ReGenesees specialized function svystatB:

## 1.
svystatB(sbsdes,y~emp.num-1,conf.int=TRUE)

## 2.
svystatB(sbsdes,y~emp.num,conf.int=TRUE)

Notice also - incidentally - that the estimate of the intercept
turns out to be less accurate than the one we obtained for the slope,

with about a 6% overestimation.

svystatQ

svystatQ Estimation of Quantiles in Subpopulations

Description

Calculates estimates, standard errors and confidence intervals for Quantiles of numeric variables in
subpopulations.

Usage

svystatQ(design, y, probs = c(0.25, 0.5, 0.75), by = NULL,

vartype = c("se", "cv”, "cvpct”, "var"),
conf.lev = .95, na.rm = FALSE,
ties=c("discrete”, "rounded"))

## S3 method for class 'svystatQ'

coef(object, ...)

## S3 method for class 'svystatQ'
SE(object, ...)

## S3 method for class 'svystatQ'
VAR(object, ...)

## S3 method for class 'svystatQ'
cv(object, ...)

## S3 method for class 'svystatQ'
confint(object, ...)
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Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
y Formula defining the interest variable.
probs Vector of probability values to be used to calculate the quantiles estimates. The
default value selects estimates of quartiles.
by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.
vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
("cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').
conf.lev Probability specifying the desired confidence level: the default value is 0. 95.
na.rm Should missing values (if any) be removed from the variable of interest? The
default is FALSE (see ‘Details’).
ties How should duplicated observed values be treated? Select 'discrete’ for a
genuinely discrete interest variable and 'rounded' for a continuous one.
object An object of class svystatQ.
Additional arguments to coef, ..., confint methods (if any).
Details

This function calculates weighted estimates for the Quantiles of a quantitative variable using suit-
able weights depending on the class of design: calibrated weights for class cal.analytic and
direct weights otherwise.

Standard errors are calculated using the so-called "Woodruff method" [Woodruff 52][Sarndal, Swens-
son, Wretman 92]: (i) first a confidence interval (at a given confidence level 1-a) is constructed for
the relative frequency of units with values below the estimated quantile, (ii) then the inverse of the
estimated cumulative relative frequency distribution (ECDF) is used to map this interval to a con-
fidence interval for the quantile, (iii) lastly the desired standard error is estimated by dividing the
length of the obtained confidence interval by the value 2*gnorm(1-a/2). Notice that the procedure
above builds, in general, asymmetric confidence intervals around the estimated quantiles.

The mandatory argument y identifies the variable of interest, that is the variable for which estimates
of quantiles have to be calculated. The design variable referenced by y must be numeric.

The optional argument probs specifies the probability values (@.001<=probs[i]<=0.999) corre-
sponding to the quantiles one wants to estimate; the default option selects quartiles.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatQ refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatQ twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be . 95.
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Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Argument ties addresses the problem of how to treat duplicated observed values (if any) when
computing the ECDF. Option 'discrete’ (the default) is appropriate when the variable of interest
is genuinely discrete, while 'rounded’ is a better choice for a continuous variable, i.e. when
duplicates stem from rounding. In the first case the ECDF will show a vertical step corresponding
to a duplicated value, in the second a smoother shape will be achieved by linear interpolation.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Woodruff, R.S. (1952) “Confidence Intervals for Medians and Other Position Measures”, Journal
of the American Statistical Association, Vol. 47, No. 260, pp. 635-646.

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystatS,
Ratios between Shares svystatSR, Multiple Regression Coefficients svystatB, Complex Analytic
Functions of Totals and/or Means svystatL, and all of the above svystat.

Examples

# Creation of a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Estimate of the deciles of the income variable for
# the whole population:
svystatQ(des,~income,probs=seq(0.1,0.9,0.1),ties="rounded”)

# Another design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the median value added

# for economic activity macro-sectors:

svystatQ(des,~va.imp2,probs=0.5,by=~nace.macro,
ties="rounded"”,vartype="cvpct")
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# Estimation of the Interquartile Range (IQR) of the number
# of employees for economic activity macro-sectors:
apply(svystatQ(des,~emp.num,probs=c(@.25,0.75),by=~nace.macro)[,2:3],1,diff)

svystatR

Estimation of Ratios in Subpopulations

Description

Calculates estimates, standard errors and confidence intervals for Ratios between Totals in subpop-

ulations.

Usage

svystatR(design, num, den, by = NULL, cross = FALSE,

n n

vartype = c("se"”, "cv", "cvpct"”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

## S3 method for class 'svystatR'

coef(object, ...)
## S3 method for class 'svystatR'
SE(object, ...)
## S3 method for class 'svystatR'
VAR(object, ...)
## S3 method for class 'svystatR'
cv(object, ...)
## S3 method for class 'svystatR'
deff(object, ...)
## S3 method for class 'svystatR'
confint(object, ...)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-

num
den

by

Cross

vartype

conf.int

conf.lev
deff

pling design metadata.
Formula defining the numerator variables for the ratios.
Formula defining the denominator variables for the ratios.

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

Should ratios be estimated for all the pairs of variables in 'num' and 'den'? The
default is FALSE, meaning that ratios get estimated parallel-wise (see ‘Details’).

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation (' cvpct'), or variance ('var').

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is 0. 95.
Should the design effect be computed? The default is FALSE (see ‘Details’).
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na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).
object An object of class svystatR.
Additional arguments to coef, ..., confint methods (if any).
Details

This function computes weighted estimates for Ratios between Totals using suitable weights de-
pending on the class of design: calibrated weights for class cal.analytic and direct weights
otherwise. Standard errors are calculated using the Taylor linearization technique.

The mandatory argument num (den) identifies the variables whose totals appear as numerators (de-
nominators) in the Ratios: the corresponding formula must be of the type num=~num.1+ ...
+num.k (den=~den.1+ ... +den.1l). The design variables referenced by num (den) must be
numeric.

If cross=TRUE, the function computes estimates for all the Ratios between pairs of variables coming
from num and den (that is kx1 estimates for the formulae above). If, on the contrary, cross=FALSE
(the default), Ratios get estimated parallel-wise and R recycling rule is applied whenever k!=1: for
the formulae above, this generates r Ratios, where r=max(k,1).

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatR refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatR twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the
estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased. Notice that the na.rm=TRUE option is only allowed for
a single Ratio, i.e. if num and den reference a single interest variable.



svystatR 195

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Warning

It can happen that, in some subpopulations, the estimate of the Total of some den variables turns
out to be zero. In such cases svystatR estimates are either NaN or Inf, and NaN is returned for the
corresponding SE estimates.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

European Commission, Eurostat, (2013). “Handbook on precision requirements and variance esti-
mation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579

See Also

Estimators of Totals and Means svystatTM, Shares svystatS, Ratios between Shares svystatSR,
Multiple Regression Coefficients svystatB, Quantiles svystatQ, Complex Analytic Functions of
Totals and/or Means svystatL, and all of the above svystat.

Examples

# Creation of a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the average value added per employee
# at the nation level:
svystatR(des,~va.imp2,~emp.num)

# The same as above by economic activity macro-sector:
svystatR(des,~va.imp2,~emp.num,~nace.macro,vartype="cvpct")

# Another design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Estimation of the ratios y1/x1, y1/x2, y2/x1 and y2/x2 by region,
# notice the use of argument cross:
svystatR(des,~yl+y2,~x1+x2,by=~regcod, cross=TRUE)

# ... compare the latter with the default (i.e. cross=FALSE)
svystatR(des,~yl+y2,~x1+x2,by=~regcod)
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# Estimation of the ratios z/x1, z/x2 e z/x3
# for the whole population (notice the recycling rule):
svystatR(des,~z,~x1+x2+x3,conf.int=TRUE)

# Estimators of means can be thought as

# estimators of ratios:
svystatTM(des,~income,estimator="Mean")
svystatR(des.addvars(des,ones=1),num=~income, den=~ones)

B S S s S
# Household-level averages in household surveys. #
HHH AR A

# For an introduction on this topic, see ?svystatTM examples.

# Load survey data:
data(data.examples)

# Define the survey design (variable famcod identifies households)
exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~stratum,
weights=~weight)

# Collapse strata to eliminate lonely PSUs
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

# Now add new convenience variables to the design object:
## 'ones': to estimate individuals counts
## 'housize': to classify individuals by household size
## 'houdensity': to estimate households counts
exdes<-des.addvars(exdes,
ones=1,
housize=factor(ave(famcod, famcod,FUN = length)),
houdensity=ave(famcod, famcod,FUN = function(x) 1/length(x))
)

# Estimate the average number of household components by region:
svystatR(exdes,num=~ones,den=~houdensity,by=~regcod,
vartype="cvpct”,conf.int=TRUE)

# Estimate the average household income for the whole population:
svystatR(exdes,num=~income, den=~houdensity,vartype="cvpct"”,
conf.int=TRUE)

# ...for household size categories:
svystatR(exdes, num=~income,den=~houdensity, by=~housize,
vartype="cvpct”,conf.int=TRUE)

# ...and for province and household size:
svystatR(exdes,num=~income, den=~houdensity,by=~housize:procod,
vartype="cvpct")

svystatS Estimation of Shares in Subpopulations
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Description
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Calculates estimates, standard errors and confidence intervals for Shares of a numeric variable
within subpopulations.

Usage

svystatS(design, y, classes, by = NULL,

## S3 method

vartype = c("se",
conf.int = FALSE, conf.lev =

na.rm

n

"oy , “CVpCt”, ”Var”),
0.95, deff = FALSE,

= FALSE)

for class 'svystatS'

coef(object, ...)

## S3 method for class 'svystatS'

SE(object,

## S3 method for class 'svystatS'

VAR(object, ...)

## S3 method for class 'svystatS'

cv(object,

## S3 method for class 'svystatS'

deff(object, ...)

## S3 method for class 'svystatS'

confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula defining the interest variable.

classes Formula defining the population groups whose y shares must be estimated.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (' se', the default), coefficient of variation
('cv'), percent coefficient of variation (' cvpct'), or variance ('var').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0. 95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

object An object of class svystatsS.
Additional arguments to coef, ..., confint methods (if any).

Details

This function computes weighted estimates for Shares of a numeric variable, using suitable weights
depending on the class of design: calibrated weights for class cal.analytic and direct weights
otherwise. Standard errors are calculated using the Taylor linearization technique.

Shares are a special case of Ratios.

Therefore, at the price of some additional (and possibly

heavy) data preparation effort, shares could also be estimated using function svystatR. However,
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svystatS makes estimation by far easier, in particular when shares have to be estimated for many
population groups and/or within many domains.

The mandatory argument y identifies the variable of interest, that is the variable for which estimates
of shares have to be calculated. The design variable referenced by y must be numeric.

The mandatory argument classes identifies population groups whose shares of y have to be es-
timated. The design variables referenced by classes must be of class factor. Groups can be
identified by crossing factors, e.g. statement classes = ~C1:C2 selects as groups the subpopula-
tions determined by crossing the levels of factors C1 and C2.

The optional argument by specifies the variables defining the "estimation domains", that is the
subpopulations within which shares of y by classes must be estimated. If by=NULL (the default
option), the estimates produced by svystatS refer to the whole population. Estimation domains
must be defined by a formula: for instance the statement by=~B1:B2 selects as estimation domains
the subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a for-
mula like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2:
if you need to compute estimates for domains B1 and B2 separately, you have to call svystatS
twice. The design variables referenced by by (if any) should be of type factor, otherwise they
will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default def f=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the
estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value
An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto
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References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

European Commission, Eurostat, (2013). “Handbook on precision requirements and variance esti-
mation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Ratios between
Shares svystatSR, Multiple Regression Coefficients svystatB, Quantiles svystatQ, Complex An-
alytic Functions of Totals and/or Means svystatL, and all of the above svystat.

Examples

# Load household data:
data(data.examples)

# Create a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Add convenience variable 'ones' to estimate counts:
des<-des.addvars(des,ones=1)

### Simple examples to illustrate the syntax:
# Shares of income for sex classes:
svystatS(des, y=~income, classes=~sex, vartype="cvpct")

# Shares of income for sex and 5 age classes:
svystatS(des, y=~income, classes=~agebc:sex, vartype="cvpct")

# Shares of income for sex classes within region domains:
svystatS(des, y=~income, classes=~sex, by=~regcod, vartype="cvpct")

# Shares of income for sex classes within domains defined by crossing region and
# 5 age classes:
svystatS(des, y=~income, classes=~sex, by=~age5c:regcod, vartype="cvpct")

# MARGINAL, CONDITIONAL and JOINT relative frequencies (see also ?svystatTM)
# MARGINAL: e.g. proportions of people by provinces:
svystatS(des, y=~ones, classes=~procod, vartype="cvpct")
# CONDITIONAL: e.g. proportions of people by sex within provinces:
svystatS(des, y=~ones, classes=~sex, by=~procod, vartype="cvpct")
# JOINT: e.g. proportions of people cross-classified by sex and procod:
svystatS(des, y=~ones, classes=~sex:procod, vartype="cvpct")

### One more complicated example:
HHHEHHHEEE AR AR
# Shares of income held by people for income quintiles #
HHHHHHARE AR AR
# First: estimate income quintiles
inc.Q5 <- svystatQ(des, y=~income, probs=seq(@.2, 0.8, 0.2), ties="rounded")
inc.Q5
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# Second: add a convenience factor variable classifying people by income
# quintiles
des<-des.addvars(des, quintile = cut(income, breaks = c(@, coef(inc.Q5), Inf),
labels = 1:5, include.lowest=TRUE)
)

# Third: estimate income shares by income quintiles
svystatS(des, y=~income, classes=~quintile, vartype="cvpct")

### NOTE: Procedure above yields *correct point estimates* of income shares by

#iH# income quintiles, while *variance estimation is approximated* since
H#iH# we neglected the sampling variability of the estimated quintiles.
svystatSR Estimation of Share Ratios in Subpopulations
Description

Calculates estimates, standard errors and confidence intervals for Ratios between Shares of a nu-
meric variables in subpopulations.

Usage

svystatSR(design, y, classes, by = NULL,
vartype = c("se", "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

na.rm = FALSE)

## S3 method for class 'svystatSR'

coef(object, ...)

## S3 method for class 'svystatSR'
SE(object, ...)

## S3 method for class 'svystatSR'
VAR(object, ...)

## S3 method for class 'svystatSR'
cv(object, ...)

## S3 method for class 'svystatSR'
deff(object, ...)
## S3 method for class 'svystatSR'

confint(object, ...)
Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula defining the interest variable.

classes Formula defining the population groups among which ratios of y shares must be
estimated.

by Formula specifying the variables that define the "estimation domains". If NULL

(the default option) estimates refer to the whole population.
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vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

conf.int Compute confidence intervals for the estimates? The default is FALSE.
conf.lev Probability specifying the desired confidence level: the default value is 0. 95.
deff Should the design effect be computed? The default is FALSE (see ‘Details’).
na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).
object An object of class svystatSR.
Additional arguments to coef, ..., confint methods (if any).
Details

This function computes weighted estimates for Ratios between Shares of a numeric variable, using
suitable weights depending on the class of design: calibrated weights for class cal.analytic and
direct weights otherwise. Standard errors are calculated using the Taylor linearization technique.

Ratios of Shares are a special case of Ratios. Therefore, at the price of some additional and heavy
data preparation effort, ratios of shares could also be estimated using function svystatR. However,
svystatSR makes estimation by far easier, in particular when share ratios have to be estimated for
many population groups and/or within many domains.

The mandatory argument classes identifies population groups whose ratios of y shares have to
be estimated. Note that ratios of shares will be estimated and returned for all the ordered pairs of
population groups defined by classes. Therefore, if classes defines G groups, svystatSR will
have to compute estimates and sampling errors for G * (G - 1) share ratios. To prevent combinato-
rial explosions (e.g. G = 20 would generate 380 share ratios), classes formula can reference just a
single design variable, which must be a factor.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatSR refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatSR twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf . lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the
estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
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currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates get computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this not be the
case, computed estimates would be biased.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.

European Commission, Eurostat, (2013). “Handbook on precision requirements and variance esti-
mation for ESS households surveys: 2013 edition”, Publications Office. doi: 10.2785/13579

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Shares svystats,
Multiple Regression Coefficients svystatB, Quantiles svystatQ, Complex Analytic Functions of
Totals and/or Means svystatL, and all of the above svystat.

Examples

# Load household data:
data(data.examples)

# Create a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Add convenience variable 'ones' to estimate counts:
des<-des.addvars(des,ones=1)

### Simple examples to illustrate the syntax:
# Population sex ratios:
svystatSR(des, y=~ones, classes=~sex, vartype="cvpct”)

# Population sex ratios within provinces:
svystatSR(des, y=~ones, classes=~sex, by=~procod, vartype="cvpct")

# Ratios of population shares for 5 age classes:
# NOTE: This yields 5%(5-1)=20 ratios
svystatSR(des, y=~ones, classes=~age5c, vartype="cvpct")
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### One more complicated example:
HEHHHHHHEHEEH AR R
# Ratios between shares of income held by people for income quintiles #
HHHEHHHEHEE AR AR A

# First: estimate income quintiles
inc.Q5 <- svystatQ(des, y=~income, probs=seq(0.2, 0.8, 0.2), ties="rounded")
inc.Q5

# Second: add a convenience factor variable classifying people by income
# quintiles
des<-des.addvars(des, quintile = cut(income, breaks = c(@, coef(inc.Q5), Inf),
labels = 1:5, include.lowest=TRUE)
)

# Third: estimate income shares by income quintiles
QS5 <- svystatSR(des, y=~income, classes=~quintile, vartype="cvpct")
QS5

### Therefore, for instance, the *S80/S20 income quintile share ratio* is:
S80.20 <- QS5["quintile5/quintilel”,]
S80.20

### NOTE: Procedure above yields *correct point estimates* of income quintile

#iH# share ratios, while *variance estimation is approximated* since
it we neglected the sampling variability of the estimated quintiles.
svystatTM Estimation of Totals and Means in Subpopulations
Description

Computes estimates, standard errors and confidence intervals for Totals and Means in subpopula-
tions.

Usage

svystatTM(design, y, by = NULL, estimator = c("Total”, "Mean"),
vartype = c("se", "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

na.rm = FALSE)

## S3 method for class 'svystatTM'

coef(object, ...)

## S3 method for class 'svystatTM'
SE(object, ...)

## S3 method for class 'svystatTM'
VAR(object, ...)

## S3 method for class 'svystatTM'
cv(object, ...)

## S3 method for class 'svystatTM'
deff(object, ...)
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## S3 method for class 'svystatTM'

confint(object, ...)
Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-

pling design metadata.

y Formula defining the variables of interest. Only numeric or factor variables
are allowed.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

estimator character specifying the desired estimator: it may be 'Total' (the default) or
'Mean’.

vartype character vector specifying the desired variability estimators. It is possible to

choose one or more of: standard error ('se', the default), coefficient of variation
("cv'"), percent coefficient of variation ('cvpct'), or variance ('var"').

conf.int Compute confidence intervals for the estimates? The default is FALSE.
conf.lev Probability specifying the desired confidence level: the default value is 0. 95.
deff Should the design effect be computed? The default is FALSE (see ‘Details’).
na.rm Should missing values (if any) be removed from the variables of interest? The

default is FALSE (see ‘Details’).
object An object of class svystatTM.

Additional arguments to coef, ..., confint methods (if any).

Details

This function computes weighted estimates for Totals and Means using suitable weights depending
on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors for nonlinear estimators (e.g. calibration estimators) are calculated using the Taylor
linearization technique.

The mandatory argument y identifies the variables of interest, that is the variables for which esti-
mates are to be calculated. The corresponding formula should be of the type y=~vari+...+varn.
The design variables referenced by y should be numeric or factor (variables of other types -
e.g. character - will generate and error). It is admissible to specify for y "mixed" formulae that
simultaneously contain quantitative (numeric) variables and qualitative (factor) variables.

To override the restriction to formulae of the type y=~var1+. . .+varn, the Asls operator I() can be
used (see ‘Examples’). Though the latter opportunity could appear quite useful in some occasion,
actually it should be almost always possible to find a work-around by using other functions of the
ReGenesees package.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatTM refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatTM twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.
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The optional argument estimator makes it possible to select the desired estimator. If
estimator="Total” (the default option), svystatTM calculates, for a given variable of interest
vark, the estimate of the total (when vark is numeric) or the estimate of the absolute frequency
distribution (when vark is factor). Similarly, if estimator="Mean", the function calculates the es-
timate of the mean (when vark is numeric) or the the estimate of the relative frequency distribution
(when vark is factor).

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 9. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling “with replacement”, one must use deff="replace”.

Understanding what ’equivalent’ estimator actually means is straightforward when dealing with
Horvitz-Thompson estimators of Totals and Means. This is not the case when, on the contrary, the
estimator to which the deff refers is a nonlinear estimator (e.g. for Calibration estimators of Totals
and Means). In such cases, the standard approach is to use as ’equivalent’ estimator the linearized
version of the original estimator (that is: the estimator of the total of the linearized variable, aka
"Woodruff transform").

When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na. rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE and estimator="Mean",
observations containing NAs are dropped, and estimates get computed on non-missing values only.
This implicitly assumes that missing values hit interest variables completely at random (MCAR):
should this not be the case, computed estimates would be biased. Since, even under the MCAR
assumption, estimates of totals and counts solely based on complete cases would be biased, func-
tion svystatTM adopts a model-based ratio estimator when na.rm=TRUE and estimator="Total".
This is obtained by (i) first estimating the mean or proportion based on complete cases only, and
(i1) then multiplying the result by the estimated population size based on all observations (i.e. both
missing and non-missing). This model-based ratio estimator is asymptotically design-unbiased un-
der the MCAR assumption. Notice that the na. rm=TRUE option is only allowed if y references a
single interest variable.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto
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References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) “Model Assisted Survey Sampling”, Springer
Verlag.

Kish, L. (1995). “Methods for design effects”. Journal of Official Statistics, Vol. 11, pp. 55-77.
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See Also

Estimators of Ratios between Totals svystatR, Shares svystatS, Ratios between Shares svystatSR,
Quantiles svystatQ, Multiple Regression Coefficients svystatB, Complex Analytic Functions of
Totals and/or Means svystatL, and all of the above svystat.

Examples

# Load survey data:
data(data.examples)

# Creation of a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Estimation of the total of 3 quantitative variables for the whole
# population:
svystatTM(des, ~y1+y2+y3)

# Estimation of the total of the same 3 variables by region, with SE
# and CV%:

svystatTM(des, ~y1+y2+y3,~regcod, vartype=c("se", "cvpct"))

# Estimation of the mean of the same 3 variables by marstat and sex:
svystatTM(des,~y1+y2+y3,~marstat:sex,estimator="Mean")

# Estimation of the absolute frequency distribution of the qualitative
# variable age5c for the whole population, with the design effect:
svystatTM(des, ~age5c,deff=TRUE)

# MARGINAL relative frequency distributions
# Estimation of the relative frequency distribution of the qualitative
# variable age5c for the whole population:
svystatTM(des,~age5c,estimator="Mean")

# CONDITIONAL relative frequency distributions
# Estimation of the relative frequency distribution of the qualitative
# variable marstat by sex:
svystatTM(des,~marstat, ~sex,estimator="Mean")

# JOINT relative frequency distributions
# Estimation of the relative frequency of the joint distribution of sex
# and marstat:
# *First Solutionx (using the AsIs operator I()):
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svystatTM(des,~I(sex:marstat),estimator="Mean")

# *Second Solution* (adding a new variable to des):

des2 <- des.addvars(des, sex.marstat=sex:marstat)
svystatTM(des2,~sex.marstat,estimator="Mean")

# *Third Solution* (exploiting estimators of Shares, see also ?svystatS):
# Add new variable 'ones' to estimate counts of final units (individuals)
# and estimate the share of people for classes of sex and marstat

des2 <- des.addvars(des, ones=1)
svystatS(des2,~ones,classes=~sex:marstat)

# Estimation of the mean income inside provinces, with confidence intervals
# at a confidence level of 0.9:
svystatTM(des,~income, ~procod,estimator="Mean",conf.int=TRUE, conf.lev=0.9)

# Quantitative and qualitative variables together: estimation of the
# total of income and of the absolute frequency distribution of sex,
# by marstat:

svystatTM(des,~income+sex,~marstat)

# Estimating totals in domains for "incomplete” partitions: more on
# the AsIs operator I()

# Estimation of the total income (plus cvpct) ONLY in region 7:
svystatTM(des,~I(income*(regcod=="7")),vartype="cvpct")

# Alternative solution (adding a new variable to des):

des2 <- des.addvars(des, inc_reg7=I(incomex(regcod=="7")))
svystatTM(des2,~inc_reg7,vartype="cvpct")

# Estimation of the total income (plus cvpct) ONLY in regions 6 and 10:
svystatTM(des,~I(income*as.numeric(regcod %in% c("6","10"))),vartype="cvpct")
# Alternative solution (adding a new variable to des):

des2 <- des.addvars(des, inc_reg6.10=I(incomex*(regcod %in% c("6","10"))))
svystatTM(des2,~inc_reg6.10,vartype="cvpct")

# Compare with the corresponding estimates for the "complete” partition,
# i.e. for regions:
svystatTM(des,~income, ~regcod, vartype="cvpct")

# Under default settings lonely PSUs produce errors in standard
# errors estimation (notice we didn't pass the fpcs):

data(fpcdat)

des. lpsu<-e.svydesign(data=fpcdat, ids=~psu+ssu,strata=~stratum,
weights=~w)

## Not run:

non

svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))

## End(Not run)

# This can be circumvented in different ways, namely:
old.op <- options(”RG.lonely.psu”="adjust")
svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))

options(old.op)
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# or otherwise:

old.op <- options(”"RG.lonely.psu"="average")
svystatTM(des. lpsu,~x+y+z,vartype=c("se"”, "cvpct"”))
options(old.op)

n_n

# but see also ?collapse.strata for a better alternative.

HHHHHHHEEE A A
# Household-level estimation in household surveys. #
HHHEHHAAHEE R AR

# Large scale household surveys typically adopt a 2-stage sampling

# design with municipalities as PSUs and households as SSUs, in order
# to eventually collect information on each individual belonging to

# sampled SSUs. In such a framework (up to possible total nonresponse
# effects), each individual inside a sampled household shares the

# same direct weight, which, in turn, equals the household weight.

# This implies that it is very easy to build estimates referred to

# SSU-level (households) information, despite estimators actually

# involve only individual values. Some examples are given below.

# Load survey data:
data(data.examples)

# Define the survey design (variable famcod identifies households)
exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~stratum,
weights=~weight)

# Collapse strata to eliminate lonely PSUs
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

# Now add new convenience variables to the design object:
## 'ones': to estimate individuals counts
## 'housize': to classify individuals by household size
## 'houdensity': to estimate households counts
exdes<-des.addvars(exdes,
ones=1,
housize=factor(ave(famcod, famcod,FUN = length)),
houdensity=ave(famcod, famcod,FUN = function(x) 1/length(x))
)

# Estimate the total number of households:
nhou<-svystatTM(exdes, ~houdensity, vartype="cvpct")
nhou

# Estimate the total number of individuals:
nind<-svystatTM(exdes, ~ones,vartype="cvpct")
nind

# Thus the average number of individuals per household is:
coef (nind)/coef (nhou)

# ...which can be obtained also as a ratio (along with
# its estimated sampling variability):
svystatR(exdes, ~ones,~houdensity,vartype="cvpct")
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# Estimate the number and proportion of individuals living in households
# of given sizes:
nind.by.housize<-svystatTM(exdes,~housize,vartype="cvpct")
nind.by.housize

pind.by.housize<-svystatTM(exdes,~housize,estimator="Mean",var="cvpct")
pind.by.housize

# Estimate the number of households by household size:
nhou.by.housize<-svystatTM(exdes,~houdensity, ~housize,vartype="cvpct")
nhou.by.housize

# Notice that estimates of individuals and household counts are consistent,

# indeed:
coef(nind.by.housize)/coef (nhou.by.housize)
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Trim Calibration Weights while Preserving Calibration Constraints

Description

This function trims calibration weights to a bounded interval, while preserving all the calibration
constraints.

Usage

trimcal(cal.design, w.range = c(-Inf, Inf),

maxit = 50, epsilon = 1e-07, force = TRUE)

Arguments
cal.design Object of class cal.analytic containing the calibration weights to be trimmed.
w.range The interval to which trimmed calibration weights must be bound (see ‘De-
tails’). The default is c(-Inf,Inf), which would leave the calibration weights
unchanged.
maxit The same as in function e.calibrate.
epsilon The same as in function e.calibrate.
force The same as in function e.calibrate.
Details

Extreme calibration weights might determine unstable estimates and inflate sampling error esti-
mates. To avoid this risk, extreme weights may be trimmed by using some suitable procedure (see
e.g. [Potter 90], [Valliant, Dever, Kreuter 13]). Despite no rigorous justifications exist for any pro-
posed trimming method, sometimes practitioners are (or feel) compelled to apply a trimming step
before estimation. This happens more frequently when interest variables are highly skewed at the
population level, like in business surveys or in social surveys with a focus on economic variables

(e.

g. income, see [Verma, Betti, Ghellini 07], [EUROSTAT 16]).

Unfortunately, the most common trimming techniques do not preserve the calibration constraints:
if the input weights to the trimming algorithm are calibrated, typically the trimmed weights will not
reproduce the calibration totals. As a consequence, users have to calibrate again the weights after
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trimming and iterate through the trimming and calibration steps, until a set of weights is obtained
that respects both the trimming bounds and the calibration controls.

Function trimcal overcomes this limitation: it allows to trim calibration weights to a specific inter-
val while simultaneously preserving all the calibration totals. To achieve this result, a constrained
trimming algorithm is used, which is similar in spirit to the GEM (Generalized Exponential Method)
of [Folsom, Singh 2000], but adopts the range restricted euclidean distance - instead of the logit -
for numerical stability considerations.

When w.range is passed, both the trimming limits it defines must be positive. In other words, all
calibration weights have to be positive after trimming. The purpose of this condition is to enable
sound variance estimation on the trimmed object (see also below).

Note that trimcal is allowed to trim only already calibrated weights, i.e. the input object cal.design
must be of class cal.analytic. This is a deliberate design choice, as trimming design (or initial)
weights is methodologically unsound.

Note also that, in case the original calibration weights were asked to be constant within clusters
selected at a given sampling stage (via argument aggregate.stage of e.calibrate), trimcal
will preserve that property (see ‘Examples’).

Note lastly that trimcal will not trim further weights that have just been trimmed. This is again
a deliberate design choice, devised to discourage over-trimming and cosmetic adjustments of the
survey weights. Of course, it is instead entirely legitimate to calibrate again a trimmed object: after
that, a further trimming step will be allowed.

From a variance estimation perspective, the trimmed object returned by function trimcal is treated
as an ordinary calibrated object. More precisely, the trimming step is regarded as a “finalization”
of the weight adjustment procedure which generated cal.design, i.e. as a completion of the pre-
vious calibration step. Call w, w.cal and w.cal. trim the starting weights, the calibrated weights
of cal.design and the trimmed calibration weights as computed by function trimcal, respec-
tively. Variance estimates computed on the trimmed object will pretend that one passed from w
tow.cal.trim directly (w->w.cal.trim), rather then in two steps (w ->w.cal ->w.cal.trim).
Note incidentally that function get.residuals, when invoked on a trimmed object, will behave
consistently with the variance estimation approach documented here.

Value

A calibrated object of class cal.analytic, storing trimmed calibration weights.

Trimming Process Diagnostics

Function trimcal exploits a constrained trimming algorithm to adjust the calibration weights so
that (i) they fall within a bounded interval but (ii) still preserve all the calibration totals. When this
task is unfeasible, the algorithm will fail. As a consequence, the adjusted weights returned in the
output object will respect the range restrictions set by w.range, but some of the calibration con-
straints will be broken. Exactly as for function e.calibrate, in order to asses the degree of viola-
tion of the calibration constraints introduced by trimming, the user can exploit function check.cal
(or, equivalently, the diagnostic data structure ecal.status available in the . GlobalEnv).

Methodological Warning

Trimming the calibration weights can result in introducing a bias in calibration estimates. Of course,
one must hope that this unknown bias will turn out to be small compared to the unknown gain in
precision obtained by trimming. In any case - since the actual effect of trimming weights on the
MSE of the estimators is unclear - function trimcal should be used sparingly and carefully.
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Author(s)

Diego Zardetto

References

Potter, F.J. (1990) “A study of procedures to identify and trim extreme sampling weights” . Proceed-
ings of the Survey Research Methods Section, American Statistical Association, pp. 225-230.

Folsom, R.E., Singh, A.C. (2000) “The generalized exponential model for sampling weight calibra-
tion for extreme values, nonresponse, and poststratification”. Proceedings of the Section on Survey
Research Methods, American Statistical Association, pp. 598-603.

Verma, V., Betti, G., Ghellini, G. (2007) Cross-sectional and longitudinal weighting in a rotational
household panel: applications to EU-SILC, Statistics in Transition, 8(1), pp. 5-50.

Valliant, R., Dever, J., Kreuter, F. (2013) “Practical Tools for Designing and Weighting Survey
Samples”. Springer-Verlag, New York.

EUROSTAT (2016) “EU statistics on income and living conditions (EU-SILC) methodology -
data quality”, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=
EU_statistics_on_income_and_living_conditions_(EU-SILC)_methodology_-_introduction.

See Also

e.calibrate for calibrating survey weights within ReGenesees and check.cal to check if cali-
bration constraints have been fulfilled.

Examples

HHHEHHEEEE

## Data preparation ##

S

# Load sbs data:

data(sbs)

# Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)
# Build a population totals template and fill it with actual known totals:
pop<-pop.template(sbsdes, calmodel=~(emp.numtent):emp.cl:nace.macro-1, ~region)
pop <- fill.template(sbs.frame, pop)

# Calibrate:

sbscal <- e.calibrate(sbsdes, pop)

# Have a look at the calibration weights distribution:

summary (weights(sbscal))

SR R

## Trimming examples ##

HEHHHHHHEHEEHE A

## Example 1

# Now suppose we want to trim these calibration weights to, say, the bounded
# interval [0.5, 20]. Let's use our trimcal() function:

sbstrim <- trimcal(sbscal, c(0.5, 20))

# Have a look at the trimmed object:
sbstrim

# Let's first verify that the trimmed calibration weights actually obey the
# imposed range restrictions...


https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_statistics_on_income_and_living_conditions_(EU-SILC)_methodology_-_introduction
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_statistics_on_income_and_living_conditions_(EU-SILC)_methodology_-_introduction
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summary (weights(sbstrim))
# ...0k, as it must be.

# Second, let's verify that the trimmed object still preserves all the
# calibration constraints:
check.cal(sbstrim)

# or, more explicitly:
all.equal(aux.estimates(sbscal, template=pop),

aux.estimates(sbstrim, template=pop))
# ...0k, as it must be.

# Let's have a look at the scatterplots of calibrated and trimmed weights:
plot(weights(sbsdes), weights(sbscal), pch = 20, col = "red”,

xlab = "Direct weights”, ylab = "Calibration (red) and Trimmed (blue) weights")
points(weights(sbsdes), weights(sbstrim), pch = 20, col = "blue")
abline(h = c(@.5, 20), col = "green")

# Last, compute estimates and estimated sampling errors on the trimmed object
# as you would do on ordinary calibrated objects, e.g.
# before trimming:

svystatTM(sbscal, y = ~va.imp2, by = ~nace.macro, estimator = "Mean")
# after trimming:
svystatTM(sbstrim, y = ~va.imp2, by = ~nace.macro, estimator = "Mean")

## Example 2
# If w.range is too tight, constrained trimming can fail:
sbstrim2 <- trimcal(sbscal, c(1, 20))

# As a consequence, the trimmed weights will respect the range restrictions...
summary (weights(sbstrim2))

# ...but some of the calibration constraints will be broken:
check.cal(sbstrim2)

## Example 3
# If calibration weights were asked to be constant within clusters, the same
# will hold true for the trimmed calibration weights.

# Load household data:
data(data.examples)

# Define a survey design object:
des <- e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Calibrate asking that all individuals within any household share the same

# calibration weight (re-use an example from ?e.calibrate):

descal <- e.calibrate(design=des,df.population=pop@4p,
calmodel=~x1+x2+x3-1,partition=~regcod,calfun="1logit",
bounds=bounds, aggregate.stage=2)

# Have a look at the calibration weights distribution:
summary (weights(descal))
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# Trim the calibration weights to, say, the bounded interval [150, 850]
destrim <- trimcal(descal, c(150, 850))

# Do trimmed calibration weights obey the imposed range restrictions?
summary (weights(destrim))

# Verify that trimmed weights are still equal within households:
any( tapply( weights(destrim), destrim$variables$famcod,
function(x) {length(unique(x)) > 1} ) )

# FALSE, as it must be.

B s S

## Allowed and forbidden trimming policies #i#

HEHHHHHHEEEE HHHHEHRHHHHHREEEEHHHH R

# Let's illustrate some design restrictions on function trimcal():
# 1) Trimming limits must be both positive:

## Not run:

trimcal(sbscal, c(-0.05, 18))

## End(Not run)

# 2) Trimming design (or direct, or initial) weights is not allowed, you can
# only trim calibration weights:

## Not run:

trimcal(sbsdes, c(1, 18))

## End(Not run)

# 3) You cannot trim further weights that have just been trimmed:
## Not run:
trimcal(sbstrim, c(1, 18))

## End(Not run)

# 4) You can calibrate again trimmed weights...
pop2<-pop.template(sbsdes, calmodel=~(emp.num+ent):area-1)
pop2<-fill.template(sbs.frame,pop2)
sbscal2<-e.calibrate(sbstrim, pop2)

summary (weights(sbscal2))

# ...after that, a further trimming step is allowed:
sbstrim2 <- trimcal(sbscal2, c(0.6, 19))
sbstrim2

summary (weights(sbstrim2))

UWE Unequal Weighting Effect

Description

Computes the Unequal Weighting Effect for the current and initial weights of a design object.
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Usage
UWE (design, by = NULL)

Arguments
design Object of class analytic (or inheriting from it).
by Formula specifying variables that define "estimation domains". If NULL (the
default option) the UWE refer to the whole sample.
Details

Function UWE computes the Unequal Weighting Effect for the current (w) and initial (w@) weights of
a design object, plus the corresponding variance inflation (or deflation) factor (UWE (w) / UWE(w@))
induced by changing the weights from w@ to w (W@ —> w).

Following Kish’s definition [Kish 92], the UWE is calculated as 1 plus the relative sample variance
of the weights: UNE(w) =1 + RelVar(w).

The current weights, w, of design are the weights that would be returned by weights(design) and
would be used for estimation purposes by functions svystatTM, svystatR, etc.

The initial weights, wo, of design depend on the nature of object design:

* If design is the outcome of a ‘weight-changing pipeline’, wo ->w1 -> ... ->w, i.e. it was
obtained by the application of an arbitrary chain of ReGenesees functions that modify the
weights (e.g. smooth.strat.jump, e.calibrate, ext.calibrated, trimcal, ...), then the
initial weights, wo, are the weights of the starting design object in the pipeline.

o If design is an initial design object generated by function e.svydesign, then the initial
weights, w, are taken as equal to current weights, wo = w.

Note that, when design is the outcome of a ‘weight-changing pipeline’, function UWE provides a
measure of the overall, cumulative impact of all the adjustments the weights underwent throughout
the pipeline.

To assess the effect, in terms of UWE and variance inflation, of just a single processing step of the
pipeline, you can call function UWE on the input and output designs of that step and compare the
results (basically, by taking suitable ratios).

Value

A data.frame, with one single row (if by = NULL) or one row for each domain (if by is passed), and
the following columns:

Column Meaning

UWE.curr...... Current Unequal Weighting Effect

UWE.ini....... Initial Unequal Weighting Effect

VAR.infl...... Variance Inflation Factor ( UWE.curr / UWE.ini )
Methodological Remark

Kish’s UWE is a model-based tool that can be useful for diagnostic purposes. However, its values
must be interpreted with some caution, exactly as it is necessary to do for model-based estimates of
Kish’s Deff.

In particular, UWE is - by construction - only sensitive to variations of the sample variance of the
weights. Therefore, it is unable to discriminate weight adjustments which, despite adding variability
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to the weights at sample level, might result in reductions of the sampling variance for some estima-
tors. This is often the case of calibration, which may well make survey weights more unequal, but
nonetheless cause their reciprocals to become more correlated to some interest variables. Similar
considerations hold for stratified sampling, to the extent that, with respect to the interest variables,
units tend to be more similar within strata than between strata.

In any case, the UWE can turn out handy when comparing the potential outcomes of performing
the same kind of weight adjustment under slightly different settings (e.g. calibration with different
bounds or distance functions, trimming with different thresholds, etc.).

Author(s)

Diego Zardetto

References

Kish, L. (1992). Weighting for unequal Pi. Journal of Official Statistics, 8, 183-200.

See Also

ReGenesees functions which define survey weights (e. svydesign), or modify survey weights (e.g.
smooth.strat. jump, e.calibrate, ext.calibrated, trimcal, ...).

Examples

HHHHHHHHHHEEE A HEHHRREE AR
Compute the UWE along the following example #
of weight-changing pipeline: #
1) Smooth for stratum jumpers

2) Adjust for nonresponse

3) Calibrate to known population totals
4) Consistently trim calibration weights

NOTE: To perform 1) and 2) I will first
A) simulate some stratum jumpers.
B) simulate some nonresponse.

HHHEHHHEHEE A

#
#
#
#
#
#
#
#
#
#

T E E EE T

## Load sbs data:
data(sbs)

## -- A) Simulate stratum jumpers

# Create the strata variable observed at survey time by cloning the
# strata variable at sampling time

sbs$curr.strata <- sbs$strata

# Now inject some (say ~250) random stratum jumpers
set.seed(12345) # (fix the RNG seed for reproducibility)
sbs$curr.stratalsample(1:nrow(sbs), 250)] <- sbs$curr.stratalsample(1:nrow(sbs), 250)]

# Resulting number of stratum jumpers:
tt <- table(sbs$strata, sbs$curr.strata)
sum(ttLrow(tt) != col(tt)])

## -- B) Simulate nonresponse
# Assume a response propensity that increases with enterprise size (as
# measured by number of employees)
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levels(sbs$emp.cl)
p.resp <- c(.4, .6, .8, .95, .99)

# Tie response probabilities to sample observations:
pr <- p.resplunclass(sbs$emp.cl)]

# Now, randomly select a subsample of responding units from sbs:
set.seed(12345) # (fix the RNG seed for reproducibility)
rand <- runif(1:nrow(sbs))

sbs.r <- sbs[rand < pr, ]

# This implies an overall response rate of about 73%:
nrow(sbs.r) / nrow(sbs)

## -- @) Create the respondent design object

# NOTE: I'll keep using the original fpc column for the sake of the examples,

# but they should be recomputed in real applications...
sbsdes<-e.svydesign(data=sbs.r,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

## -- 1) Smooth for stratum jumpers
# Use method 'MinChange’
sbssmooth <- smooth.strat.jump(sbsdes, ~curr.strata)

# Have a look
sbssmooth

## -- 2) Adjust for nonresponse
# Use a simple Response Homogeneity Model approach, with size classes
# as RHGs. Perform the RHG weight adjustment via calibration

# Compute enterprise counts by size classes from the frame
N.RHG <- pop.template(sbssmooth, calmodel= ~emp.cl - 1)
N.RHG <- fill.template(sbs.frame, N.RHG)

# Calibrate to achieve the RHG adjustment
sbsRHG <- e.calibrate(sbssmooth, N.RHG)

# Have a look

sbsRHG

# -- 3) Calibrate to known population totals

# Now calibrate again in order to reduce estimators variance, by using further
# available auxiliary information, e.g. the total number of employees (emp.num)
# and enterprises (ent) inside the domains obtained by crossing nace.macro

# and region:

pop <- pop.template(sbsRHG, calmodel = ~emp.num + ent-1,

partition = ~nace.macro:region)
pop <- fill.template(sbs.frame, pop)

# Calibrate to improve estimation efficiency
sbscal <- e.calibrate(sbsRHG, pop)

# Have a look
sbscal

# -- 4) Consistently trim calibration weights
# Say one wants to avoid weights that are less then 1 and above 50:
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sbstrim <- trimcal(sbscal, c(1, 50))

# Have a look
sbstrim

## -- UWE calculation along the weights-changing pipeline

# Object sbstrim is the output of the weights-changing pipeline, as
# one easily recognizes when printing it:

sbstrim

# UWNE of initial object
UWE (sbsdes)

# UNE at step 1), i.e. smoothing for stratum jumpers
UWE (sbssmooth)

# UNE of step 2), i.e. nonresponse RHG adjustment
UWE (sbsRHG)

# UNE at step 3), i.e. calibration for efficiency improvement
UWE (sbscal)

# UNE at step 4), i.e. consistent trimming of calibration weights
UWE(sbstrim)

# End

weights Retrieve Sampling Units Weights

Description

Extracts the current weights of units belonging to a survey design object.

Usage
weights(object, ...)
Arguments
object Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
Arguments for future expansion.
Details

The current weights of object are, by definition, those weights that would be used for estimation
purposes on that object (e.g. by functions svystatTM, svystatR, svystatS, svystatSR, svystatQ,
svystatB, svystatL, ...). The nature of such weights depends on the class of object: calibrated
weights for class cal.analytic and direct weights otherwise.

Value

A vector of weights, whose components are positionally tied to the sampling units belonging to
object.



218 write.svystat

Note

If object has undergone multiple, subsequent calibration steps, the function will return the output
weights generated by the last calibration step.

Author(s)

Diego Zardetto

See Also

Function g. range to asses the range of the g-weights of a calibrated design object.

Examples

# Creation of the object to be calibrated:

data(data.examples)

exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

# Retrieve the weights and summarize their distribution:
summary (weights(exdes))

# Now calibrate (global solution) on the joint distribution of sex

# and marstat (totals in pop@3):

excal.lst<-e.calibrate(design=exdes,df.population=pop@3,
calmodel=~marstat:sex-1,calfun="1linear"”,bounds=bounds)

# Retrieve the current weights (i.e. the calibrated ones) and
# summarize their distribution:
summary (weights(excal.1st))

# Now calibrate once again, this time on the marginal distribution

# of age in 5 classes (age5c) inside provinces (procod) (totals in pop@6p)

# with the partitioned solution, the logit distance and bounds=c(0.5, 1.5):

excal.2nd<-e.calibrate(design=excal.1st,df.population=pop@6p,
calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.5, 1.5))

# Notice that the print method correctly takes the calibration chain
# into account:
excal.2nd

# Now retrieve the current weights (i.e. the ones generated by the second
# calibration step) and summarize their distribution:
summary (weights(excal.2nd))

write.svystat Export Survey Statistics

Description

Prints survey statistics to a file or connection.
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Usage
write.svystat(x, ...)
Arguments
X An object containing survey statistics.
Arguments to write.table
Details

This function is just a convenience wrapper to write. table, designed to export objects which have
been returned by survey statistics functions (e.g. svystatTM, svystatR, svystatS, svystatSR,
svystatB, svystatQ, svystatL, svySigma, svySigma2).

Author(s)

Diego Zardetto

See Also

write. table and the 'R Data Import/Export’ manual.

Examples
# Creation of a design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

# Estimation of the average value added per employee

# for economic activity region and macro-sectors,

# with SE, CV% and standard confidence intervals:

stat <- svystatR(des,~va.imp2,~emp.num,by=~region:nace.macro,
vartype=c("se","cvpct"),conf.int=TRUE)

stat

# In order to export the summary statistics above
# into a CSV file for input to Excel one can use:
## Not run:
write.svystat(stat,file="stat.csv",sep=";")

## End(Not run)

# ...and to read this file back into R one needs

## Not run:

stat.back <- read.table("stat.csv"”, header=TRUE,sep=";",
check.names=FALSE)

stat.back

## End(Not run)

# Notice, however, that the latter object has
# lost a lot of meta-data as compared to the
# original one, so that e.g.:

## Not run:



220 Zapsmall

confint(stat.back)
## End(Not run)

# ...while, on the contrary:
confint(stat)

Zapsmall Zapsmall Data Frame Columns and Numeric Vectors

Description

Put to zero values "close" to zero.

Usage

## Default S3 method:

Zapsmall(x, digits = getOption("digits”), ...)

## S3 method for class 'data.frame'

Zapsmall(x, digits = getOption("digits”), except = NULL, ...)
Arguments

X A data.frame with numeric columns or a numeric vector.

digits Integer indicating the precision to be used.

except Indices of columns not to be zapped (if any).

Arguments for future expansion.

Details

This function "extends" to data. frame objects function zapsmall from the package base.

The method for class data.frame ’zaps’ values close to zero occurring in columns of x. Argument
except can be used to prevent specific columns from being zapped.

The default method is a bare copy of the original function from package base.

Value

An object of the same class of x, with values "close" to zero zapped to zero.

Author(s)

Diego Zardetto

See Also

The original function zapsmall from package base.
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Examples

# Create a test data frame with columns containing
# values of different orders of magnitude:
data <- data.frame(a = pi*10~(-8:1), b = c(rep(1000,8), c(1E-5, 1E-6)))

# Print on screen the test data frame:
data

# Compare with its zapped version:
Zapsmall(data)

%into% Compress Nested Factors

Description
The special binary operator %into% transforms nested factors in such a way as to reduce the dimen-
sion and/or the sparsity of the model matrix of a calibration problem.

Usage

inner %into% outer
"%into%" (inner, outer)

Arguments

inner Factor with levels nested into outer (see ‘Details’).

outer Factor whose levels are an aggregation of those in inner (see ‘Details’).
Details

Arguments inner and outer must be both factors and must have the same length. Moreover,
inner has to be strictly nested into outer. Nesting is defined by treating elements in inner and
outer as if they were positionally tied (i.e. as if they belonged to columns of a given data frame).
The definition is as follows:

inner and outer are strictly nested if, and only if, 1) every set of equal elements in inner cor-
respond to a set of equal elements in outer, and 2) inner has more non-empty levels than outer.

If inner and outer do not fulfill the conditions above, evaluating inner %into% outer gives an
error.

Suppose inner is actually nested into outer and define inner.in.outer <- inner %into% outer.
The output factor inner.in.outer is built by recoding inner levels in such a way that each of them
is mapped into the integer which represents its order inside the corresponding level of outer (see
‘Examples’). As a consequence, the levels of inner.in.outer will be 1:n.max, being n.max the
maximum number of levels of inner tied to a level of outer. Since this number is generally consid-
erably smaller than the number of levels of inner, inner.in.outer can be seen as a compressed
representation of inner. Obviously, compression comes at a price: indeed inner.in.outer can
now be used to identify a level of inner only inside a given level of outer (see ‘Examples’).

The usefulness of the %into% operator emerges in the calibration context. As we already docu-
mented in e.calibrate, factorizing a calibration problem (i.e. exploiting the partition argument
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of e.calibrate) determines a significant reduction in computation complexity, especially for big
surveys. Now, it is sometimes the case that a calibration model is actually factorizable, even if this
property is not self-apparent, due to factor nesting. In such cases, anyway, trying naively to factorize
the outer variable(s) typically leads to very big and sparse model matrices (as well as population
totals data frames), with the net result of washing-out the expected efficiency gain. A better alterna-
tive is to exploit the %into% operator in order to compress the inner variable in such a way that the
outer variable can be actually factorized without giving rise to huge and sparse matrices. Section
‘Examples’ reports some practical illustration of the above line of reasoning.

Value

A factor with levels 1:n.max, being n.max the maximum number of levels of inner tied to a level
of outer.

Author(s)

Diego Zardetto

See Also

Further examples can be found in the fill. template help page.

Examples

HHHHHHHHHEHER AR AR

## General properties of the %into% operator. #

HHHEH

# First build a small data frame with 2 nested factors representing

# regions and provinces:

dd <- data.frame(
reg factor( rep(LETTERS[1:3]1, c(6, 3, 1)) ),
prov = factor( rep(letters[1:6], c(3, 2, 1, 2, 1, 1)) )
)

dd

# Since prov is strictly nested into reg we can compute:
prov.in.reg <- dd$prov %into% dd$reg
prov.in.reg

# Note that prov.in.reg has 3 levels because, as can be seen from dd,

# the maximum number of provinces inside regions is 3. Thus prov.in.reg

# is actually a compressed version of dd$prov (whose levels were 6)

# but, obviously, it can now be used to identify a province only inside

# a given region. This means that the the two factors below are identical (up
# to levels' labels):

dd$prov

interaction(prov.in.reg,dd$reg,drop=TRUE)

# Note that all the statements below generate errors:
## Not run:

dd$reg %into% dd$prov

dd$reg %into% dd$reg

dd$prov %into% dd$prov

## End(Not run)
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HEHHHHHHHEEHE A EHERHEREEREH AR HHE PR

## A more useful (and complex) example from the calibration context. #
HHHEHHHEEEE AR AR A

# First define a design object:

data(data.examples)

exdes <- e.svydesign(data=example,ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Now suppose you have to perform a calibration process which

exploits the following known population totals:

1) Joint distribution of sex and agel@c (age in 10 classes)
at the region level;

2) Joint distribution of sex and age5c (age in 5 classes)
at the province level;

The auxiliary variables corresponding to the population totals above
can be symbolically represented by a calibration model like the following:
~(procod:age5¢c + regcod:agel@dc - 1):sex

At first sight it seems that only the sex variable can be factorized

in the model above. However if one observe that regions are an aggregation
of provinces, one realizes that also the regcod variable can be factorized.
Similarly, since categories of age5c are an aggregation of categories of
agel@c, agebc can be factorized too. In both cases, using the %into%
operator will save computation time and memory usage.

Let us see it in practice:

e E E E EE E E E E E E E R

## 1) Global calibration (i.e. calmodel=~(procod:age5c + regcod:agel@dc - 1):sex,
# no partition variable, known totals stored in pop@7):
t<-system.time(
cal@7<-e.calibrate(design=exdes,df.population=popo7,
calmodel=~(procod:age5c + regcod:agel@dc - 1):sex,
calfun="logit", bounds=c(0.2,1.8))

## 2) Partitioned calibration on the self evident variable sex only
# (i.e. calmodel=~procod:age5c + regcod:agel@c - 1, partition=~sex,
# known totals stored in pop@7p):
tp<-system.time(
cal@7p<-e.calibrate(design=exdes,df.population=pop@7p,
calmodel=~procod:age5c + regcod:agel@c - 1,partition=~sex,
calfun="logit",bounds=c(0.2,1.8))

## 3) Full partitioned calibration on variables sex, regcod and age5c
# by exploiting %into%.
# First add to the design object the new compressed factor variables
# involving nested factors, namely provinces inside regions...
exdes<-des.addvars(exdes,procod. in.regcod=procod %into% regcod)

# ...and agel@c inside age5c:
exdes<-des.addvars(exdes,agel@c.in.age5c=agel10c %into% age5c)

# Now calibrate exploiting the new variables

# (i.e. calmodel=~procod.in.regcod + agel@c.in.age5c - 1,

# partition=~sex:regcod:age5c, known totals stored inside cal@7pp)
tpp<-system.time(
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cal@7pp<-e.calibrate(design=exdes,df.population=pop@7pp,
calmodel=~procod.in.regcod + agel@c.in.agebc - 1,
partition=~sex:regcod:age5c,
calfun="logit",bounds=c(0.2,1.8))

)
# Now compare execution times:
t
tp
tpp

# thus, tpp < tp < t, as expected.

# Notice also that we obtained identical calibrated weights:
all.equal(weights(cal@7),weights(cal@7p))
all.equal(weights(cal@7),weights(cal@7pp))

# as it must be.
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