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I. Uncertainty due to unknown selection
«Uncertainty-based analysis for non-probability samples»
— Pier Luigi Conti, Daniela Marella
We observe (δ, x) and y | x, δ = 1, but not y | x, δ = 0, where

p(y | x, δ = 0) = p(δ = 0, y, x)/p(x, δ = 0)

=
[
p(y | x)− p(δ = 1, y | x)

]
p(x)/p(x, δ = 0)

However, ∑
y

[
· · ·

]
= 1− p(δ = 1 | x)

Measure of uncertainty space:

conditional Ux
[
p(y | x)

]
= p(δ = 0 | x)

marginal U
[
p(y)

]
= E{Ux

[
p(y | x)

]
} = p(δ = 0)

(e.g. Manski, 1993). Moreover, extra-sample information
can reduce the uncertainty (due to unknown selection)

Discussion: related approaches to inference of p(y) which
do not require extra assumptions for point identification
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Example: missing binary observations
(y = 1, δ = 1) (y = 0, δ = 1) δ = 0

32 54 24
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θGreen: likelihood of θ = p(y = 1) assuming MCAR (pointwise identification)
Red: profile lik. of θ from trinomial sampling {(y = 1, δ = 1), (y = 0, δ = 1), (δ = 0)}

NB. observations x = (32, 54, 24) 7→ Θ̂ of max. lik. θ-values (flat top)
Solid: corroboration of θ given as ĉ(θ) = Pr(θ ∈ Θ̂; ψ̂)
NB. probability with respect to observable trinomial sampling
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Minimal inference (Zhang & Chambers, 2019)

Only based on the (trinomial) sampling distribution f (x;ψ)

which is agreeable to all, true ψ0 identifiable, MLE ψ̂(x)
P−→ ψ0

Consistent estimation of true corroboration
c0(θ) = c(θ;ψ0) = Pr(θ ∈ Θ̂;ψ0)

or true level-α corroboration set
Aα(ψ0) = {θ : c(θ;ψ0) ≥ α}

Define observed maximum corroboration set
Âmax = Amax(ψ̂)

θ-values in Âmax are the hardest to refute given x (the data)
In contrast, values in Θ̂ are most likely to be true

Corroboration test HA : θ∗ ∈ Θ0 vs. HB : θ∗ /∈ Θ0 is strongly
Chernoff-consistent, can reject θ∗ with power 1− ĉ(θ∗)

Θ̂ θ∗ = 0.2 θ∗ = 0.3 θ∗ = 0.4 θ∗ = 0.5 θ∗ = 0.6
[0.29, 0.51] ĉ = 0.018 ĉ = 0.583 ĉ = 0.985 ĉ = 0.576 ĉ = 0.028
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II. Finite-sample conformal intervals
«Conformal Methods in Official Statistics: Perspectives
and Challenges» — Nina Deliu, Brunero Liseo
Finite sample of size n, level-α prediction interval Cn,α s.t.

Pr{y ∈ Cn,α(x)} ≥ α

• Full-conformal by a lemma of sample quantile-q,
Pr(z ≤ qn+1,α) ≥ α given IID {z1, ..., zn} ∪ {z}

with zi = |yi − fn+1(xi)|, z = |y − fn+1(xn+1)|, arbitrary fn+1

from augmented sample {(yi, xi) : i = 1, ..., n} ∪ {(y, xn+1)}
NB. repeatedly evaluating a grid of stipulated y-values

• Split-conformal using random partition s1 ∪ s2 = {1, ..., n}
– obtain f (x, s1) from {(yi, xi) : i ∈ s1}, training set s1
– Pr(z ≤ qn2,α) ≥ α, n2 = |s2|, zi = |yi − f (xi, s1)| for i ∈ s2

NB. f (x, s1) is constant of j /∈ s1 conditional on s1

Discussion: split-conformal under design-based predic-
tive inference framework, in contrast to IID/WR sampling
— Zhang, Sande-Sanguiao & Lee (2024), available at JOS
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What is design-based prediction?
Given a sample of observations, e.g. {(yi, xi) : i = 1, ..., n}
• obtain a function µ(s), which varies with s = {1, ..., n}
• prediction if µ(s) targets something random, estimation if fixed
• design-based prediction if only s ∼ p(s), but all (yi, xi) are fixed

Example: Fixed population U and associated values {yi : i ∈ U}
Element i1 i2 i3 i4
Value yi 1 2 3 6

s by simple random sampling without replacement, |s| = 2

Sample s (i1, i2) (i1, i3) (i1, i4) (i2, i3) (i2, i4) (i3, i4)
Sample mean µ(s) = ȳs 1.5 2 3.5 2.5 4 4.5

Out-of-sample mean ȳR 4.5 4 2.5 3.5 2 1.5

Unknown {yk : k /∈ s} y3 = 3 y2 = 2 y2 = 2 y1 = 1 y1 = 1 y1 = 1
y4 = 6 y4 = 6 y3 = 3 y4 = 6 y3 = 3 y2 = 2{

(yk − µ(s))2 : k /∈ s
} 2.25 0 2.25 2.25 9 12.25

20.25 16 0.25 12.25 1 6.25
DR =

∑
k /∈s(yk − µ(s))2 22.5 16 2.5 14.5 10 18.5

Random R = U \ s, ȳR, {yk : k /∈ s} or DR as sample s varies
Ep(ȳs − ȳR) = 0, i.e. unbiased prediction of ȳR w.r.t. p(s)

Predict DR as total squared error of unit-level prediction ?
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Design-based predictive inference
Target y by µ(x) given x, arbitrary model or algorithm µ

• pq-design: s ∼ p(s), s1 ∼ q(s1 | s), s2 = s \ s1
e.g. training set s1 by K-fold partition, SRS or bootstrap given s

• subsampling Rao-Blackwellisation (SRB) of µ(x, s1)

µ̄(x, s) = Eq

[
µ(x, s1) | s

]
• finite-sample design-unbiased prediction of

STE =
(∑

i/∈s yi − µ̄(xi, s)
)2

or TSE =
∑

i/∈s
(
yi − µ̄(xi, s)

)2
Now, apply SRB under pq-design for intervals instead
• Conditional on s1, treat s2 as a sample from U \ s1 under pq-design

q(s1 | s)p(s) = f (s1)f (s | s1) ⇒ π2i = Pr(i ∈ s2 | s1)

• obtain π2i-unbiased estimation of the distribution of error of µ(x, s1)
in U \ s1 based on sample {yi − µ(xi, s1) : i ∈ s2} — thereby predict
the coverage of

[
µ(xi, s1)− zL, µ(xi, s1) + zU

]
over all i /∈ s

NB. split-conformal intervals µ(xi, s1)±· · · biased if WOR-sampling

• Apply SRB to recover loss of efficiency due to single split
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