Discussion of invited talks in Session 3 Data, data science and official statistics

Li-Chun Zhang

I. Uncertainty due to unknown selection

«Uncertainty-based analysis for non-probability samples» — Pier Luigi Conti, Daniela Marella We observe (δ, x) and $y \mid x, \delta = 1$, but not $y \mid x, \delta = 0$, where

$$p(y \mid x, \delta = 0) = p(\delta = 0, y, x) / p(x, \delta = 0)$$

= $[p(y \mid x) - p(\delta = 1, y \mid x)]p(x) / p(x, \delta = 0)$

However,

$$\sum_{y} \left[\cdots \right] = 1 - p(\delta = 1 \mid x)$$

Measure of uncertainty space:

$$\begin{array}{l} \textit{conditional } U^x \big[p(y \mid x) \big] = p(\delta = 0 \mid x) \\ \textit{marginal } U \big[p(y) \big] = E \{ U^x \big[p(y \mid x) \big] \} = p(\delta = 0) \end{array}$$

(e.g. Manski, 1993). Moreover, extra-sample information can reduce the uncertainty (due to unknown selection)

Discussion: related approaches to inference of p(y) which do not require <u>extra</u> assumptions for point identification

Green: likelihood of $\theta = p(y = 1)$ assuming MCAR (pointwise identification) Red: profile lik. of θ from trinomial sampling $\{(y = 1, \delta = 1), (y = 0, \delta = 1), (\delta = 0)\}$ NB. observations $x = (32, 54, 24) \mapsto \widehat{\Theta}$ of max. lik. θ -values (flat top) Solid: *corroboration* of θ given as $\hat{c}(\theta) = \Pr(\theta \in \widehat{\Theta}; \hat{\psi})$ NB. probability with respect to observable trinomial sampling

Minimal inference (Zhang & Chambers, 2019)

Only based on the (trinomial) sampling distribution $f(x; \psi)$

which is agreeable to all, true ψ_0 identifiable, MLE $\hat{\psi}(x) \xrightarrow{P} \psi_0$

Consistent estimation of true corroboration

$$c_0(\theta) = c(\theta; \psi_0) = \Pr(\theta \in \widehat{\Theta}; \psi_0)$$

or true level- α corroboration set

$$A_{\alpha}(\psi_0) = \{\theta : c(\theta; \psi_0) \ge \alpha\}$$

Define observed maximum corroboration set

$$\hat{A}^{max} = A^{max}(\hat{\psi})$$

 θ -values in \hat{A}^{max} are the *hardest to refute* given x (the data) In contrast, values in $\hat{\Theta}$ are *most likely to be true*

Corroboration test $H_A : \theta^* \in \Theta_0$ vs. $H_B : \theta^* \notin \Theta_0$ is strongly Chernoff-consistent, can reject θ^* with power $1 - \hat{c}(\theta^*)$

$$\widehat{\Theta} \qquad \theta^* = 0.2 \quad \theta^* = 0.3 \quad \theta^* = 0.4 \quad \theta^* = 0.5 \quad \theta^* = 0.6 \\ [0.29, 0.51] \quad \widehat{c} = 0.018 \quad \widehat{c} = 0.583 \quad \widehat{c} = 0.985 \quad \widehat{c} = 0.576 \quad \widehat{c} = 0.028$$

II. Finite-sample conformal intervals

«Conformal Methods in Official Statistics: Perspectives and Challenges» — Nina Deliu, Brunero Liseo *Finite* sample of size n, *level*- α prediction interval $C_{n,\alpha}$ s.t.

 $\Pr\{y \in \mathcal{C}_{n,\alpha}(x)\} \ge \alpha$

• *Full-conformal* by a lemma of sample quantile-*q*,

 $\Pr(z \le q_{n+1,\alpha}) \ge \alpha \quad \text{given IID } \{z_1, ..., z_n\} \cup \{z\}$

with $z_i = |y_i - f_{n+1}(x_i)|$, $z = |y - f_{n+1}(x_{n+1})|$, arbitrary f_{n+1} from augmented sample $\{(y_i, x_i) : i = 1, ..., n\} \cup \{(y, x_{n+1})\}$ NB. repeatedly evaluating a grid of stipulated *y*-values

- Split-conformal using random partition $s_1 \cup s_2 = \{1, ..., n\}$
 - obtain $f(x, s_1)$ from $\{(y_i, x_i) : i \in s_1\}$, training set s_1
 - $\Pr(z \leq q_{n_2,\alpha}) \geq \alpha$, $n_2 = |s_2|$, $z_i = |y_i f(x_i, s_1)|$ for $i \in s_2$ NB. $f(x, s_1)$ is constant of $j \notin s_1$ conditional on s_1

Discussion: split-conformal under **design-based predic***tive inference* framework, in contrast to IID/WR sampling — Zhang, Sande-Sanguiao & Lee (2024), available at JOS

What is design-based prediction?

Given a sample of observations, e.g. $\{(y_i, x_i) : i = 1, ..., n\}$ • obtain a function $\mu(s)$, which varies with $s = \{1, ..., n\}$

- prediction if $\mu(s)$ targets something random, estimation if fixed
- design-based prediction if only $s \sim p(s)$, but all (y_i, x_i) are fixed

Example: Fixed population U and associated values $\{y_i : i \in U\}$

Element	i_1	i_2	i_3	i_4
Value y_i	1	2	3	6

s by simple random sampling without replacement, |s| = 2

Sample s	(i_1,i_2)	(i_1,i_3)	(i_1,i_4)	(i_2,i_3)	(i_2,i_4)	(i_3,i_4)
Sample mean $\mu(s) = \bar{y}_s$	1.5	2	3.5	2.5	4	4.5
Out-of-sample mean \bar{y}_R	4.5	4	2.5	3.5	2	1.5
Unknown $\{y_k : k \notin s\}$	$y_3 = 3$	$y_2 = 2$	$y_2 = 2$	$y_1 = 1$	$y_1 = 1$	$y_1 = 1$
	$y_4 = 6$	$y_4 = 6$	$y_3 = 3$	$y_4 = 6$	$y_3 = 3$	$y_2 = 2$
$\left\{(y_k-\mu(s))^2:k\notin s\right\}$	2.25	0	2.25	2.25	9	12.25
	20.25	16	0.25	12.25	1	6.25
$D_R = \sum_{k \notin s} (y_k - \mu(s))^2$	22.5	16	2.5	14.5	10	18.5

Random $R = U \setminus s$, \bar{y}_R , $\{y_k : k \notin s\}$ or D_R as sample *s* varies $E_p(\bar{y}_s - \bar{y}_R) = 0$, i.e. unbiased **prediction** of \bar{y}_R w.r.t. p(s) *Predict* D_R *as total squared error of* **unit-level** *prediction* ?

Design-based predictive inference

Target *y* by $\mu(x)$ given *x*, *arbitrary* model or algorithm μ

- **pq-design**: $s \sim p(s)$, $s_1 \sim q(s_1 \mid s)$, $s_2 = s \setminus s_1$ e.g. training set s_1 by K-fold partition, SRS or bootstrap given s
- subsampling Rao-Blackwellisation (SRB) of $\mu(x, s_1)$

$$\bar{\mu}(x,s) = E_q \big[\mu(x,s_1) \mid s \big]$$

• finite-sample design-unbiased prediction of

STE =
$$\left(\sum_{i \notin s} y_i - \bar{\mu}(x_i, s)\right)^2$$
 or TSE = $\sum_{i \notin s} \left(y_i - \bar{\mu}(x_i, s)\right)^2$

Now, apply SRB under pq-design for <u>intervals</u> instead

• Conditional on s_1 , treat s_2 as a sample from $U \setminus s_1$ under pq-design

 $q(s_1 \mid s)p(s) = f(s_1)f(s \mid s_1) \quad \Rightarrow \quad \pi_{2i} = \Pr(i \in s_2 \mid s_1)$

- obtain π_{2i}-unbiased estimation of the distribution of error of μ(x, s₁) in U \ s₁ based on sample {y_i − μ(x_i, s₁) : i ∈ s₂} thereby predict the coverage of [μ(x_i, s₁) − z_L, μ(x_i, s₁) + z_U] over all i ∉ s NB. split-conformal intervals μ(x_i, s₁) ± · · · biased if WOR-sampling
- Apply SRB to recover loss of efficiency due to single split