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[. Uncertainty due to unknown selection

«Uncertainty-based analysis for non-probability samples»
— Pier Luigi Conti, Daniela Marella
We observe (§,z) and y | z,0 = 1, but not y | z, = 0, where

ply | 2,0 =0)=p(d=0,y,2)/p(x,6=0)
= [ply | 2) = p(d = 1,y | 2)]p(x)/p(z,d = 0)
However, Zy[---}zl—p(ézllx)
Measure of uncertainty space:
conditional U*[p(y | z)] =p(6 =0 z)
marginal U |p(y)| = E{U"[p(y | =)|} = p(d = 0)

(e.g. Manski, 1993). Moreover, extra-sample information
can reduce the uncertainty (due to unknown selection)

Discussion: related approaches to inference of p(y) which
do not require extra assumptions for point identification



Example: missing binary observations

(y=1,6=1) (y=0,6=1) §=0
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Green: likelihood of 6 = p(y = 1) assuming MCAR (pointwise identification)
Red: profile lik. of § from trinomial sampling {(y = 1,0 =1),(y = 0,6 =1),(6 = 0)}
NB. observations = = (32,54, 24) — O of max. lik. #-values (flat top)
Solid: corroboration of 6 given as ¢(f) = Pr(0 € ©; 1)

NB. probability with respect to observable trinomial sampling



Minimal inference (zhang & Chambers, 2019)

Only based on the (trinomial) sampling distribution f(z; )

which is agreeable to all, true v, identifiable, MLE Qﬂ(az) L Yo

Consistent estimation of true corroboration

co(0) = c(6;09) = Pr(6 € ;)
or true level-a corroboration set

Aa(thg) =40 : c(b:¢0) > a}
Define observed maximum corroboration set
A Ama:‘c _ Amax( ¢>
f-values in A" are theA hardest to refute given z (the data)
In contrast, values in © are most likely to be true

Corroboration test Hy : 0* € Oy vs. Hp : 0* ¢ O is strongly
Chernoff-consistent, can reject 0* with power 1 — ¢(6%)

AN

C) =02 60=03 60=04 60=05 6"=006
0.29,0.51] ¢=10.018 ¢=0.583 ¢=0.985 ¢=0.576 ¢=0.028
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II. Finite-sample conformal intervals

«Conformal Methods in Official Statistics: Perspectives
and Challenges» — Nina Deliu, Brunero Liseo
Finite sample of size n, level-a prediction interval C, , s.t.

Pr{y € C,.(2)} > «
* Full-conformal by a lemma of sample quantile-g,
Pr(z < gni10) > a given IID {z, ..., z,} U {z}

with z; = |y; — for1(2)|, 2 = |y — fur1(wpsr)|, arbitrary f,4
from augmented sample {(y;,x;) :i=1,...,n} U{(y, xni1)}
NB. repeatedly evaluating a grid of stipulated y-values

* Split-conformal using random partition s; Usy = {1,...,n}

— obtain f(z,s;) from {(y;,z;) : i € s1}, training set s,

- Pr(z < @nyn) =, no = |52, 2i = |y; — f(x;,81)| for i € s9
NB. f(z,s;) is constant of j ¢ s; conditional on s;

Discussion: split-conformal under design-based predic-
tive inference framework, in contrast to IID/ WR sampling
— Zhang, Sande-Sanguiao & Lee (2024), available at JOS
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What is design-based prediction?

Given a sample of observations, e.g. {(y;,z;):t1=1,....,n}
* obtain a function u(s), which varies with s = {1,....,n}

* prediction if u(s) targets something random, estimation if fixed
* design-based prediction if only s ~ p(s), but all (y;, ;) are fixed

Example: Fixed population U and associated values {y,; : i € U}

Element ’1:1 iQ i3 ’i4
Valuey, 1 2 3 6

s by simple random sampling without replacement, |s| =2

Sample s (i1,22) (1,%3) (i1,%4) (i2,13) (i,04) (i3,174)
Sample mean u(s) =gys | 1.5 2 3.5 2.5 4 4.5

Out-of-sample mean 3| 4.5 4 2.5 3.5 2 1.5

=3 =2 =2 py=1y=1ypy=1
Unknown -k Y3
Wik @ sk 6 =6 =3 =6 =3 yp=2

2.95 0 295  2.95 9  12.25
. 2.
{lye = p(s))? k& s} 2025 16 025 1225 1 6.25

Dp=3 e (ys—puls)? | 225 16 25 145 10 185

Random R =U \ s, yg, {yr : k ¢ s} or Dy as sample s varies
E,(ys —yr) =0, i.e. unbiased prediction of y w.r.t. p(s)
Predict Dy as total squared error of unit-level prediction ?
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Design-based predictive inference

Target y by u(x) given z, arbitrary model or algorithm

* pqg-design: s ~ p(s), s1 ~ q(s1]s), so =15\ 51
e.g. training set s; by K-fold partition, SRS or bootstrap given s

* subsampling Rao-Blackwellisation (SRB) of ;(z, s1)
fi(x,s) = Ey|p(z, 1) | s]
* finite-sample design-unbiased prediction of

STE = (Zigés yi — (@i, 3))2 or TSE =3, (i — filxi, 5))

Now, apply SRB under pg-design for intervals instead
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* Conditional on s, treat s, as a sample from U \ s; under pg-design

q(s1|s)p(s) = f(s1)f(s]s1)) = mui=Pr(i €sy]s)

* obtain my;-unbiased estimation of the distribution of error of u(z, s1)
in U \ s; based on sample {y; — u(x;,s1) : i € so} — thereby predict
the coverage of |u(z;, s1) — zr, p(zi, s1) + 2| over all i ¢ s
NB. split-conformal intervals p(z;, s1) £ - - - biased if WOR-sampling

* Apply SRB to recover loss of efficiency due to single split
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