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Statistical Matching Problem

Let A and B be two samples from a population generated from the joint pdf
fp(x , y , z ; θ):

1 (X , Y ) are observed in sample A of size nA;
2 (X , Z ) are observed in sample B of size nB.

The aim is to estimate the joint pdf of (X , Y , Z ).
No joint observations on (Y , Z ) =⇒ the model of (X , Y , Z ) is not
identifiable.
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Alternatives approaches to SM

Several alternative approaches to overcome the identification problem:
1 Conditional independence assumption (CIA) between Y and Z given X ;

2 External information regarding the relationship between Y and Z ;

3 Analyze the uncertainty regarding the joint pdf of (X , Y , Z ).
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Aim of the talk

The aim of this talk is:

1. to discuss under the CIA the SM problem when the samples A and B are
informative and the nonresponse in NMAR by an approach based on EL.

2. to drop the CIA and define a class of plausible joint pdfs for (X , Y , Z ).

3. to show the results of an application to SHIW and HBS datasets.
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Empirical likelihood approach

The EL approach approximates the population pdf by a multinomial model,
which support is given by the empirical observations:

1 it combines the robustness of nonparametric methods with the efficiency
of the likelihood approach;

2 it does not require specifying the population model, and is thus more
robust and often easier to implement;

3 it facilitates the use of calibration constraints. The population mean µX
of X is known.
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Empirical likelihood approach

1 Y and Z are continuous;
2 X is a discrete variable taking K distinct values. Ak = {i ∈ A : xi = xk} is

the set of sample units in A with X = xk of size nx
k,A such that for i ∈ Ak

pX
i = P(X = xk) = pX

k

for k = 1, . . . , K .

Under the CIA, the joint population multinomial probability of unit i is given
by:

pXYZ
i = P(xi)P(yi |xi)P(zi |xi) = pX

k pY |X
i pZ |X

i
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EL under non-ignorable sampling

Under informative sampling, the observed outcomes are no longer
representative of the population outcomes and the sample models are different
from the corresponding population models. Pfeffermann et al. (1998) establish
general conditions under which for independent observations under the
population model, the sample measurements are asymptotically independent
under the sample model, when increasing the population size but holding the
sample size fixed. Then, the sample likelihood can be approximated by the
product of the sample pdfs over the corresponding sample observations.
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EL under non-ignorable sampling
The sample EL based on A ∪ B is

ELA∪B
Obs =

K∏
k=1

(pX
k,A)nX

k,A
∏

i∈Ak

pY |X
i ,A

K∏
k=1

(pX
k,B)nX

k,B
∏

i∈Bxk

pZ |X
i ,B

where the sample models

pY |X
i ,A = P(yi |xi , IA

i = 1) = P(IA
i = 1|xi , yi)

P(IA
i = 1|xi)

pY |X
i

pX
k,A = P(xk |IA

i = 1) = P(IA
i = 1|xk)

P(IA
i = 1) pX

k

for i ∈ Ak where IA
i the sample indicator. Analogous expression can be

obtained for sample B.
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EL under non-ignorable sampling

1 The probabilities P(IA
i = 1|xi , yi) = 1/EA(wi ,A|xi , yi) (Pfeffermann and

Sverchkov (1999)) can be estimated regressing wi ,A against (xi , yi).
2 ELA∪B

Obs needs to be maximized with regard to {pX
k , pY |X

i , pZ |X
i } under the

constraints:

pX
k ⩾ 0, pY |X

i ⩾ 0, pZ |X
i ⩾ 0,

K∑
k=1

pX
k = 1,

∑
j∈Axk

pY |X
i = 1,

∑
j∈Bxk

pZ |X
i = 1,

K∑
k=1

pX
k xk = µX
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EL under nonignorable sampling and nonresponse

Additionally to informative sampling, A and B are subject to NMAR
nonresponse.
The empirical respondents likelihood (ERL) for the sample A ∪ B

ERLA∪B
Obs =

K∏
k=1

(pX
k,RA

)rk,A
∏

i∈Rk,A

pY |X
i ,RA

K∏
k=1

(pX
k,RB

)rk,B
∏

i∈Rk,B

pZ |X
i ,RB

where Rk,A = {i ∈ RA : xi = xk} and RA is the set of responding units of size
rA.
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EL under nonignorable sampling and nonresponse

The respondent models are

pY |X
i ,RA

= P(RA
i = 1|xk , yi , IA

i = 1)
P(RA

i = 1|xk , IA
i = 1)

P(IA
i = 1|xk , yi)

P(IA
i = 1|xk) pY |X

i

pX
k,RA

= P(RA
i = 1|xk , IA

i = 1)
P(RA

i = 1|IA
i = 1)

P(IA
i = 1|xk)

P(IA
i = 1) pX

k

where RA
i is the response indicator. Analogous expressions can be obtained

from sample B.
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EL under nonignorable sampling and nonresponse

1 the response is independent of the sample selection, the
EA(wi ,A|xi , yi) = ERA(wi ,A|xi , yi), then the probabilities P(IA

i = 1|xi , yi)
can be estimated by regressing wi ,A against (xi , yi), using the observed
data in A.

2 The response probabilities need to be estimated from the available data
by a parametric model.

P(RA
i = 1|xi , yi , IA

i = 1) = gA(γ0,A + γx ,Axi + γy ,Ayi)

for some functions gA (logit function), with unknown parameters γA.
Analogous expression for sample B with response parameters γB.
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EL under nonignorable sampling and nonresponse

The ERL needs to be maximized with respect ({pX
k , pY |X

i , pZ |X
i }, γA, γB) under

the constraints

pX
k ⩾ 0, pY |X

i ⩾ 0, pZ |X
i ⩾ 0,

K∑
k=1

pX
k = 1,

∑
j∈RA,k

pY |X
j = 1,

∑
j∈RB,k

pZ |X
j = 1,

K∑
k=1

pX
k xk = µX

for all k and i .
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EL under non-ignorable sampling and non-response

Estimate the probabilities {pX
k , pY |X

i , pZ |X
i } by the profile likelihood:

Step 1 initial estimates of {pX
k , pY |X

i , pZ |X
i } and maximize the profile likelihood

function,

G(γA, γB) = ERLA∪B
Obs (γA, γB|pX

k , pY |X
i , pZ |X

i )

with respect to (γA, γB).
Step 2 substitute the estimates γ̂A, γ̂B in the likelihood and maximized with

respect to {pX
k , pY |X

i , pZ |X
i }.

This completes the first iteration in the estimation process. In the second
iteration, the estimates of {pX

k , pY |X
i , pZ |X

i } in Step 2 are considered as known
and re-estimate the parameters (γA, γB) and then the unknown probabilities.
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EL under non-ignorable sampling and nonresponse

The estimates p̂X
k,A, p̂X

k,B need to be harmonized into a unique estimate.
1 a linear combination of the two estimates;

p̂X
k = λp̂X

k,A + (1 − λ)p̂X
k,B

with λ ∈ [0, 1]. For instance λ = nA/(nA + nB).
2 taking the value of λ minimizing the variance of p̂X

k . Variance estimates of
p̂X

k,A , p̂X
k,B can be computed by resampling methods for finite populations.

3 replace pX
k,RA

, pX
k,RB

by λpX
k,RA

+ (1 − λ)pX
k,RB

and maximizing the ERL also
with respect to λ.
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Missing data imputation

Once the parameters {pX
k , pY |X

i , pZ |X
i } have been estimated a fused datasets

with joint observations (x , y , z) can be constructed as follows:
Step 1 generate ñ observations from the estimated distribution of X taking

values (xi , . . . , xK ) with probabilities (p̂X
1 , . . . , p̂X

K );
Step 2 for i = 1, . . . , ñ and k = 1, . . . K , if xi = xk draw at random a value ỹ

from the estimated probability function of p̂Y |X
i taking the values

Γk,A = (y k
1 , . . . , y k

rX
k,A

) with probabilities (p̂Y |X
1 , . . . , p̂Y |X

rX
k,A

)
Step 3 Applied the procedure in Step 2 for drawing values z̃ from the estimated

probability function of p̂Z |X
i .
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Uncertainty in Statistical matching

According to Conti, Marella and Scanu (2016), we drop the CIA and we
proceed:
1. to define the class of plausible pdfs for (Y , Z )|X when no auxiliary

information is available and under the constraint Y ⩽ Z .
2. to compute an uncertainty measure quantify how broad is the class of

plausible models.
3. to choose a plausible pdf (a matching distribution) from the class

according to the IPF algorithm.
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Uncertainty in Statistical Matching

The estimation of the joint pdf of (X , Y , Z ) requires the estimation of
1. the marginal pdf of X ;
2. the joint conditional pdf of (Y , Z )|X .

No auxiliary information is available, the only valid statement is that

Lc(Fp(y |xk), Gp(z |xk)) ⩽ Fp(y , z |xk) ⩽ Uc(Fp(y |xk), Gp(z |xk))

Uc(Fp(y |xk), Gp(z |xk)) = min(Fp(y |xk), Gp(z |xk))
Lc(Fp(y |xk), Gp(z |xk)) = max(0, Fp(y |xk) + Gp(z |xk) − 1, )

The bounds are the Fréchet bounds.
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Uncertainty Measures
For X = xk a natural uncertainty measure is

∆k
p =

∫
R2

(Uc(·, ·) − Lc(·, ·))dFp(y |xk)Gp(z |xk)

Weight functions different from dFp(y |xk)Gp(z |xk) can be used instead. In our
choice larger weights are assigned to intervals with larger marginal densities.
An overall uncertainty measure is defined by the average of the conditional
measures.

∆p =
K∑

k=1
∆kpX

k
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Auxiliary information in Statistical Matching

1 Sample data do not allow to discriminate between alternative models then
each distribution in the class can be taken as surrogate of the actual
distribution.

2 If auxiliary information is not available the class of plausible distributions
is too wide to be usable in practice.

3 We consider external auxiliary information assuming that Y ⩽ Z .
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Auxiliary information in Statistical Matching

The class of plausible distributions for (Y , Z )|X is,

Lc(Fp(y |xk), Gp(z |xk)) ⩽ Fp(y , z |xk) ⩽ Uc(Fp(y |xk), Gp(z |xk))

where the Fréchet bounds becomes

Uc(Fp(y |xk), Gp(z |xk)) = min(Fp(y |xk), Fp(z |xk), Gp(z |xk))

Lc(Fp(y |xk), Gp(z |xk)) = max(0, Fp(y |xk) + Gp(z |xk) − 1,

min(Fp(y |xk), Fp(z |xk)) + Gp(z |xk) − 1)
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Uncertainty in Statistical matching

The corresponding uncertainty measures under the constraint ∆k
p,c , ∆p,c are

defined similarly to ∆k
p, ∆p

Final step: to choose a matching distribution from the class by using the IPF
algorithm.
The more informative the auxiliary information, the less uncertain the
statistical model for the variables of interest becomes. The larger the
uncertainty reduction (i.e an uncertainty measure under a given threshold),
the more plausible the choice of a matching distribution from the class
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IPF algorithm in the EL context

Step 1 Discretize the variables Y and Z by grouping their ascending values in
pre-defined classes. For each xk , the range of the variable Y (Z ) is
divided into intervals of equal size √rk,A(√rk,B). Denote by Yd ,k(Zd ,k)
the discretized variable corresponding to Y (Z ) taking hk(gk) values
defined by the midpoints yd ,h(zd ,g).

Step 2 Estimate the marginal probabilities of pYd,k |xk
h as follows

p̂Yd,k |xk
h =

rX
k,A∑

i=1
p̂Y |xk

i , p̂Zd,k |xk
g =

rX
k,B∑

i=1
p̂Z |xk

i

where p̂Y |xk
i , p̂Z |xk

i are the estimates obtained by ERL maximization.
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IPF algorithm in the EL context
Step 3 Define the contingency table C k defined by the hkgk values

(yd ,1zd ,1), ..., (yd ,hzd ,g), ..., (yd ,hk zd ,gk )
with unknown cell probabilities

(pYd,k ,Zd,k |xk
11 , ..., pYd,k ,Zd,k |xk

hg , ..., pYd,k ,Zd,k |xk
hkgk

Step 4 the midpoints (yd ,h, zd ,g) are checked to identify the cells with structural
zeroes in C k . The unknown probabilities pYd,k ,Zd,k |xk

hg with (yd ,h > zd ,g) are
set equal to zero.

Step 5 Initial values of the cell probabilities pYd,k ,Zd,k |xk
hg are

p0,Yd,k ,Zd,k |xk
hg = δhg p̂Yd,k |xk

h. p̂Zd,k |xk
.g

where δhg = 1 for cells in C k do not contain structural zeroes δhg = 0
otherwise.
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IPF algorithm in the EL context

The IPF modifies the initial cell probabilities iteratively, until convergence.
The final fitted cell probabilities define a matching distribution for
(Yd ,k , Zd ,k)|xk . A synthetic datatsets can be reconstructed as follows:

1 Generate ñ observations x̃i from the estimated distribution of X taking
the values (x1, ..., xK ) with probabilities (p̂X

1 , ..., p̂X
K );

2 Let ñX
k be the number of observations with x̃i = xk . Draw ñX

k pairs
(ỹd , z̃d) from IPF the matching distribution.
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Application to SHIW and HBS datasets

In Italy, information on households income and expenditure is provided by
1 SHIW (Survey on Household Income and Wealth) run by Banca d’Italia;
2 HBS (Household Budget Survey) run by ISTAT;

No single data source containing information on both income and expenditure
exists. This problem is generally overcome with statistical matching.
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Application to SHIW and HBS datasets

1 SHIW is conducted by Banca d’Italia every two years. Its main goal is to
study the economic status of Italian households, focusing on income and
wealth. The sample is drawn in two stages, with municipalities as the
primary sampling units and households as the secondary sampling units.
In the present application, we use the 2010 wave, 7951 households.

2 The HBS collects detailed information on socio-demographic
characteristics and expenditures on a disaggregated set of commodities
(durable and non-durable). As with SHIW, we use the 2010 wave. The
sampling design is similar to SHIW with 22227 houselholds.

Marella and Pfeffermann Dealing with Non-ignorable Sampling and Non-response in Statistical Matching



Application to SHIW and HBS datatsets

1 X=household size taking the values xk = 1, 2, 3, 4+ with probabilities pX
k .

2 Y =household expenditure in HBS;
3 Z= household income in SHIW.
4

∑K
k=1 pX

k xk = 2.4 (calibration constraint).
5 EA(wi ,A|xi , yi) (regressing wi ,A against (xi , yi)). Same for SHIW (B).
6 the estimates of pX

k have been harmonized:λp̂X
k,A + (1 − λ)p̂X

k,B,
λ = nA/(nA + nB).
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Application to SHIW and HBS datasets

The response rates is about of 62% in SHIW and HBS. Nonresponse is
explained by,

1 the size of the household: The larger the household, the more possibilities
exist to find a contact person for an interview. In addition, households
consisting of only one or two elder people, often tend not to participate in
surveys.

2 the income (expenditure): as often reported in the literature, the response
probability tends to decrease, as the household income or expenditure
increase

Response sets RA, RB are generated by a logistic model setting
γA = (0.2, −0.002) and γB = (0.2, −0.003).
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Application to SHIW and HBS datasets

First, under the calibration constraint we estimate pX
k

1 pX
k : ISTAT’s estimates of the household size distribution in Italy in 2010

2 p̂X
k,1C :estimates obtained ignoring the sampling design effects and

assuming that all the units responded;
3 p̂X

k,2C :estimates obtained when accounting for the sampling effects;
4 p̂X

k,2CM : estimates which account for the sampling designs and
nonresponse.
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Application to SHIW and HBS datasets

Tabella: Different estimates of pX
k

hsize pX
k p̂X

k,1C p̂X
k,2C p̂X

k,2CM

1 0.284 0.264 0.276 0.276
2 0.276 0.293 0.281 0.280
3 0.209 0.208 0.200 0.205

4+ 0.232 0.233 0.243 0.239

Tabella: Hellinger distance

HD(pX
k , p̂X

k,1C) HD(pX
k , p̂X

k,2C) HD(pX
k , p̂X

k,2CM)
1.76% 1.24% 0.85%
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Application to SHIW and HBS datasets

The correlations in HBS and SHIW are: ρXY = 0.38,ρXZ = 0.31.

Next, we estimate the probabilities {pY |X
i , pZ |X

i } and we generate fused
dataset of size 10000:

1 when ignoring the sampling designs and nonresponse: ρXY = 0.34,
ρXZ = 0.28, ρYZ = 0.08;

2 when both processes are taken into account: ρXY = 0.38, ρXZ = 0.32,
ρYZ = 0.13;

The SHIW questionnaire also contains a section on household expenditures
aimed at constructing an approximate measure of total expenditure.
ρSHIW

YZ = 0.65 =⇒ ρCIA
YZ = ρCIA

XY ρCIA
XZ = 0.12 (CIA is inappropriate)
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Uncertainty Measure

1 When accounting for the sampling and nonresponse effects and imposing
the constraint Y ⩽ Z , the estimated uncertainty measure ∆̂p decreases
from 0.16, (its maximum value when no constraint is used), to 0.11.

2 The uncertainty measure increases to 0.13 when the sampling and
nonresponse processes are ignored.
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IPF algorithm in the EL context
Figura: Estimated density of (Y , Z ) under the constraint Y ⩽ Z for h = 3 . Estimates
obtained by IPF (left) and under the CIA (right).
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IPF algorithm in the EL context

The correlation between the imputed values of expenditure and income is 0.55
when applying the IPF.
Our proposed methodology seems to recover pretty well the correlation of 0.65
between income and expenditure in the original SHIW data set.
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