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Overview

What is a conformal prediction (CP)?

Design-based CP

Model-based CP

CP as a possible agreement among statistical paradigms
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What is CP?
Preliminary note on uncertainty quantification

Given a n-sample (xi, yi), i = 1, . . . , n, and a generic point estimator for Y ∈ Y, e.g., of an
underlying regression model

f̂n : X → Y ⊆ R,

Goal: to build a prediction interval for Yn+1, say

Cn,1−α(xn+1) = f̂n(xn+1)± ∆α,

with 1− α coverage guarantees, that is, such that

P(Yn+1 ∈ Cn,1−α (xn+1)) ≥ 1− α, α ∈ (0, 1).

↪→ Alert! It is incorrect to use the training residuals Ri = |yi − f̂n(xi)|, i = 1, . . . , n to
estimate ∆α: they may be to small (overfitting) when compared to that of the test point
Yn+1, with no coverage guarantees.

3 / 29



What is CP?
Preliminary note on uncertainty quantification

Given a n-sample (xi, yi), i = 1, . . . , n, and a generic point estimator for Y ∈ Y, e.g., of an
underlying regression model

f̂n : X → Y ⊆ R,

Goal: to build a prediction interval for Yn+1, say

Cn,1−α(xn+1) = f̂n(xn+1)± ∆α,

with 1− α coverage guarantees, that is, such that

P(Yn+1 ∈ Cn,1−α (xn+1)) ≥ 1− α, α ∈ (0, 1).

↪→ Alert! It is incorrect to use the training residuals Ri = |yi − f̂n(xi)|, i = 1, . . . , n to
estimate ∆α: they may be to small (overfitting) when compared to that of the test point
Yn+1, with no coverage guarantees.

3 / 29



What is CP?
First idea: Split Conformal

Fit f̂n/2 using half of your data: {(xi, yi), i = 1, . . . , n/2}
Then make a Bag of residuals with the other half

{Ri = |yi − f̂n/2(xi)|, i =
n

2
+ 1, . . . , n}.

Construct the prediction interval as

Cn,1−α(xn+1) = f̂n/2(xn+1)±Q1−α(Bag)

where Q1−α is the ⌈(1− α)(n2 + 1)⌉ smallest residual in the Bag.

↪→ Now: All the computed residuals are exchangeable, included that of the test point, avoiding
overfitting and ensuring proper coverage.
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What is CP?
Theoretical justification

Split Conformal Prediction enjoys finite sample guarantees, as proved by Vovk et al. [2005] and
Lei and Wasserman [2014].

Theorem
Assume the pairs (xi, yi), i = 1, . . . n, n+ 1, are exchangeable. Then

P(Yn+1 ∈ Cn,1−α(xn+1)) ≥ 1− α

and the result holds for any finite sample size.

Proof: Easy, mainly based on quantiles, permutation, and exchangeability.

Intuition: The set Cn,1−α(xn+1) consists of{
all values of Y such that |Y − f̂n(xn+1)| ≤ k

}
and k is a threshold constructed on the quantiles of the Bag.

Here the residuals Ri play the role of conformity scores.
5 / 29



An illustrative example
Sample data Data

Sample
n
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0
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400

-3 0 3

x

y

 Sample Data

↪→ Split the sample data:

DataSamplen = DataTrainnT
∪ DataCalnC

with DataTrainnT
∩ DataCalnC

= ∅
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An illustrative example
Train data: DataTrainnT
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 Train Data

↪→ Use DataTrainnT
to fit a point predictor f̂nT

: X → Y
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An illustrative example
Calibration data: DataCalnC

-200
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y

 Calibration Data

✓ Get nC predictions on DataCalnC
: f̂nT

(Xj), j ∈ DataCalnC

✓ Get calibration/conformity scores: Rj = |Yj−f̂nT
(Xj)|, j ∈ DataCalnC

↪→ Use {Rj ; j ∈ DataCalnC
} to get qn,1−α = R(⌈(nC+1)(1−α)⌉)
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An illustrative example
Test data: DataTestn∗
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 Test Data

✓ Get n∗ predictions on DataTestn∗ : f̂nT
(Xj∗), j

∗ ∈ DataTestn∗

↪→ Split-CP: Csplitn,1−α(Xj∗) = [f̂nT
(Xj∗)± qn,1−α], j

∗ ∈ DataTestn∗
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Conformal Prediction
in Official Statistics
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CP in Official Statistics
Consider the following set-up

Unit
Sample

Membership I
Covariate X1 . . . Covariate Xp Outcome Y1

1 i1 = 1 x11 . . . x1p y1
2 i2 = 0 x21 . . . x2p ŷ2
...

...
...

...
...

...
j ij = 1 xj1 . . . xjp yj
...

...
...

...
...

...
N iN = 0 xN1 . . . xNp ŷN

Inferences are made based on the (sample) data:

DataSamplen = {(Xj , Yj) : j ∈ Sn}, Sn = {j : Ij = 1}.

In general: (Ij , (Xj , Yj)) ∼ P = PI × P(X,Y )|I , j = 1, . . . , N.
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...

...
...

...
...

...
j ij = 1 xj1 . . . xjp yj
...

...
...

...
...

...
N iN = 0 xN1 . . . xNp ŷN
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CP in Official Statistics

Design-based CP [Wieczorek, 2024]

PI(Yj∗ ∈ C(Xj∗)) ≥ 1− α, j∗ /∈ Sn.

Easy to handle with SRS designs: units are exchangeable

Requires ad hoc corrections with more general sampling schemes (more on this later)

Model-based CP

P(X,Y )(Yj∗ ∈ C(Xj∗)) ≥ 1− α, j∗ /∈ Sn.

Can provide great advantages:

can mitigate the model-misspecification problem

can produce narrower prediction intervals

• Bayes–Frequentist compromise
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Simulations
apipop data (R package survey); N = 6194

Data description: Academic Performance Index (API)

Response variable of interest

Y :: api00 Numeric response variable representing the API score in 2000, covering all
California schools with at least 100 students (range: 200 to 1000)

A set of auxiliary variables: we only consider

X1 :: stype Categorical variable representing the school type (elementary, middle, high)
X2 :: ell Numeric variable given by the percentage of English Language Learners

X3 :: meals Numeric variable being the percentage of students eligible for subsidized meals
X4 :: mobility Numeric variable for the percentage of first-year students at the school
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Simulations
A comparison between traditional and CP methods
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Coverage Distribution of the 80% Prediction Intervals (n = 200)

Expected coverage for a
target 1− α = 0.8 (red dashed line). M = 1000 independent SRS-WR with n = 200 from the apipop dataset
with population size N = 6194.
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Simulations
A comparison between traditional and CP methods

Bootstrap
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150.05 (14.98)

345.05 (16.87)
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PI Length (SD)

Expected prediction interval,
length, and SD for a target α = 0.2. Average across M = 1000 independent SRS-WR with n = 200 from the
apipop data.
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Simulations
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Design-based and Model-based CP
Advantages when compared with alternative methods

Design-based CP

versus Linearization: finite-sample guarantees & model-free (no need for ad hoc
calculations)

versus Bootstrap and other Resampling methods: finite-sample guarantees & less
computationally demanding (at least for Split CP)

Model-based CP

The combination of CP and the correct model provides the optimal intervals, both in
terms of coverage and length

A poor model specification can cause an increase in length but does not undermine
coverage

Coverage is guaranteed for finite sample sizes

↪→ In general, given the exact coverage, one can simply choose among alternative CP
approaches, either design-based or model-based, in terms of the average length of the resulting
prediction intervals

18 / 29



Design-based and Model-based CP
Advantages when compared with alternative methods

Design-based CP

versus Linearization: finite-sample guarantees & model-free (no need for ad hoc
calculations)

versus Bootstrap and other Resampling methods: finite-sample guarantees & less
computationally demanding (at least for Split CP)

Model-based CP

The combination of CP and the correct model provides the optimal intervals, both in
terms of coverage and length

A poor model specification can cause an increase in length but does not undermine
coverage

Coverage is guaranteed for finite sample sizes

↪→ In general, given the exact coverage, one can simply choose among alternative CP
approaches, either design-based or model-based, in terms of the average length of the resulting
prediction intervals

18 / 29



Design-based and Model-based CP
Advantages when compared with alternative methods

Design-based CP

versus Linearization: finite-sample guarantees & model-free (no need for ad hoc
calculations)

versus Bootstrap and other Resampling methods: finite-sample guarantees & less
computationally demanding (at least for Split CP)

Model-based CP

The combination of CP and the correct model provides the optimal intervals, both in
terms of coverage and length

A poor model specification can cause an increase in length but does not undermine
coverage

Coverage is guaranteed for finite sample sizes

↪→ In general, given the exact coverage, one can simply choose among alternative CP
approaches, either design-based or model-based, in terms of the average length of the resulting
prediction intervals 18 / 29



CP Challenges in Official Statistics

(A) Conditional Coverage and Adaptivity: domain-restricted predictions

(B) Beyond Exchangeability: covariate shift, time series data, complex designs

(C) Classification: here prediction sets are discrete and different methods are necessary,
based on the cumulative likelihood [Romano et al., 2020]

(D) Combining prediction intervals (i.e. (sub)-population size estimation)
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(A) Marginal and Conditional Coverage

Marginal coverage: P (Yn+1 ∈ Cn,1−α(Xn+1)) ≥ 1− α
↪→ errors may differ across regions of the covariate space

Conditional coverage: P (Yn+1 ∈ Cn,1−α(x)|Xn+1 = x) ≥ 1− α
↪→ conditional coverage implies adaptiveness

Alert! Conditional coverage is stronger than marginal coverage but, in general (e.g. for a
continuous X), not attainable using nonparametric methods [Lei and Wasserman, 2014].
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Achieving Adaptivity in CP

Standard mean-regression CP is not adaptive . . .

However, it is not reasonable to have a constant width! Uncertainty quantification
depends on the amount of data at given x...

Simple solution: use a studentized conformity score

Si(xi, yi) =
Ri(xi, yi)

σ̂(xi)
=

|yi − f̂n/2(xi)|
σ̂(xi)

with
Cn,1−α(x) =

[
f̂n/2(xi)± σ̂(x)Q1−α(S)

]
More complex alternative: conformalized quantile regression [Romano et al., 2019]
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Conformalized Quantile Regression
Romano et al. [2019]

The algorithm

1 Randomly split the training data into a proper training set
(size nT ) and a calibration set (size nC)

2 Fit the lower (Q̂α/2) and upper (Q̂1−α/2) quantile by training a suitable algorithm on

the proper training set DataTrainnT

3 Compute the nC conformity scores:

Si = max
(
Q̂α

2
(Xi)− Yi, Yi − Q̂1−α

2
(Xi)

)
, i ∈ DataCalnC

4 Compute qn,1−α = S(⌈(nC+1)(1−α)⌉)

5 For a new (test) point Xn+1, set

Cn,1−α(Xn+1) =
[
Q̂α

2
(Xn+1)− qn,1−α; Q̂1−α

2
(Xn+1) + qn,1−α

]
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Adaptivity: A comparison of different methods
Initial illustrative example

-200

0

200

400

-3 0 3

x

y

 Test Data

Split−conformal Prediction

-200

0

200

400

-3 0 3

x

y

 Test Data

Studentized Split−conformal Prediction

-200

0

200

400

-3 0 3

x

y

 Test Data

Quantile Split−conformal Prediction

23 / 29



Adaptivity: A comparison of different methods
apipop data
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(B) Beyond Exchangeability

Exchangeability is the main requirement for using CP

Conformal measure computed on the test unit can be considered

This might not be the case in survey sampling where observed values in the sample Sn

may be the result of a complex sampling design, while units for which we need to make a
prediction might be generated by a different system.
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(B) Beyond Exchangeability
Covariate Shift

A weighted version

Sample units adhere to a specific sampling design which is not necessarily shared by non-
sample units
This problem has been considered in Tibshirani et al. [2019], who adopted a weighted version
of the conformal scores. More in detail, assume that while the original sample data were
generated by a model

(Xj , Yj)
i.i.d∼ P = PI × PY |X × PX , j ∈ Sn

the new observation comes from a different marginal distribution of X, say

(Xj∗ , Yj∗)
i.i.d∼ P ∗ = PI × PY |X × P ∗

X , j∗ /∈ Sn.
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(B) Beyond Exchangeability

Covariate Shift Solution

The problem is solved by weighting the original conformal scores of the observations
(x1, x2, . . . , xn) using the likelihood ratio

w(xj) = dP ∗(xj)/dP (xj),

which plays a “weight” role.

Consider, for simplicity, a full CP setup where the calibration scores are computed for the full
sample dataset DataSamplen and the augmented candidate y. Under a weighted version, the new
set of empirical conformal scores will then be (R1p1(x), . . . , Rnpn(x), Rj∗pj∗),where

pj(x) =
w(Xj)∑n

i=1 w(Xi) + w(x)
, j ∈ Sn,

pj∗ (x) =
w(x)∑n

i=1 w(Xi) + w(x)
, j∗ /∈ Sn.
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CP as a calibrated Bayes approach
A new line of research?

Bayes–Frequentist compromise?

One of the main criticisms regarding model-based techniques in survey sampling is the
potential dependence on the assumed model

Also, the frequentist performance of Bayesian methods can be jeopardized by the use of the
prior

The conformal modification of the estimates produced via a full model-based Bayesian
approach is then a promising way to obtain a calibration of Bayesian estimates

Idea: combine all the information sources via an HB model-based approach and take as the
natural conformity measure the posterior predictive distribution, both in a Full- or in a
Split-CP scenario. See Bersson and Hoff [2024] for an example in Small Area Estimation.
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Conclusions and Perspectives

Advantages of CP in Official Statistics

CP has finite-sample and distribution-free exact marginal coverage

CP can be built on top of the preferred prediction strategy that has been used to impute
missing values in the response variable

CP also allows to quantify uncertainty also on predictions arising from multiple strategies
[Gasparin and Ramdas, 2024]

Challenges and Directions

• Exchangeability: does not hold for complex designs, requiring a more elaborated approach
(e.g., covariate shift, and adaptive strategies)

• Conditional coverage: when interest is in sub-population statistics (e.g., class-conditional,
label-conditional) this is not ensured with standard CP ↪→ Mondrian Conformal Classification
[Vovk et al., 2003]

• Combination of prediction sets remains an open problem (e.g., population size estimation)
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Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

V. Vovk, D. Lindsay, I. Nouretdinov, and A. Gammerman. Mondrian confidence machine. Technical Report,
2003.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world, volume 29. Springer, 2005.

J. Wieczorek. Design-based conformal prediction. Survey Methodology, 49(2), 2024.

29 / 29



Appendix



Simulations

0.70

0.75

0.80

0.85

Design Model M1 Model M2 Model M3 Design Design Model M1 Model M2 Model M3 Bootstrap

Methods

C
o
v
e
ra

g
e

Traditional Split Conformal Full Conformal

Coverage Distribution of the 80% Prediction Intervals (n = 500)



Simulations

0.900

0.925

0.950

0.975

Design Model M1 Model M2 Model M3 Design Design Model M1 Model M2 Model M3 Bootstrap

Methods

C
o
v
e
ra

g
e

Traditional Split Conformal Full Conformal

Coverage Distribution of the 95% Prediction Intervals (n = 500)



Simulations

Bootstrap

Model M3

Model M2

Model M1

Design

Design

Model M3

Model M2

Model M1

Design

400 600 800

Prediction Interval

M
e
th

o
d
sTraditional

Split Conformal

Full Conformal

80% Prediction Intervals (n = 500)

329.18 (8.26)

328.24 (8.24)

234.51 (7.34)

151.85 (6.09)

347.46 (14.25)

346.24 (10.35)

345.69 (14.96)

238.31 (12.73)

146.18 (9.4)

345.27 (10.6)

0.950 0.975 1.000 1.025 1.050

  

PI Length (SD)



Simulations

Bootstrap

Model M3

Model M2

Model M1

Design

Design

Model M3

Model M2

Model M1

Design

400 600 800

Prediction Interval

M
e
th

o
d
sTraditional

Split Conformal

Full Conformal

95% Prediction Intervals (n = 500)

503.99 (12.64)

502.55 (12.62)

359.06 (11.24)

232.5 (9.32)

472.86 (17.45)

467.78 (11.91)

471.72 (19.29)

357.13 (19.89)

239.71 (17.31)

465.89 (13.02)

0.950 0.975 1.000 1.025 1.050

  

PI Length (SD)


	What is Conformal Prediction (CP)?
	CP in Official Statistics
	An Empirical Evaluation

	Challenges and Directions
	References
	Appendix

