Conformal inference for uncertainty quantification in official statistics

Nina Deliu & Brunero Liseo

Sapienza Università di Roma

nina.deliu@uniroma1.it; brunero.liseo@uniroma1.it

3rd Workshop on Methodologies for Official Statistics December, 5th 2024

Overview

- What is a conformal prediction (CP)?
- Design-based CP
- Model-based CP
- CP as a possible agreement among statistical paradigms

What is CP?

Preliminary note on uncertainty quantification

Given a *n*-sample (x_i, y_i) , i = 1, ..., n, and a generic *point* estimator for $Y \in \mathcal{Y}$, e.g., of an underlying regression model

$$\hat{f}_n: \mathcal{X} \to \mathcal{Y} \subseteq \mathbb{R},$$

Goal: to build a prediction interval for Y_{n+1} , say

$$\mathcal{C}_{n,1-\alpha}(\boldsymbol{x}_{n+1}) = \hat{f}_n(x_{n+1}) \pm \Delta_{\alpha},$$

with $1-\alpha$ coverage guarantees, that is, such that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_{n,1-\alpha}(\boldsymbol{x}_{n+1})) \ge 1 - \alpha, \quad \alpha \in (0,1).$$

What is CP?

Preliminary note on uncertainty quantification

Given a *n*-sample (x_i, y_i) , i = 1, ..., n, and a generic *point* estimator for $Y \in \mathcal{Y}$, e.g., of an underlying regression model

$$\hat{f}_n: \mathcal{X} \to \mathcal{Y} \subseteq \mathbb{R},$$

Goal: to build a prediction interval for Y_{n+1} , say

$$\mathcal{C}_{n,1-\alpha}(\boldsymbol{x}_{n+1}) = \hat{f}_n(x_{n+1}) \pm \Delta_{\alpha},$$

with $1-\alpha$ coverage guarantees, that is, such that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_{n,1-\alpha}(\boldsymbol{x}_{n+1})) \ge 1 - \alpha, \quad \alpha \in (0,1).$$

 \hookrightarrow Alert! It is incorrect to use the *training* residuals $R_i = |y_i - \hat{f}_n(x_i)|$, i = 1, ..., n to estimate Δ_{α} : they may be to small (overfitting) when compared to that of the test point Y_{n+1} , with no coverage guarantees.

What is CP? First idea: Split Conformal

Fit $\hat{f}_{n/2}$ using half of your data: $\{({m x}_i,y_i),\ i=1,\ldots,n/2\}$

Then make a Bag of residuals with the other half

$$\{R_i = |y_i - \hat{f}_{n/2}(\boldsymbol{x}_i)|, \quad i = \frac{n}{2} + 1, \dots, n\}.$$

Construct the prediction interval as

$$\mathcal{C}_{n,1-lpha}(oldsymbol{x}_{n+1}) = \widehat{f}_{n/2}(oldsymbol{x}_{n+1}) \pm Q_{1-lpha}(\mathsf{Bag})$$

where $Q_{1-\alpha}$ is the $\lceil (1-\alpha)(\frac{n}{2}+1)\rceil$ smallest residual in the Bag.

What is CP? First idea: Split Conformal

Fit $\hat{f}_{n/2}$ using half of your data: $\{({m x}_i,y_i),\ i=1,\ldots,n/2\}$

Then make a Bag of residuals with the other half

$$\{R_i = |y_i - \hat{f}_{n/2}(\boldsymbol{x}_i)|, \quad i = \frac{n}{2} + 1, \dots, n\}.$$

Construct the prediction interval as

$$\mathcal{C}_{n,1-lpha}(\boldsymbol{x}_{n+1}) = \hat{f}_{n/2}(\boldsymbol{x}_{n+1}) \pm Q_{1-lpha}(\mathsf{Bag})$$

where $Q_{1-\alpha}$ is the $\lceil (1-\alpha)(\frac{n}{2}+1) \rceil$ smallest residual in the Bag.

 \hookrightarrow Now: All the computed residuals are *exchangeable*, included that of the test point, avoiding overfitting and ensuring proper coverage.

What is CP?

Theoretical justification

Split Conformal Prediction enjoys finite sample guarantees, as proved by Vovk et al. [2005] and Lei and Wasserman [2014].

Theorem

Assume the pairs (x_i, y_i) , i = 1, ..., n, n + 1, are exchangeable. Then

 $\mathbb{P}(Y_{n+1} \in \mathcal{C}_{n,1-\alpha}(\boldsymbol{x}_{n+1})) \ge 1 - \alpha$

and the result holds for any finite sample size.

Proof: Easy, mainly based on quantiles, permutation, and exchangeability.

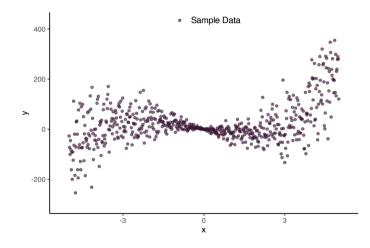
• Intuition: The set $\mathcal{C}_{n,1-lpha}(oldsymbol{x}_{n+1})$ consists of

$$\left\{ \mathsf{all} \; \mathsf{values} \; \mathsf{of} \; Y \; \mathsf{such} \; \mathsf{that} \; |Y - \hat{f}_n(oldsymbol{x}_{n+1})| \leq oldsymbol{k}
ight\}$$

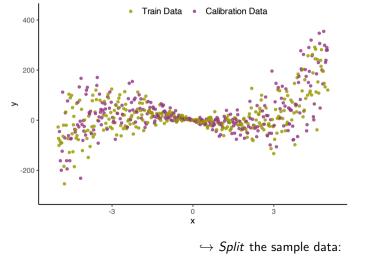
and k is a threshold constructed on the quantiles of the Bag.

• Here the residuals R_i play the role of conformity scores.

Sample data $\mathsf{Data}_n^{\mathsf{Sample}}$

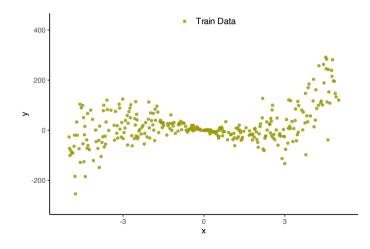


Sample data $\mathsf{Data}_n^{\mathsf{Sample}}$

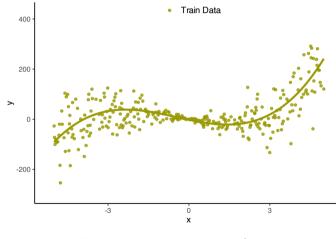


Deta Sample Deta Train - Deta Calthe Deta Train - Deta Cal (A

Train data: Data $_{n_T}^{\text{Train}}$

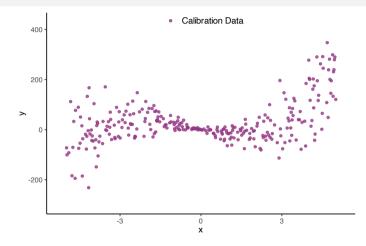


Train data: Data $_{n_T}^{\text{Train}}$

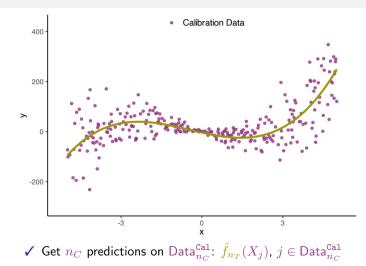


 \hookrightarrow Use $\mathsf{Data}_{n_T}^{\texttt{Train}}$ to fit a point predictor $\widehat{f}_{n_T} \colon \mathcal{X} \to \mathcal{Y}$

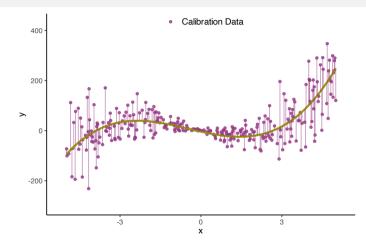
Calibration data: Data $_{n_C}^{Cal}$



Calibration data: $Data_{n_C}^{Cal}$



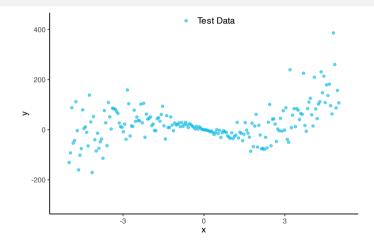
Calibration data: $Data_{n_C}^{Cal}$



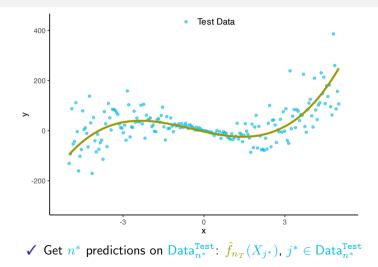
✓ Get calibration/conformity scores: $R_j = |Y_j - \hat{f}_{n_T}(X_j)|$, $j \in \text{Data}_{n_C}^{\text{Cal}}$

Calibration data: Data $_{n_C}^{Cal}$

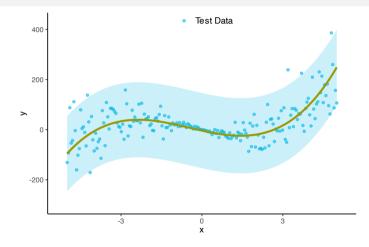
Test data: $Data_{n^*}^{Test}$



Test data: $Data_{n^*}^{Test}$



Test data: $Data_{n^*}^{Test}$



 $\hookrightarrow \text{ Split-CP: } \mathcal{C}_{n,1-\alpha}^{\texttt{split}}(X_{j^*}) = [\widehat{f}_{n_T}(X_{j^*}) \pm q_{n,1-\alpha}], j^* \in \mathsf{Data}_{n^*}^{\texttt{Test}}$

Conformal Prediction in Official Statistics

Consider the following set-up

Unit	Sample Membership <i>I</i>	Covariate X_1		Covariate X_p	Outcome Y_1
1	$i_1 = 1$	x_{11}		x_{1p}	y_1
2	$i_2 = 0$	x_{21}		x_{2p}	\hat{y}_2
÷	:	:	÷	:	:
j	$i_j = 1$	x_{j1}		x_{jp}	y_j
:	:	:	÷	:	:
N	$i_N = 0$	x_{N1}		x_{Np}	\hat{y}_N

Inferences are made based on the (sample) data:

$$\mathsf{Data}_n^{\mathsf{Sample}} = \{(\boldsymbol{X}_j, Y_j) : j \in \mathcal{S}_n\}, \quad \mathcal{S}_n = \{j : I_j = 1\}.$$

Consider the following set-up

Unit	Sample Membership <i>I</i>	Covariate X_1		Covariate X_p	Outcome Y_1
1	$i_1 = 1$	x_{11}		x_{1p}	y_1
2	$i_2 = 0$	x_{21}		x_{2p}	\hat{y}_2
÷	:	:	÷	:	:
j	$i_j = 1$	x_{j1}		x_{jp}	y_{j}
:	-	÷	÷	:	:
Ν	$i_N = 0$	x_{N1}		x_{Np}	\hat{y}_N

Inferences are made based on the (sample) data:

$$\mathsf{Data}_n^{\mathsf{Sample}} = \{(\boldsymbol{X}_j, Y_j) : j \in \mathcal{S}_n\}, \quad \mathcal{S}_n = \{j : I_j = 1\}.$$

 $\text{In general:} \quad (I_j, (\boldsymbol{X}_j, Y_j)) \sim P = P_I \times P_{(\boldsymbol{X}, Y) \mid I}, \quad j = 1, \dots, N.$

Design-based CP [Wieczorek, 2024]

$$\mathbb{P}_I(Y_{j^*} \in \mathcal{C}(X_{j^*})) \ge 1 - \alpha, \quad j^* \notin \mathcal{S}_n.$$

• Easy to handle with SRS designs: units are exchangeable

Requires ad hoc corrections with more general sampling schemes (more on this later)

Design-based CP [Wieczorek, 2024]

$$\mathbb{P}_I(Y_{j^*} \in \mathcal{C}(X_{j^*})) \ge 1 - \alpha, \quad j^* \notin \mathcal{S}_n.$$

Easy to handle with SRS designs: units are exchangeable

Requires ad hoc corrections with more general sampling schemes (more on this later)

Model-based CP

$$\mathbb{P}_{(\boldsymbol{X},Y)}(Y_{j^*} \in \mathcal{C}(\boldsymbol{X}_{j^*})) \ge 1 - \alpha, \quad j^* \notin \mathcal{S}_n.$$

Can provide great advantages:

- can mitigate the model-misspecification problem
- can produce narrower prediction intervals
- Bayes–Frequentist compromise

apipop data (R package survey); N = 6194

Data description: Academic Performance Index (API)

Response variable of interest

Y :: api00 Numeric response variable representing the API score in 2000, covering all California schools with at least 100 students (range: 200 to 1000)

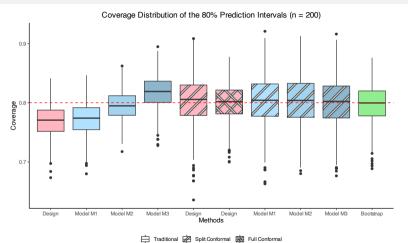
A set of auxiliary variables: we only consider

 X_1 :: stype Categorical variable representing the school type (elementary, middle, high) X_2 :: ell Numeric variable given by the percentage of English Language Learners

 $X_3 :: meals$ Numeric variable being the percentage of students eligible for subsidized meals

 $X_4::mobility$ Numeric variable for the percentage of first-year students at the school

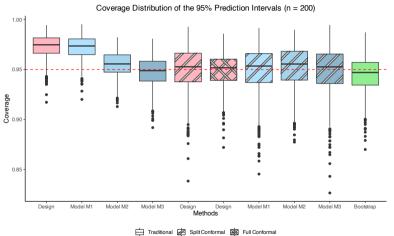
A comparison between traditional and CP methods



Expected coverage for a

target $1 - \alpha = 0.8$ (red dashed line). M = 1000 independent SRS-WR with n = 200 from the apipop dataset with population size N = 6194.

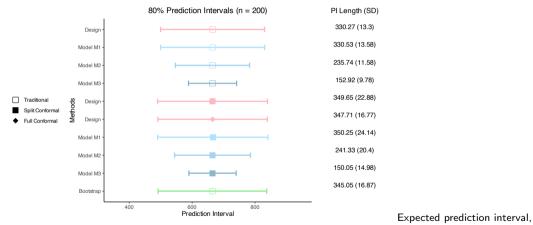
A comparison between traditional and CP methods



Expected coverage for a

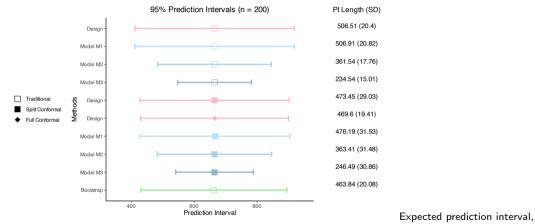
target $1 - \alpha = 0.95$ (red dashed line). M = 1000 independent SRS-WR with n = 200 from the apipop dataset with population size N = 6194.

A comparison between traditional and CP methods



length, and SD for a target $\alpha = 0.2$. Average across M = 1000 independent SRS-WR with n = 200 from the apipop data.

A comparison between traditional and CP methods



length, and SD for a target $\alpha = 0.05$. Average across M = 1000 independent SRS-WR with n = 200 from the apipop data.

Design-based and Model-based CP

Advantages when compared with alternative methods

Design-based CP

- versus Linearization: finite-sample guarantees & model-free (no need for ad hoc calculations)
- versus Bootstrap and other Resampling methods: finite-sample guarantees & less computationally demanding (at least for Split CP)

Design-based and Model-based CP

Advantages when compared with alternative methods

Design-based CP

- *versus* Linearization: finite-sample guarantees & model-free (no need for *ad hoc* calculations)
- versus Bootstrap and other Resampling methods: finite-sample guarantees & less computationally demanding (at least for Split CP)

Model-based CP

- The combination of CP and the correct model provides the optimal intervals, both in terms of coverage and length
- A poor model specification can cause an increase in length but does not undermine coverage
- Coverage is guaranteed for finite sample sizes

Design-based and Model-based CP

Advantages when compared with alternative methods

Design-based CP

- versus Linearization: finite-sample guarantees & model-free (no need for ad hoc calculations)
- versus Bootstrap and other Resampling methods: finite-sample guarantees & less computationally demanding (at least for Split CP)

Model-based CP

- The combination of CP and the correct model provides the optimal intervals, both in terms of coverage and length
- A poor model specification can cause an increase in length but does not undermine coverage
- Coverage is guaranteed for finite sample sizes

 \hookrightarrow In general, given the exact coverage, one can simply choose *among* alternative CP approaches, either design-based or model-based, in terms of the average length of the resulting prediction intervals

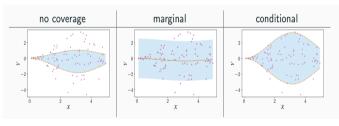
18 / 29

CP Challenges in Official Statistics

- (A) Conditional Coverage and Adaptivity: domain-restricted predictions
- (B) Beyond Exchangeability: covariate shift, time series data, complex designs
- (C) Classification: here prediction sets are discrete and different methods are necessary, based on the cumulative likelihood [Romano et al., 2020]
- (D) Combining prediction intervals (i.e. (sub)-population size estimation)

(A) Marginal and Conditional Coverage

- Marginal coverage: $P(Y_{n+1} \in C_{n,1-\alpha}(X_{n+1})) \ge 1 \alpha$ \hookrightarrow errors may differ across regions of the covariate space
- Conditional coverage: $P(Y_{n+1} \in C_{n,1-\alpha}(\boldsymbol{x}) | \boldsymbol{X}_{n+1} = \boldsymbol{x}) \ge 1 \alpha$ \hookrightarrow conditional coverage implies adaptiveness



Alert! Conditional coverage is stronger than marginal coverage but, in general (e.g. for a continuous X), not attainable using nonparametric methods [Lei and Wasserman, 2014].

Achieving Adaptivity in CP

Standard mean-regression CP is not adaptive

- However, it is not reasonable to have a constant width! Uncertainty quantification depends on the amount of data at given x...
- Simple solution: use a *studentized* conformity score

$$S_i(\boldsymbol{x}_i, y_i) = \frac{R_i(\boldsymbol{x}_i, y_i)}{\hat{\sigma}(\boldsymbol{x}_i)} = \frac{|y_i - \hat{f}_{n/2}(\boldsymbol{x}_i)|}{\hat{\sigma}(\boldsymbol{x}_i)}$$

with

$$\mathcal{C}_{n,1-\alpha}(\boldsymbol{x}) = \left[\hat{f}_{n/2}(\boldsymbol{x}_i) \pm \hat{\sigma}(\boldsymbol{x})Q_{1-\alpha}(S)\right]$$

More complex alternative: conformalized quantile regression [Romano et al., 2019]

Conformalized Quantile Regression

Romano et al. [2019]

The algorithm

- **I** Randomly split the training data into a proper training set (size n_T) and a calibration set (size n_C)
- **2** Fit the lower $(\hat{Q}_{\alpha/2})$ and upper $(\hat{Q}_{1-\alpha/2})$ quantile by training a suitable algorithm on the proper training set Data $\frac{\text{Train}}{n_T}$
- **3** Compute the n_C conformity scores:

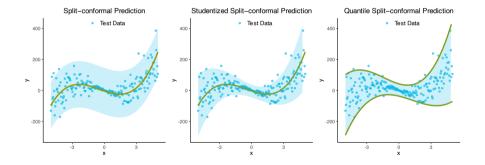
$$S_i = \max\left(\hat{Q}_{\frac{\alpha}{2}}(X_i) - Y_i, \ Y_i - \hat{Q}_{1-\frac{\alpha}{2}}(X_i)\right), \quad i \in \mathsf{Data}_{n_C}^{\mathsf{Ca}}$$

4 Compute $q_{n,1-\alpha} = S_{(\lceil (n_C+1)(1-\alpha)\rceil)}$ 5 For a new (test) point X_{n+1} , set

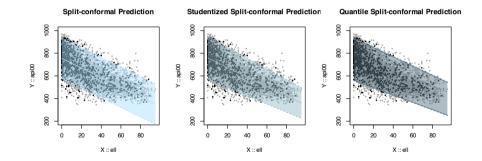
$$\mathcal{C}_{n,1-\alpha}(X_{n+1}) = \left[\hat{Q}_{\frac{\alpha}{2}}(X_{n+1}) - q_{n,1-\alpha}; \hat{Q}_{1-\frac{\alpha}{2}}(X_{n+1}) + q_{n,1-\alpha}\right]$$

Adaptivity: A comparison of different methods

Initial illustrative example



Adaptivity: A comparison of different methods apipop data



(B) Beyond Exchangeability

- Exchangeability is the main requirement for using CP
- Conformal measure computed on the test unit can be considered
- This might not be the case in survey sampling where observed values in the sample S_n may be the result of a complex sampling design, while units for which we need to make a prediction might be generated by a different system.

(B) Beyond Exchangeability

A weighted version

Sample units adhere to a specific sampling design which is not necessarily shared by non-sample units

This problem has been considered in Tibshirani et al. [2019], who adopted a weighted version of the conformal scores. More in detail, assume that while the original sample data were generated by a model

$$(\boldsymbol{X}_j, Y_j) \stackrel{\text{i.i.d}}{\sim} P = P_I \times P_{Y|\boldsymbol{X}} \times P_{\boldsymbol{X}}, \quad j \in \mathcal{S}_n$$

the new observation comes from a different marginal distribution of X, say

$$(\boldsymbol{X}_{j^*}, Y_{j^*}) \stackrel{\text{i.i.d}}{\sim} P^* = P_I \times P_{Y|\boldsymbol{X}} \times P^*_{\boldsymbol{X}}, \quad j^* \notin \mathcal{S}_n.$$

(B) Beyond Exchangeability

Covariate Shift Solution

The problem is solved by weighting the original conformal scores of the observations (x_1, x_2, \ldots, x_n) using the likelihood ratio

 $w(x_j) = \mathrm{d}P^*(x_j)/\mathrm{d}P(x_j),$

which plays a "weight" role.

• Consider, for simplicity, a full CP setup where the calibration scores are computed for the full sample dataset $Data_n^{Sample}$ and the augmented candidate y. Under a weighted version, the new set of empirical conformal scores will then be $(R_1p_1(x), \ldots, R_np_n(x), R_{j^*}p_{j^*})$, where

$$p_j(x) = \frac{w(\boldsymbol{X}_j)}{\sum_{i=1}^n w(\boldsymbol{X}_i) + w(x)}, \quad j \in \mathcal{S}_n,$$
$$p_{j^*}(x) = \frac{w(x)}{\sum_{i=1}^n w(\boldsymbol{X}_i) + w(x)}, \quad j^* \notin \mathcal{S}_n$$

CP as a calibrated Bayes approach

A new line of research?

Bayes–Frequentist compromise?

- One of the main criticisms regarding model-based techniques in survey sampling is the potential dependence on the assumed model
- Also, the frequentist performance of Bayesian methods can be jeopardized by the use of the prior
- The conformal modification of the estimates produced via a full model-based Bayesian approach is then a promising way to obtain a calibration of Bayesian estimates
- Idea: combine all the information sources via an HB model-based approach and take as the natural conformity measure the posterior predictive distribution, both in a Full- or in a Split-CP scenario. See Bersson and Hoff [2024] for an example in Small Area Estimation.

Conclusions and Perspectives

Advantages of CP in Official Statistics

- CP has finite-sample and distribution-free exact marginal coverage
- CP can be built on top of the preferred prediction strategy that has been used to impute missing values in the response variable
- CP also allows to quantify uncertainty also on predictions arising from *multiple* strategies [Gasparin and Ramdas, 2024]

Conclusions and Perspectives

Advantages of CP in Official Statistics

- CP has finite-sample and distribution-free exact marginal coverage
- CP can be built on top of the preferred prediction strategy that has been used to impute missing values in the response variable
- CP also allows to quantify uncertainty also on predictions arising from *multiple* strategies [Gasparin and Ramdas, 2024]

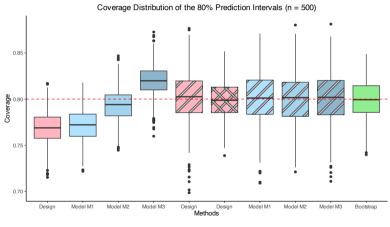
Challenges and Directions

- Exchangeability: does not hold for complex designs, requiring a more elaborated approach (e.g., covariate shift, and *adaptive* strategies)
- Conditional coverage: when interest is in sub-population statistics (e.g., class-conditional, label-conditional) this is not ensured with standard CP → Mondrian Conformal Classification [Vovk et al., 2003]
- Combination of prediction sets remains an open problem (e.g., population size estimation)

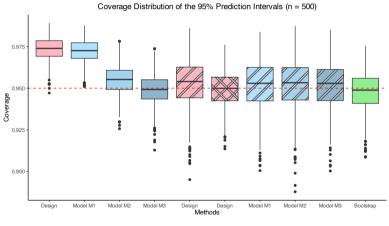
References I

- E. Bersson and P. D. Hoff. Optimal conformal prediction for small areas. *Journal of Survey Statistics and Methodology*, page smae010, 2024.
- M. Gasparin and A. Ramdas. Conformal online model aggregation. arXiv preprint arXiv:2403.15527, 2024.
- J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 76(1):71–96, 2014.
- Y. Romano, E. Patterson, and E. Candes. Conformalized quantile regression. Advances in Neural Information Processing Systems, 32, 2019.
- Y. Romano, M. Sesia, and E. Candes. Classification with valid and adaptive coverage. Advances in Neural Information Processing Systems, 33:3581–3591, 2020.
- R. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas. Conformal prediction under covariate shift. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
- V. Vovk, D. Lindsay, I. Nouretdinov, and A. Gammerman. Mondrian confidence machine. *Technical Report*, 2003.
- V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world, volume 29. Springer, 2005.
- J. Wieczorek. Design-based conformal prediction. Survey Methodology, 49(2), 2024.

Appendix



Traditional 🖉 Split Conformal 🐹 Full Conformal



Traditional 🖉 SplitConformal छ Full Conformal

