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• One of the pillars of the modernization is the Integrated System of
Statistical Registers (ISSR)

• ISSR, is composed of many variables many of which are obtained
through multi-source statistical processes

• The Generalized Mean Squared Error, GMSE, is the proposed
accuracy measure for planned and unplanned (possibly computed
directly by users) estimates from variables of the ISSR

• An application on the Attained Level of Education by means of Mass
Imputation based on Multinomial-distribution as part of the Base
Register of Individuals (BRI) + Other Census Variables like non
employment status

• Comparative analysis of empirical properties of GMSE vs Bootstrap
MSE estimation by means of a Monte Carlo Simulation based on
synthetic data generation from Attained Level of Education



The Istat Integrated System of Statistical Registers (ISSR)



Quality of estimates from ISSR

• The estimates obtained from the statical registers should be
associated by a measure of their uncertainty.

• If it is difficult for traditional sample surveys to produce accuracy
measures that take into account different error sources, this is even
more challenging for estimates from statistical registers:

• Because the process includes different type of data sources and
different statistical methods (such as record linkage, statistical
matching, or imputation/prediction).

• Because a great potentiality of ISSR is to produce estimates on
unplanned domains, thus a way to calculate on-the-fly uncertainty
measures should be provided to the user.



Examples on Italian Registers



Population, Statical Register and estimation domains



Example: The Attained Level of Education

(?)
• The attained level of education is part of the Base Register of

Individuals (BRI).
• Sources of data:

(i) administrative information (MIUR) → data from 2011 onwards with 16
modalities;

(ii) 2011 Census information → educational status at 2011 with 12
modalities;

(iii) sample survey to cope with delay and informative gaps → permanent
Italian census from 2018 with 17 modalities (5% of the population);

(iv) other auxiliary information (transfer of residence; 2012-2017 with 4
modalities)

⇓

Reconciliation: K = 8 categories



Example: The Attained Level of Education

Figure: Informative context for mass imputation of Y (t) (?)

• The informative context is quite heterogeneus:
- Red: Individual characteristics known for all the population of interest:

G = gender; E = age classes; C = citizenship (It / not It)
- Yellow / lightblue: partially available
- Grey: Missing data

• Mass imputation procedure to estimate the attained level of education
Y

.
= Y (t), by means of multinomial log-linear models.



(One of the) Challenges

• The ISSR is thus the result of statistical processes subject to different
sources of statistical uncertainty (sampling uncertainty, model
uncertainty, etc.)

⇓

How to deal with uncertainty?
• Evaluation of the sources of uncertainty and errors

• Evaluation of the accuracy of the (imputed) data

• Responsibility and transparency on the quality of data

• Inform the end users (unplanned, on the fly)



Our Goal(s)

Istat-Sapienza Project
• Come up with feasible measures to calculate estimates’ accuracy,

accounting for different sources of uncertainty
• Focusing on the context of the attained level of education:

• we based it on a previously introduced (generic) measure of global
uncertainty (GMSE) see Alleva et al. (2021: J Off Stat, 37(2),
481-503)

• adapt it to a multinomial setting



Setup

Our target parameter is the unknown population totals
θθθ
(d)
k , k = 1, . . . ,K , for a given domain d (e.g., number of individuals

having a PhD in the province of Bologna):

θθθ
(d)
k =

N

∑
i=1

γ
(d)
i Yik ,

• The response variable Y = (Y1, . . . ,YN) is modelled as

Yi = (Yi1, . . . ,YiK )∼Mult(1,pi ), i = 1, . . .N,

with Yik ∈ {0,1} and s.t. ∑
K
k=1Yik = 1, and pi = {pi1, . . . ,piK}, where

pik = P(Yik = 1|Xi ), being the unknown parameter vector.
• γγγ(d) is the binary domain membership vector.



Setup

Let now θ̂θθ
(d)

k be a consistent estimator of θθθ
(d)
k . We consider:

θ̂θθ
(d)

k =
N

∑
i=1

γ
(d)
i fk(xi ; β̂ββ ),

where

fk(xi ; β̂ββ ) = p̂ik =
expxi T β̂ββ k

1+∑
K−1
k=1 expxi T β̂ββ k

, k = 1, . . . ,K −1,

with xi ∈ RJ a set of covariates and βββ k = (βk1, . . . ,βkJ) the unknown
model coefficients, k = 1, . . . ,K .

The goal is to estimate the accuracy of θ̂θθ
(d)

k , so that they can be provided
on-the-fly by register users.



The Global Mean Squared Error

• Idea: take into consideration all the random components (R1, . . . ,Rp)
involved in the inferential process.

• We focus on two sources of uncertainty: (1) M = model variability;
(2) Π = sampling variability.

• is the sample’s indicator variable vector

Definition (GMSE)

Given θθθ
(d) and θ̂θθ

(d)
, the GMSE is defined as:

GMSE (θ̂θθ
(d)

) = E(R1,...,Rp)(θ̂θθ
(d)

−θθθ
(d))2

= EΠEM

(
N

∑
i=1

γ
(d)
i f (xi ; β̂ββ )−

N

∑
i=1

γ
(d)
i Yi

∣∣∣λλλ)2

.



The Global Mean Squared Error

Definition (Upper bound on GMSE)
Incorporating both sampling and model uncertainty, under the assumption
that the estimator is design and model unbiased, the GMSE can be
expressed as:

GMSE (θ̂θθ
(d)

) = EΠEM(θ̂θθ
(d)

± θ̃
(d)−θθθ

(d)|λλλ )2

= EΠVarM(θ̂θθ
(d)

|λλλ )−VarM(θθθ (d))

≤ EΠVarM(θ̂θθ
(d)

|λλλ )

with θ̃ (d) .
= E(θ̂θθ

(d)
) = ∑

N
i=1 γ

(d)
i f (xi ;βββ ) = ∑

N
i=1 γ

(d)
i pi



The GMSE for multinomial data

Under K response categories, the (scalar) GMSE is generalized to a GMSE

matrix, with the dominant component EΠVarM(θ̂θθ
(d)

|λλλ ) involving:

VarM(θ̂θθ
(d)|λλλ ) =


VarM(θ̂

(d)
1 |λλλ ) CovM(θ̂

(d)
1 , θ̂

(d)
2 |λλλ ) . . . CovM(θ̂

(d)
1 , θ̂

(d)
K |λλλ )

...
...

...
...

CovM(θ̂
(d)
K , θ̂

(d)
1 |λλλ ) CovM(θ̂

(d)
K , θ̂

(d)
2 |λλλ ) . . . VarM(θ̂

(d)
K |λλλ )

 .



Computation of the GMSE
Two steps of linear approximation

(1) The estimator θ̂
(d)
k = ∑

N
i=1 γ

(d)
i fk(xi ; β̂ββ ) is linearized at β̂ββ = βββ :

VarM(θ̂
(d)
k |λλλ ) = γγγ

(d)TFkVarM
(

β̂ββ −βββ |λλλ
)
FT
k γγγ

(d), k = 1, . . . ,K ,

(2) We then use the result originally proposed in Chambers and Clark
(2015) to linearize β̂ββ around their expected value EΠEM(β̂ββ ):(

β̂ββ −βββ

)
≈−Ā−1

βββ

N

∑
i=1

λigi (βββ |y),

and we thus get:

VarM(θ̂
(d)
k |λλλ )≈ γγγ

(d)TFk

(
N

∑
i=1

UiΣyiU
T
i

)
FT
k γγγ

(d),

with Ui = λi Ā−1
βββ

Ẋi and

A=
∂

2l(β | y)
∂βkj∂βk ′j ′



Computation of the GMSE
In summary...

The Ui terms are linear wrt the design randomness in λi s and the
expectation EΠ can be computed directly. An approximation for the GMSE
is thus obtained as:

GMSE (θ̂
(d)
k ) = EΠVarM(θ̂

(d)
k | λλλ )

≈ Eλ∼Π

[
γγγ
(d)TFk

(
N

∑
i=1

UiΣyiU
T
i

)
FT
k γγγ

(d)

]

= γγγ
(d)TFk

N

∑
i=1

πi Ā−1
βββ

ẊiΣyi (Ā
−1
βββ

Ẋi )
TFT

k γγγ
(d),

since E(λ 2
i ) = πi in a simple balanced design, where λi ∼ Bern(πi ).



A Kronecker based formulation

• In order to get a more computationally efficient estimation process an
alternative formulation of Gmse has been studied, based on kronecker
matrix algebra

• Compared to the basic formulation which works for a single record
(and then based on loop on the N units of population), the new
formulation is more efficient from a computational point of view and
allows us to consider blocks of matrices

• We have developed a code R generalized for the different data
structures at istat



Kronecker formulation details



Simulation comparison

Population sample
• N = 100.000, 300.000. 500.000
• n=5000, 15.000, 25.000
• K=8 and J=14

Simulations
• G = 100 independent replicas of the sampling design
• M = 100 replicas of the response variable for each sample replicate



Setup



Setup



Final Results 1



Final Results 2



Final Results 3



Conclusions

In summary...
In this work, motivated by ISTAT’s programme, we took our first steps to
evaluate the feasibility / validity of a global measure of accuracy: GMSE.

Key advantages:
(i) Computationally and memory efficient
(ii) Allows on-the-fly estimation
Ongoing and Future Work:
(i) Extend and evaluate the GMSE to other structures of data / models.
(ii) Consider other methodological developments, such as: the case of

latent class models, the Bayesian framework, to incorporate the
additional uncertainty arising from the a priori distribution of model
parameters used for prediction.

(iii) Provide implementation support.
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