Official Statistics: Bayesian Small Area Estimation of Origin-Destination Matrix

Loredana Di Consiglio Fabrizio Solari Tiziana Pichiorri Emanuela Scavalli Massimo Armenise Lorenzo Asti Carolina Ciccaglioni Isabella Corazziari Luca Faustini

Origin-Destination Matrix

• Origin-Destination Matrix:

$$\mathcal{M} = \{M_{ij}\}_{i,j=1,\dots,D}$$

• M_{ij} = commuting flow between origin location *i* and destination location *j*

• D = number of locations

Problem:

• $\#(M_{ij} > 0) \ll D^2 \implies$ the origin-destination matrix is sparse

・ロト・日本・日本・日本・日本・日本

Small Area Estimation Problem

Small Areas

• The small areas are given by the pairs (i, j) (origin province-destination province)

Target Parameter

for all $(i,j) \in D \times D$:

- work commuting rate $m_{ij} = M_{ij}/N_i$, N_i employed counts for province *i*
- $0 \le m_{ij} \le 1$

Definition: the definition of commuter adopted in Italy is:

any worker traveling daily back and forth from home and his workplace at least three times per week

Fay-Herriot Model (Fay & Herriot, 1979)

• sampling model:

$$\widehat{m}_{ij} = m_{ij} + e_{ij}$$

•
$$\widehat{m}_{ij} = \text{direct estimate of } m_{ij}$$

• $e_{ij} \stackrel{ind}{\sim} N(0, V_{ij})$, V_{ij} supposed to be known

• linking model:

$$m_{ij} = x_{ij}^T \beta + u_{ij}$$

• hp standard: $u_{ij} \mid \sigma_u^2 \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_u^2)$

Comments

- The O-D matrix is a sparse matrix \Longrightarrow
- Fixed effects and random effects must be defined in a way that avoids inflating commuting flows corresponding to cells that are empty or have very low commuting flows.
- fixed effects: x_{ij} = (z_{ij}, s_i, t_j): z_{ij}: variables referring to the origin-destination pair (i, j) s_i: variables referring to the origin i t_j: variables referring to the destination j

Attention must be paid to the impact of variables of type s and t on the final estimates

• random effects: It is reasonable to expect small or null values of u_{ij} for some small areas and higher values for others \implies the standard assumption of constant variance σ_u^2 for u_{ij} might not be the optimal solution

Fay-Herriot Model Generalizations: Random Effects

• spike-and-slab (Datta & Mandal, 2015):

$$u_{ij} \mid \sigma_u^2, \delta_{ij} \stackrel{\text{ind}}{\sim} N(0, \delta_{ij} \sigma_u^2), \ \ \delta_{ij} = 0, 1$$

- The random effect u_{ij} is included or excluded based on the value of the indicator variable δ_{ij} (on/off switch)
- global-local (Tang, Ghosh, Ha & Sedransk, 2018):

$$u_{ij} \mid \sigma_u^2, \lambda_{ij}^2 \stackrel{\text{ind}}{\sim} N(0, \lambda_{ij}^2 \sigma_u^2), \ \lambda_{ij}^2 > 0$$

 The intensity of the random effect u_{ij} is adjusted based on the value of the parameter λ²_{ij} (dimmer switch)

Weakly Informative Priors

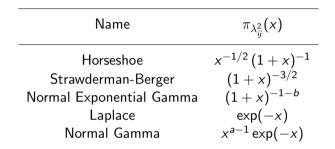
Fay Herriot, Spike-and-Slab, Global-Local Models:

- $\pi(eta) \propto 1$
- $\pi(\sigma_u^2) \sim IG(a, b)$
 - Different values for a and have been used: $a = b = 10^{-3}$, $a = b = 10^{-6}$, $a = b = 10^{-9}$ and we did not find any relevant sensitivity to hyperparameters choice
 - Alternatively Half-Cauchy or Half-Student T distributions can be used (Gelman, 2006)

Spike-and-Slab Model: $p = Prob(\delta_{ij} = 1)$

- $\pi(p) \sim Beta(c, d)$
 - c = 1, d = 4 as in Datta & Mandal (2015)
 - c = 1, d = 1 uniform in (0,1)
 - c = 4, d = 1 symmetric to Datta & Mandal (2015)

Global-Local Model: Local Priors



- The first column gives the names of the priors of u_{ij} marginalized over λ_{ij}^2
- The second column reports the corresponding expression for each prior
- LA is a special case of NG setting a = 1
- HS, SB and SB priors are special case of the Three Parameter Beta Normal distribution

Auxiliary Variables

- 2011 O-D flows
- 2021 O-D trajectories from administrative data
- Distances (km or travel times) between origin and destination

Observations

- Administrative trajectories are potential commuting journeys between origin provinces and destination provinces
- The ability of the administrative trajectories to detect true commuters is a function of the distance between origin and destination provinces (*attrition*)
- Administrative trajectories can be modeled using a decay function, such as an inverse distance weighting, i.e. x_{ij}/dist^q_{ij}, where q controls the rate of decay (q = 0, 1, 2 has been used)
- Alternatively, spline functions can be used to model $x_{ij} = /dist_{ij}^{q}$ in order to adjust for not optimal choices of q.

Fixed Effects

Models description:

model	intercept	auxiliary variables			
M_1	yes	2011 commuting rate $+$ 2021 commuting trajectory rate			
M_2	yes	2011 commuting rate $+$ 2021 commuting trajectory rate $/$ dist			
M_3	yes	2011 commuting rate $+$ 2021 commuting trajectory rate $/$ dist 2			
M ₄	no	2011 commuting rate $+$ 2021 commuting trajectory rate			
M_5	no	2011 commuting rate $+$ 2021 commuting trajectory rate $/$ dist			
M_6	no	2011 commuting rate $+$ 2021 commuting trajectory rate $/\mbox{ dist}^2$			

- target parameter: work commuting flows from provinces in South of Italy (38 provinces) to all the Italian provinces
- 323 in-sample small areas, 3,743 out-of-sample areas

Model Diagnostics

Model Fitting Diagnostics:

- Deviance Information Criterion (DIC)
- Watanabe Akaike Information Criterion (WAIC)

Model Bias Diagnostics:

- Bayesian p-value (You & Rao, 2002; Fabrizi et al., 2011)
 - It evaluates the probability of the posterior means to be larger than the direct estimates. In absence of systematic bias, the expected value of the Bayesian p-value is 0.5
- Regression line fitting model-based estimates versus direct estimates (Brown *et al., 2001*)
 - The regression line should be close the 0-1 line

- All the posteriors are proper (Datta & Mandal, 2015; Tang et al., 2018)
- It is possible to sample from all the conditional posterior distributions ⇒ Gibbs Sampling

- number of chains = 4
- chain length = 100,000
- burn-in = 50,000
- thin = 10

Model fitting was divided in two separate process:

- intra-provincial flows
- inter-provincial flows

Intra-provincial flows estimation is dominated by the direct estimates

 \implies focus on the estimation of inter-provincial flows

- The models with an intercept term slightly outperform the corresponding models without the intercept term in terms of DIC, WAIC and Bp
- We prefer to adopt a model without an intercept term because an intercept term would assign a non-zero commuting mass to all pairs of provinces, even for:
 - provinces very far from each other
 - provinces for which both the 2011 commuting rates and the 2021 administrative trajectories rates are 0

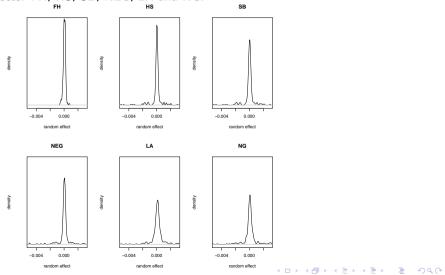
M₅: 2011 commuting rate + 2021 commuting trajectory rate / dist (no intercept)

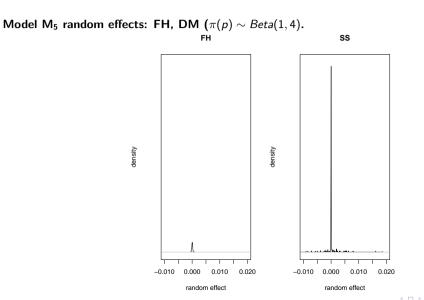
Model M₅ diagnostics.

model	DIC	WAIC	Вр	а	b
SYNTH	-2764.37	-5137.62	0.3360	5.2E-05	0.9947
FH	-2872.55	-5544.98	0.4252	2.9E-05	1.0011
SS	-3292.44	-6379.66	0.4028	4.3E-05	1.0015
GL-HS	-3236.90	-6391.17	0.4347	2.4E-05	1.0045
GL-SB	-3229.06	-6405.15	0.4427	2.0E-05	1.0050
GL-NEG	-3206.05	-6346.88	0.4372	2.2E-05	1.0052
GL-LA	-3093.73	-6148.28	0.4464	1.7E-05	1.0073
GL-NG	-3170.79	-6306.13	0.4361	2.3E-05	1.0069

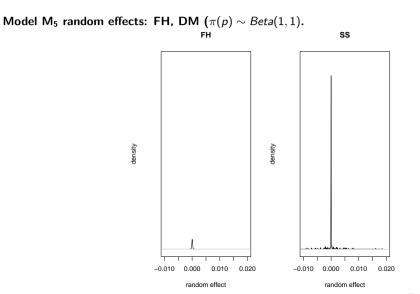
- SS and GL performs better than FH and SYNTH
- All the estimators provide good results in term of the bias diagnostic in Brown et al. (2001)

Model M₅ random effects: FH, HS, SB, NEG, LA and NG.

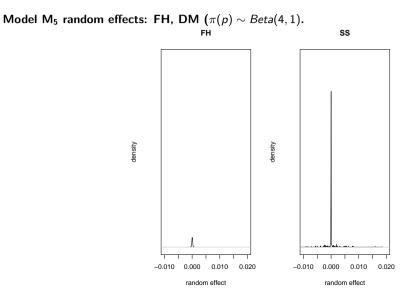




・ロト・西ト・ヨト・ヨー シタク



・ロト・(四ト・(川下・(日下・(日下)))



Final Comments

- 2011 Census information much more predictive than 2021 administrative information
- SS model activates random effects only when it is considered necessary =>>> it is the closest model to the SYNTH model
- Given the relatively small number of activated random effects in the SS model, the SYNTH estimates can be considered to be good estimates in most of small areas
- Methods can be grouped in classes according to the usage of random effects: SYNTH, SS, FH, GL (Three Parameter Beta Normal local priors), GL (Normal Gamma local priors)

Future works

- administrative data adjustment through the use of spline functions
- Unmatched linking model
- Alternative sampling distribution: beta distribution instead of normal distribution

References

Brown, G., Chambers, R., Heady, P. & Heasman, D.J. (2001). Evaluation of small area estimation methods - An application to unemployment estimates from the UK LFS". *Proceedings of the 2001 Statistics Canada International Symposium*.

Fabrizi, E., Ferrante, M.R., Pacei, S. & Trivisano, C. (2011). Hierarchical Bayes multivariate estimation of poverty rates based on increasing thresholds for small domains. *Computational Statistics & Data Analysis*, 55(4), 1736–1747.

Datta, G.S., & Mandal, A. (2015). Small area estimation with uncertain random effects. *J. Am. Stat. Assoc.*, 110, 1735–1744.

Fay, R.E., & Herriot, R.A. (1979). Estimates of income for small places: an application of James-Stein procedures to census data. *J. Am. Stat. Assoc.*, 74(366a), 269–277.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (with discussion). *Bayesian Analysis*, 1(3), 515-–534.

Tang, X., Ghosh, M., Ha, N.S., & Sedransk, J. (2018). Modeling random effects using global-local shrinkage priors in small area estimation. *J. Am. Stat. Assoc.*, 113(1), 1476–1489.

You Y., & Rao, J.N.K. (2002). Small area estimation using unmatched sampling and linking models. *Canadian Journal of Statistics*, 30(1), 3–15.

THANKS FOR YOUR ATTENTION!!!

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●