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Introduction 

 Tightened budgets and constant decrease of response rates in 

traditional surveys has stimulated research into the use of non 

probability sample data such as administrative records, voluntary 

internet surveys and other kinds of nonprobability samples.  

 A major concern with the use of this kind of data is their 

nonrepresentativeness, due to possible selection bias, which if not 

accounted for properly, may bias the inference.  
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What is official statistics? Why is it important? 

Publication by a national statistical office (NSO), based on a survey, 

census, administrative data, big data… 

  Official Statistics (OS) is what people hear of almost daily. 

Unemployment rates, price indexes, poverty measures, house prices, 

establishment statistics, health and environmental statistics…  
 

  For most people, OS is what statistics is all about!!  
 

  OS is what policy makers use (should use) for planning and decisions. 
 

   Growing demands for detailed/timely data, huge technological 

    developments, declining response rates, tightened budgets… 
                             

                               Big new challenges 
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 Main methods of data collection for official statistics 

1- Surveys, based on probability samples; still the most common,  

     and in many ways the most reliable method.   
 

2- Administrative records; often requires linking several big files,  

     which can be problematic and increase privacy concerns.  
 

3- Censuses 
 

4- Nonprobability samples (NP); not really implemented routinely 

yet for OS; increased pressure on NSOs all over the world to digitise 

("modernise") their data sources. 
 

5- Combinations of the methods above. 
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Main issue in the use of nonprobability samples 

Non-representativeness- major concern in use of NP data for OS. 

House sales advertised on the internet do not represent properly all 

house sales. Web scraping for job vacancies does not represent all job 

vacancies. Social media not representative of the general public. 
 
  

No problem when using the NP data as predictors of other variables. 
 

   Use BPP (Billion Price Project) to predict the CPI, job adverts to predict 

employment or job vacancies, Satellite images to predict crops…  
 

  Requires proper statistical analysis to identify and test (routinely)   

the prediction models.  
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Accounting for non-representativeness of big data  

Non-representativeness of nonprobability samples is a major 

concern in their use for OS. 

Methods considered in the literature to deal with NP samples can be 

divided into two classes: 

1- Integration of the NP sample ( NPS ) with an appropriate probability 

sample ( PSS ), 

2- Consideration of the NPS  sample on its own. (No data integration.) 
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Problem considered in this presentation 

  In this presentation, we consider the following situation. A large,    

nonprobability sample 
NPS  with observations on variables Y and X is 

available, but this sample is possibly affected by seletion bias.  
 

  An informative probability sample ( PSS ), possibly subjected to not 

missing at random (NMAR) nonrespose may also be available, but this 

sample only contains observations on X.  

  The aim is to estimate the joint probability distribution function of the 

variables X and Y and/or the total of Y in the population. 
 

  We consider alternative methods of integrating the data available in the 

two samples. We also consider the case where only data from the 

nonprobability sample is available.  
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Integration of NP samples with PS samples (cont.) 

Suppose that the 
NPS and 

PSS  samples have no units in common. 

Following, we apply the empirical likelihood approach under which the 

population distribution is approximated by a multinomial distribution, 

with supports given by the empirical observations in the two samples.  

The aim is to estimate Pr( , )XY

i i ip X x Y y    of the multinomial 

distribution and the total i U iY y  . 

Denote Pr( )X

i ip X x   the population probability of X. 
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Estimation of population probability of X from 
PSS  

Let 1(0)PS

iI   if population unit i  is drawn (not drawn) to 
PSS .  

For PSi S , the sample probability of X is given by, 

,

( 1| )
( | 1)

( 1)

PS
X PS Xi i
i PS i i iPS

i

P I x
p P x I p

P I


  



Bayes

. (Informative sampling.) 

  ,

X X

i PS ip p  unless ( 1| ) ( 1)PS PS

i i iP I x P I   . 

Next, suppose that the sample PSS  is also subject to not missing at 

random (NMAR) nonresponse (see next slide). Let 1(0)PS

iR   if i A  

responds, (does not respond) and denote by PSR  the set of the 

responding units. The response process is assumed to be independent 

between units.  
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Estimation of population probability of X from 
PSS  (cont.) 

For PSi R , the probability ( )iP X x  is,  

 

, ,

( 1| , 1)
( | 1, 1)

( 1| 1)

( 1| , 1) ( 1| )

( 1| 1) ( 1)

PS

PS PS
X PS PS Xi i i
i R i i i i PSPS PS

i i

PS PS PS
Xi i i i i
iPS PS PS

i i i

P R x I
p P x I R p

P R I

P R x I P I x
p

P R I P I

 
   

 

  


  
NMARnonresponse

 

The probability ,

X

i PSp  is a function of the corresponding population 

probability, the conditional probability ( 1| )PS

i iP I x ) and the response 

probabilities ( 1| , 1)PS PS

i i iP R x I  .  

 Unless ( 1| , 1) ( 1| 1)PS PS PS PS

i i i i iP R x I P R I     , , ,PS

X X

i R i PSp p 
NMAR INFORM

X

ip . 
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Estimation of the sampling and response probabilities  

The sampling probabilities satisfy ,( 1| ) 1/ ( | )PS

i i PS i PS iP I x E w x  ;  

(Pfeffermann and Sverchkov (1999; , ,1/i PS i PSw   are the sampling 

weights in PSS ). Thus, assuming that the response is independent of the 

sample selection, , ,( | ) ( | )
PSPS i PS i R i PS iE w x E w x  and ( 1| )PS

i iP I x  can be 

estimated by regressing ,i PSw  against ix , using the observed data in PSS . 

The response probabilities ( 1| , 1)PS PS

i i iP R x I   are unknown and need 

to be estimated by postulating a parametric model (say, logistic), 

( 1| , 1, ) ( ; )PS PS

i i i iP R x I ρ g x ρ    with ρ  defining the model parameters.                                                                           
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Estimation of the Probability function of X from 
PSS  (cont.) 

Denote 
, ,{ }

PS PS,i

X X

PS i k PS k i k,R i,R PS iR x R x x p p k R     ;  ;
,PS PS i

i
R R  . The 

empirical respondents likelihood for x based on PSR  is thus, 

      
( 1| , 1) ( 1| )

( 1| 1) ( 1)PS PSPS

PS

PS PS PS
X X Xi i i i i

R i i,R iPS PS PSi R
i R i i i

P R x I P I x
ERL (p )= p p

P R I P I


  


  
  ,      

which depends only on the observed data for the responding units.  

The unknown parameters are the population probabilities X

ip  and the 

response parameters  . (The probabilities ( 1| )PS

i iP I x  are estimated 

outside the likelihood.) 
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Estimation based on the nonprobability sample 
NPS  

In NPS  we observe X and Y, but it may be subject to informative selection 

(depending on both variables). Let NP

iI  be the sample indicator. We again 

apply the EL to approximate the population probabilities of ( , )x y  by a 

multinomial model with probabilities Pr( , )XY

i i ip X x Y y   . The sample 

probabilities in NPS  are, 

        ,

( 1| , )
( , | 1)

( 1)

NP
XY NP XYi i i
i NP i i i iNP

i

P I x y
p P x y I p

P I


  


; (Informative selection.)                                                                                               

( 1) ( 1| , )NP NP XY

i i i i i

i NP

P I P I x y p


   . The probabilities ( 1| , )NP

i i iP I x y  are 

modelled parametrically (say, logistic), ( 1| , ; ) ( , ; )NP

i i i i iP I x y h y x   , with 

  defining the model parameters.                                                        
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Empirical likelihoods based on 
NPS  and NP PSS S  

The empirical sample likelihood based on NPS  is thus,  

                                       ,( )XY XY

NP i i NPi NP
ESL p p


 .                                                           

We assume that there are no common units in the two samples. (See 

remark later.) The empirical likelihood based on the data in 
PSRS and NPS  

is thus the product of the two likelihoods, 

                   ,( ) ( )
PS NP PS PSPS

X XY X XY

R S R i NP i i,R i NPi R
i NP

EL = ERL p ESL p = p p 


  .                    

The unknown parameters are the population probabilities ,X XY

i ip p , the 

sampling parameters    and the response parameters ρ . 
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Maximization of the likelihood 

The likelihood is maximized subject to the constraints  

                        0, 0, 1, 1
PS NP

X XY X XY

i i i i

i R i S

p p p p
 

     . 

The summations are over the different values of { ix } in PSR  and the 

different values of { ,i iy x } in NPS .   

The estimation can be further enhanced by adding calibration 

constraints. In particular, if the population size N and/or the population 

mean xμ  of x are known, add some or all the constraints,  

PS NP

X X

i i i i x

i R i S

x p x p μ
 

   ,

1

1

[ ( 1| , ; )]

[ ( 1| , 1; ) ( 1| )]

NP

PS

NP

i i ii S

PS PS PS

i i i i ii R

P I x y γ N

P R x I ρ P I x N.









 

    




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Estimation of the probabilities X

iP  from both samples 

The probabilities { }X

ip  can also be estimated from NPS ; , ,

{ ; }

ˆ ˆ

i

X XY

i NP i NP

i x x

p p


  . 

This implies two sets of estimates of the probabilities, which can be 

harmonized as, ,
ˆ ˆ ˆ(1 )

PS

X X X

i i,R i NPp p p    ;  0,1 .      

A plausible choice is / ( )A A Bn n n   . See Marella and Pfeffermann 

(2023) for other harmonization possibilities.  

The final, integrated estimate of XY

ip  is, , ,
ˆ ˆ ˆ ˆ( / )XY X XY X

i i i NP i NPp p p p .  

Estimation of population total Y: 

            ˆ ˆ(1)
NP

Y

NP i i

i S

Y N y p


   or 

1

1

P̂r ( 1| , )
ˆ (2)

P̂r ( 1| , )

NP

NP

NP

i i i ii S

NP NP

i i ii S

I x y y
Y N

I x y

















.                
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 Further Remarks 

1- If some of the units in PSS  are also included in NPS  with a unique 

identifier, we can apply the proposed approach to the units in PSS , 

not included in NPS , after modification of the sampling weights in .PSS  

2- We considered integration of the data in PSS  and NPS , but we showed 

how the probabilities Pr( , )XY

i i ip X x Y y    can be estimated solely 

from the nonprobability sample NPS . 

3- The proposed approach does not require knowledge of the x-values 

for all population units but it does assume knowledge of some of 

their means for the calibration constraints. 
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Remarks (cont.) 

4- The inclusion probabilities ( 1| )PS

i iP I x , ( 1| , )NP

i i iP I x y , and the 

response probabilities ( 1| , 1)PS PS

i i iP R x I   might depend on other 

variables, but only need to model them as functions of ix  and iy .  

5- The proposed approach is model dependent, but the models can be 

tested, using classical test statistics. (See later.) 
 

6- The likelihoods considered with the calibration constraints are 

maximized by application of the profile likelihood, using the 

function solNP in R. See Marella (2023) and Marella and 

Pfeffermann (2023) for further details.  
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Other approaches proposed in the literature for sample integration 

Rivers (2007) proposes to deal with the selection bias to 
NPS  by use of 

sample matching. The approach consists of using a 
PSS  (reference) 

sample from the target population, drawn with known probabilities 

Pr( )i PSi  S , and then matching to every unit i PSS  an element k from 

NPS , with kx  being the closest to ix  by some distance metric.  
 

Defines a matched probability sample MS  with observations ( , )i ix y  where 

iy  is the y-value of the matched element kx , measured in NPS . 
 

Estimation based on MS  using classical survey sampling methods.   
 

 Instead of matching one record, one can match k nearest records and 

select randomly the matched record out of them. (kNN). 
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Other approaches for sample integration (cont.) 

Kim & Wang (2019) propose the following procedure to correct for the 

selection bias of 
NPS : 

Assumption: membership of 
PSS  elements in 

NPS  is known.  
 

Let 1(0)iδ   if ( )i i NP NPS S . 
PSS   data: {( , ); 1,..., }i ix i n  . 

 

Procedure: Model Pr( 1| ; )i i iq x    by use of PSS ˆ ˆ ( )i iq q γ . 
 

Estimation of population total based on NPS  sample,  
 

1ˆ ˆ(1) ( )
NP NP

S i ii S
Y q y


  or 1 1ˆ ˆ ˆ(2) ( ) / ( )

NP NP NP
S i i ii S i S

Y N q y q  

 
   . 

  

 The last two approaches are suitable for MAR selection to NPS . The PSS  

sample is assumed to be fully observed.  
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A proposed approach for inference from only 
NPS  

Kim and Morikawa (2023) combine a non-ignorable (informative) 

sample selection model with the empirical likelihood (EL) approach. 

Let (1,0)i   be the sample indicator and denote

( , ) Pr( 1| , )i i i i iy x x   iy . 

  The auxiliary variables ix  are assumed to be known for all i U .  

EL Equations: ( ) log( ) 1
NP NP

i ii S i S
l p p

 
  s.t.p (1) ; ip =EL probab. 

(2) ( , ) /
NP

i i i ii S
p x y n N


 ; (3)

NP
i i Ui S

p x X


  (population mean). 

                                                                                  
      Bias calibration constraint,    Improve efficiency of EL estimator.  
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Kim and Morikawa approach (cont.) 

In practice, the sample selection probabilities ( , ) Pr( 1| , )i i i i iy x x   iy  

are unknown. The authors assume a parametric model, ( , ; )i ih x  iy   

and estimate ˆˆ ( , ; )i ih  i xy   outside the likelihood. 

Estimation of population totals:    

  ,
ˆ

ˆNP

i
EL H T i S

i

y
Y


 
   or  

ˆ ˆ
NP

EL i ii S
Y N p y


  .  

  A novel approach for estimating finite population parameters from NPS  

samples subject to nonignorable selection probabilities, but the 

assumption that ix  is known for all i U  is restrictive. 
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Simulation study 
 

Step 1: Generate a finite population U of N=30,000 units from a 

multinomial distribution where 1 2 3( , , )X X X X  and Y  is binary; 

1 (1,2,3,4)X   and 2 3( , )X X  are categorical with 4 categories (defined by 4 

dummy variables). The number of unknown probabilities XY

ip  is thus 128.  

Step 2: Draw independently samples PSS  and NPS  from U by use of 

Poisson sampling with selection probabilities,  

1, 1, 2, 2, 3, 3, ,

,

1, 1, 2, 2, 3, 3, ,

1

exp( )

exp( )

S i S i S i y S

i S S N

S j S j S j y S

j

x x x
n

x x x

   


   


   


   

i

j

y

y

; PS NPS = S ,S .  

 , 0y S   when selecting PSS . ( ) 5000, ( ) 20,000PS NPn S n S  .                                                  
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Simulation study (cont.) 
 

Step 3: Generate the subset of responding units PSR  with response 

probabilities 1

0 1 1,( 1| , 1, ) logit ( )PS PS

i i i iP R x I ρ x     .  0 10.1, 0.2   .                                       

Repeat Steps 2 and 3 500 times. Response rate65-70%. 

We consider 3 models for estimating the selection probability coefficients 

generating the NPS  sample:  

Model 1:  1, 2, 3, , 0.1,0.05,0.1,0.15,0.2,0.05,0.1,0.15,0.2,0.5( , , , )NP NP NP NP y NP         

Model 2:  1, 2, 3, , 0.1,0.05,0.1,0.15,0.2,0,0,0,0,0.5( , , , )NP NP NP NP y NP         

Model 3:  1, 2, 3, , 0.1,0,0,0,0,0,0,0,0,0.5( , , , )NP NP NP NP y NP         
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Simulation study (cont.) 

The corresponding models used for estimation of the selection probability 

coefficients generating the PSS  sample are,   

Model 1:  1, 2, 3, 0.1,0.05,0.1,0.15,0.2,0.05,0.1,0.15,0.2( , , )SP SP SP SP        

Model 2:  1, 2, 3, 0.1,0.05,0.1,0.15,0.2,0,0,0,0( , , )SP SP SP SP        

Model 3:  1, 2, 3,( , , 00.1,0,0, ,0,0,0,0,0)SP SP SP SP        

Model 1 is the correct model generating the data. Models 2 and 3 are 

misspecified working models used for estimation.  
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Estimation of population probabilities  
 

i) based only on NPS ; ii) based on PS NPR S ; iii)  Kim & Wang method; iv) 

Rivers’ method; v) kNN method with NPk n  (Silverman, 1986). 

In method i), the empirical likelihood is maximized under the constraints, 

1

1, 2, 3,[ ( 1| , , , ; )]
NP

NP

i i i i i

i S

P I x x x y N 



  , 1

11,

NP

x

i i x

i S

x p 


 , 0, 1
NP

XY XY

i i

i S

p p


  .      

In method ii) the first constraint is replaced by 

1[Pr( 1| , 1; ) Pr( 1| )]
PS

PS PS PS

i i i i i

i R

R x I ρ I x N



     . For method iii) we fitted, 

1

,1 ,2 ,3 0 1 1 2 2 3 3( ) ( 1| , , ; ) logit ( )i i i i iq P x x x x             x x ; 

2x  and 3x  are 4 dummy variables. 
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Simulation Results 
 

Table 1: Mean and standard deviation (Sd) of estimated response   

 coefficients. True values: 0 0.1  , 1 0.2   

Model 0̂  0
ˆ( )Sd   1̂  1

ˆ( )Sd   

Model 1 0.09 0.0015 0.163 0.0053 

Model 2 0.06 0.0010 0.151 0.0046 

Model 3 0.03 0.0012 0.102 0.0033 
 

 The larger the distance between the correct model 1 and the model 

fitted, the larger the bias of the estimated response model coefficients. 
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Table 2. Mean Hellinger distance between estimated ( p̂) and true ( p) 

probabilities of  (X,Y). 
128

2 1/2

1

1
ˆ[ ( ) ]

2
ˆ

i i

i

p p


 HD(p,p) .  

Models NPS  PS NPR S  Kim & Wang 
 

Rivers kNN 

Model 1 0.069 0.061 0.086 0.089 0.089 

Model 2 0.080 0.078 0.087 0.089 0.090 

Model 3 0.084 0.085 0.089 0.090 0.089 

 

Small values under the correct model, larger under misspecified models 

and under MAR nonresponse. 
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Table 3. Means and standard deviations ( dS ) of estimated values of NP  

coefficients under Model 1. 

NP  1,NP  1

2,NP  2

2,NP  3

2,NP  4

2,NP  1

3,NP  2

3,NP  3

3,NP  4

3,NP  ,y NP  

True coeff. 0.1 0.05 0.1 0.15 0.2 0.15 0.1 0.15 0.2 0.5 

Estimate 0.1 0.04 0.13 0.15 0.19 0.06 0.13 0.12 0.22 0.39 

dS   0.00 0.00 0.010 0.012 0.008 0.001 0.009 0.012 0.02 0.01 

 

Mean estimates generally close to true values. 
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Model testing 

As mentioned before, we can actually test the model fitted. We have data 

for the responding units and a model fitted to them. We applied the 

Hosmer and Lemeshow (1980, hereafter H-L) test. To construct the test, 

the sample is partitioned into G equal size groups based on the 

estimated probabilities of success (Y=1). The test statistic is,  
2

1

( )
H-L

(1 )

G
g g g

g g g g

o n

n



 





 , where go is the number of observed successes in 

group g , gn  is the size of the group and g  is the mean of the estimated 

probabilities of success. 2

2H - L G   (approximately) under the null 

hypothesis that the model fits the data. 
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Test results 

Table 4: Means of p-values of H-L test statistic, G=10 
 

Models NPS  PS NPR S  Kim & Wang 
 

Rivers  kNN  

Model 1 0.076 0.079 0.0080 0.008 0.0073 

Model 2 0.052 0.059 0.0068 0.0061 0.0072 

Model 3 0.022 0.029 0.0056 0.0053 0.0067 

 

Under the correct model, the means are larger than 0.075. For the last 

three methods, the means are all smaller than 0.01. The test rejects 

Model 3 with very small p-values. Under Model 2, the means are close to 

0.05, but Models 1 and 2 are not very different.  
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Estimation of population total Y: 

            ˆ ˆ(1)
NP

Y

NP i i

i S

Y N y p


  ; 

1

1

P̂r ( 1| , )
ˆ (2)

P̂r ( 1| , )

NP

i i i ii NP
NP NP

i i ii NP

I x y y
Y N

I x y

















                

Table 5. Means of estimates of Y total and standard deviations based 

on only 
NPS . True Total=13,548 

 

Models ˆ (1)NPy  ˆ( (1))NPSd y  ˆ (2)NPy  ˆ( (2))NPSd y  

Model 1 13750.45 116.84 13680.95 60.86 

Model 2 14014.28 111.26 13747.59 64.80 

Model 3 14099.847 108.26 13798.75 58.91 

 

Both perform relatively well under correct model, but ˆ (2)NPy  has smaller 

bias and is much less variable. Also performs OK under 2 and 3. 
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Table 6. Means of estimates of Y total and standard deviations based on 

NPS∪PSR . True Total=13,548 

Models ˆ (1)NPy  ˆ( (1))NPSd y  ˆ (2)NPy  ˆ( (2))NPSd y  

Model 1 13708.04 109.96 13654.46 60.86 

Model 2 14004.28 103.80 13757.42 64.92 

Model 3 14064.58 98.39 13773.57 58.94 

 

Comparing the results of Tables 5 and 6 shows that integrating the data 

in NPS  and PSR  results in lower bias of the estimators under the 3 models, 

and lower standard deviations of ˆ (1)NPy . 
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Application to real data from Italy 

NPS  sample: Enterprises belonging to NACE (Nomenclature of 

Economic Activities) having at least 10 employees, selected from the 

statistical  register of italian active enterprises (ASIA).  

The sample contains information on the following variables: 
1X = number 

of employees; 2X =sales (in classes); 3X =Nace; 4X =geographical area.  

Y =1 if involved in e-commerce; 0 otherwise.  

  Reference time period- 2022. Sample size = 51,714
NPSn .  
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Application to real data from Italy (Cont.) 

PSS  sample: “Situation and perspectives of Italian enterprises during 

COVID-19”. Noninformative and not affected by nonresponse?? 

Carried out by Istat with the aim of assessing the economic situation and 

specific actions taken by businesses to reduce the economic impacts of 

the pandemic. The survey was conducted in 3 waves, the last between 

16/11-17/12, 2021 (considered in the present study).  

The sampling design used to select the sample is two-stage stratified 

random sampling.  

Only enterprises with at least 10 employes and belonging to the NACE 

economic activities  are considered (same as NPS  sample). 

The sample size 
S = 19,606

PS
n . 
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Application to real data- initial results 

Because of operational limitations, only considered the variable X- No. of 

employees. For further evaluation of the method, we divided the X-values 

into k=4 categories:  

         1 2[10 49] [50 99]z z   ; ;  3 4[100 249] 250z z   ; . 

We computed the probability function of Z by employing the probability 

function of X; 
,

, ,

,
ˆ ˆ { : }

z k

Z S X S

k i z k i k

i S

p p S i S x z


    ; ,  S= PSS , NPS  
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Table 7. Estimated proportions in classes Z obtained from 
PSS  and

NPS

and by harmonization of the two estimates, with / ( )PS PS NPn n n    0.27  

Z  
NPSn  

,
ˆ

PS

Z

z Sp  ,
ˆ

NP

Z

z Sp  , ,
ˆ ˆ(1 )Z Z

z PS z NPp p    ISTAT* 

[10-49] 39780 0.876 0.824 0.838 0.863 

[50-99] 5692 0.066 0.096 0.088 0.074 

[100-250] 3845 0.041 0.057 0.052 0.042 

250+ 2437 0.018 0.023 0.022 0.021 
 

* The last column contains estimates computed by ISTAT for 2022. The 

estimates were obtained from a sample of 30,000 enterprises called, 

Information and Communication Technology (ICT), aiming to measure 

the degree of digitalization of Italian enterprises.  

Note, these estimates are also based on a sample. 
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Application to real data (cont.) 

Table 8. Estimation of selection probabilities to 
NPS  and standard 

errors* 

 
, ,

,

, ,

1

exp( )

exp( )

NP NP

NP NP SNP

NP NP

x S i y S i

i S S n

x S j y S j

j

x y
n

x y

 


 







 

, NPx S  , NPy S  

0.15 (0.005) 0.82 (0.024) 
 

   * Standard errors computed based on parametric bootstrap. 

 Coefficients highly significant based on standard t-tests. Clear 

indication of biased selection.  
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Application to real data (cont.) 

For the methods considered in the simulation study, we estimated the 

probabilities 
,1

ˆ ˆ ˆP( 1| ) /
z z

XY XY

i i

M M

Y Z z p p    ; 

,1 { , 1}z iM i z y   , { }zM i z  .  
 

Table 9. Estimates of Pr( 1| )Y Z z   and ISTAT probabilities  
 

Z  NPS  PS NPS S  Kim & 
Wang 

Rivers  ISTAT* 

[10-49] 0.186 0.181 0.148 0.138 0.211 

[50-99] 0.172 0.183 0.128 0.120 0.202 

[100-250 0.176 0.179 0.151 0.160 0.210 

250+ 0.240 0.240 0.213 0.220 0.262 
 

 * Same sample as in Table 7. 
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Other results 

1- The HD measures of the distance between the estimated 

probabilities and the ISTAT probabilities shown in Table 9 are 0.044 for 

the method based on NPS , 0.040 for the method based on PS NPS S , 

0.100 for Kim & Wang method and 0.108 for Rivers’ method.  

2- The estimated joint probabilities of ( , )X Y  obtained from NPS  and 

PS NPS S  have been tested by use of the H-L test with G=10 groups. 

The p-values are 0.069 and 0.083 respectively. 
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Concluding remarks on use of nonprobability samples for OS 
 

  Informative sampling and NMAR nonresponse should always be   

checked and adjusted for, both with PS and NP samples.  

  Non-representativeness of NP samples a major concern. 

 

  Use of NP samples for OS not straightforward.  

 

  Use of NP samples for OS apparently inevitable in the long run.  

    Promises huge advantages, which cannot be ignored. 
 

  The procedures outlined in this presentation to deal with selection bias  

    are promising, but only first steps. 

   Much more theoretical and applied research required!! 
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