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Introduction

Basic setup

U = {1, . . . ,N}: index set of the finite population
Y: study variable of interest, observed in the sample.
X = (X1, . . . ,Xp)⊤: auxiliary variables, observed throughout the finite population.
We are interested in estimating the finite population total

θN =
N∑

i=1
yi,

where yi is the realized value of Y for unit i.
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Introduction

Let

δi =

{
1 if yi is sampled
0 otherwise.

Two types of sampling
Sampled by design Sampled by chance

Sample selection known unknown
Probability
Example Randomized Experiment Observational study

Probability sample Voluntary sample
If the sample selection is controlled by design, then πi = P(δi = 1 | i) are known for
i = 1, · · · ,N. In survey sampling, πi is called the first-order inclusion probability. In
missing data literature, it is called the propensity score.

Kim (ISU) Voluntary survey data 4 / 68



Introduction

Horvitz-Thompson estimator
If πi are known and positive, then we can use

θ̂HT =
N∑

i=1

δi
πi

yi

to estimate θN =
∑N

i=1 yi.
θ̂HT is called the Horvitz-Thompson (HT) estimator.
The HT estimator is unbiased for θ with respect to the randomization distribution under
the sampling design:

E
(
θ̂HT | FN

)
=

N∑
i=1

E
(
δi | FN

)︸ ︷︷ ︸
=πi

1
πi

yi =
N∑

i=1
yi

where FN = {y1, y2, . . . , yN}
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Introduction

The HT estimator is design-unbiased but it is applicable only when πi are known.
The design-based framework is very popular in probability sampling as it does not involve
any model assumptions.
In voluntary samples, πi are unknown.
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Introduction

Analysis of voluntary sample
Missing data framework:

The study variable yi is not observed when δi = 0. Thus, we observe (xi, δi, δiyi) for
i = 1, . . . ,N.
Prediction approach

1 Treat the sample with δi = 1 as a training sample for prediction

yi = x⊤i β + ei

with E(ei | xi) = 0.
2 Compute the regression (prediction) estimator of Y:

θ̂reg =
N∑

i=1
ŷi

where ŷi = x⊤i β̂.
The sampling mechanism is assumed to be ignorable in the sense that δ ⊥ Y | x.
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Introduction

Alternative derivation: regression weighting

Use

θ̂ω =
N∑

i=1
δiωiyi

to estimate θN, where ωi is the weight assigned to unit i with δi = 1.
We may wish to make the final weights satisfy the following constraints:

N∑
i=1

δiωixi =
N∑

i=1
xi, (1)

where xi = (x1i, . . . , xpi)⊤ and x1i ≡ 1.
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Introduction

Constraint (1) has many different names

Survey sampling: calibration condition or benchmarking condition (Isaki and Fuller, 1982;
Deville and Särndal, 1992)
Missing data / Causal inference: covariate balancing condition (Hainmueller, 2012; Imai
and Ratkovic, 2014).
Machine learning / transfer learning: covariate shift adaptation (Sugiyama et al., 2007)
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Introduction

Regression estimator

Find the minimizer of

Q(ω) =
N∑

i=1
δiωi

2 (2)

subject to the calibration condition in (1).
This is a classical optimization problem.
Lagrange multiplier method can be used to obtain the solution:

L (ω,λ) =
1
2

N∑
i=1

δiωi
2 + λ⊤

 N∑
i=1

xi −
N∑

i=1
δiωixi


The Lagrange multiplier λ is another unknown parameter to incorporate the calibration
constraint in (1).
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Introduction

Solving
∂

∂ωi
L = 0

leads to
ωi = λ⊤xi (3)

Thus, we have only to estimate λ.
Inserting ωi in (3) into (1), we obtain

N∑
i=1

δi
(
λ⊤xi

)
︸ ︷︷ ︸

=ωi

x⊤i =
N∑

i=1
x⊤i

which is a linear equation for λ.
The solution is

λ̂
⊤
=

 N∑
i=1

x⊤i

 N∑
i=1

δixix⊤i

−1
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Introduction

Therefore, the solution to the optimization problem is

ω̂i = λ̂⊤xi =

 N∑
i=1

x⊤i

 N∑
i=1

δixix⊤i

−1

xi (4)

which leads to the regression estimator

N∑
i=1

δiω̂iyi =
N∑

i=1
x⊤i β̂, (5)

where β̂ =
(∑N

i=1 δixix⊤i
)−1 ∑N

i=1 δixiyi.
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Introduction

Motivated from a regression model

yi = x⊤i β + ei

with E(ei | xi) = 0 and V(ei | xi) = σ2.
Note that

θ̂ω − θN =

 N∑
i=1

δiωixi −
N∑

i=1
xi

⊤

β

+

 N∑
i=1

δiωiei −
N∑

i=1
ei


:= C + D

The optimization problem for regression weighting can be understood as minimizing
E{D2} subject to C = 0, assuming that ei is indepedent of δi (MAR).
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Generalized entropy calibration estimation

Motivation

Let S be the index set of the sample (with δi = 1).
Recall that the regression weights in (4) is

ω̂i =

 N∑
i=1

x⊤i

 N∑
i=1

δixix⊤i

−1

︸ ︷︷ ︸
=

ˆλ
⊤

xi.

Note that ω̂i is a linear function of xi. For xi = (1, xi)⊤, we can express

ω̂i = a + bxi

for some a and b. Thus, it can take negative values when xi are extreme.
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Generalized entropy calibration estimation

Toy example: A table of N−1ω̂i with for δi = 1 with n = 5

xi∑N
i=1 xi/N 1 2 3 4 5 N−1 ∑

i∈S ω̂i(1, xi)
3.0 0.20 0.20 0.200 0.20 0.20 (1.0, 3.0)
4.5 -0.10 0.05 0.20 0.035 0.50 (1.0, 4.5)
6.0 -0.40 -0.10 0.20 0.50 0.80 (1.0, 6.0)

Negative weights should be avoided!
How to avoid negative weights?

Kim (ISU) Voluntary survey data 16 / 68



Generalized entropy calibration estimation

Entropy balancing method (Hainmueller, 2012)

Primal problem: Minimize
Q(ω) =

∑
i∈S

G(ωi)

subject to (1), where
G(ω) = ω log(ω)− ω. (6)

Use the method of Lagrange multipliers to get

L(ω,λ) =
∑
i∈S

G(ωi)− λ⊤

∑
i∈S

ωixi −
N∑

i=1
xi

 . (7)
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Generalized entropy calibration estimation

Taking the derivative of L with respect to ωi and setting it to zero gives:

∂L
∂ωi

= g(ωi)− λ⊤xi = 0

where g(ω) = dG(ω)/dω.
Solving for ωi yields:

ω̂i = g−1
(
λ⊤xi

)
(8)

For the loss function in (6), we have

g(ω) = log(ω)

and so we can express (8) as
ω̂i(λ) = exp

(
λ⊤xi

)
. (9)

Note that the final weights are always positive.
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Generalized entropy calibration estimation

Plugging (9) into L(ω,λ) in (7) to get

L(ω̂(λ),λ) =
∑
i∈S

G(ω̂i(λ))− λ⊤

∑
i∈S

ω̂i(λ)xi −
N∑

i=1
xi


=

∑
i∈S

{
exp

(
λ⊤xi

)(
λ⊤xi

)
− exp

(
λ⊤xi

)}

−λ⊤

∑
i∈S

exp
(
λ⊤xi

)
xi −

N∑
i=1

xi


=

N∑
i=1

λ⊤xi −
∑
i∈S

exp
(
λ⊤xi

)
,

which is a function of λ only.
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Generalized entropy calibration estimation

Obtain λ̂ by

λ̂ = argmax
λ

 N∑
i=1

λ⊤xi −
∑
i∈S

exp
(
λ⊤xi

) , (10)

Note that

∂

∂λ⊤L(ω̂(λ),λ) =
N∑

i=1
xi −

∑
i∈S

exp(λ⊤xi)xi

=
N∑

i=1
xi −

∑
i∈S

ω̂i(λ)xi

Thus, λ̂ satisfies the calibration equation in (1).
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Generalized entropy calibration estimation

Generalized entropy calibration

Let’s generalize this idea further.
We maximize the generalized entropy

QG(ω) = −
∑
i∈S

G(ωi) (11)

subject to (1), where G(·) : V → R is a strictly convex and differentiable function.
Using the Lagrange multiplier method, we find the minimizer of

L(ω,λ) =
∑
i∈S

G(ωi)− λ⊤

∑
i∈S

ωixi −
N∑

i=1
xi


with respect to λ and ω.
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Generalized entropy calibration estimation

By setting ∂L/∂ωi = 0 and solving for ωi, we obtain

ω̂i(λ) = g−1
(
λ⊤xi

)
,

where g(ω) = dG(ω)/dω.
Thus, by plugging ω̂i(λ) into L, we can formulate a dual optimization problem:

λ̂ = argmax
λ

 N∑
i=1

λ⊤xi −
∑
i∈S

ρ
(
λ⊤xi

) , (12)

where ρ (ν) is the convex conjugate function of G, which is defined by

ρ (ν) = ν · g−1(ν)− G{g−1(ν)}. (13)
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Generalized entropy calibration estimation

The convex conjugate function, defined in (13), satisfies

d
dν ρ(ν) = g−1 (ν) +

d
dν

{
g−1(ν)

}
− d

dνG{g−1(ν)}

= g−1(ν).

Thus, the final weight can be written as

ω̂i = g−1
(
λ̂
⊤xi

)
= ρ(1)

(
λ̂
⊤xi

)
(14)

where ρ(1)(ν) = dρ(ν)/dν and λ̂ is the solution to the dual optimization problem in (12).
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Generalized entropy calibration estimation

Legendre Transformation (Convex conjugate function)

ω

y
y = G(ω)
y = ν · ω

a ω∗ b

G(ω⋆)

ν · ω⋆

The function G(ω) is defined on the interval [a, b]. The difference ν · ω − G(ω) takes a
maximum at ω⋆ = ω⋆(ν). Thus, ρ(ν) = ν · ω⋆ − G(ω⋆) is the Legendre transformation of G.
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Generalized entropy calibration estimation

Explanation from Wikipedia

If the convex function f is defined on the whole line and is everywhere differentiable, then

f∗(ν) = sup
x∈I

(ν · x − f(x)) =
(
ν · x − f(x)

)
|x=(f′)−1(ν)

can be interpreted as the negative of the y-intercept of the tangent line to the graph of f
that has slope ν.
The Legendre transformation is an application of the duality relationship between points
and lines. The functional relationship specified by f can be represented equally well as a
set of (x, y) points, or as a set of tangent lines specified by their slope and intercept
values, (ν, f∗(ν)).
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Generalized entropy calibration estimation

Examples

Generalized Entropy G(ω) ρ(ν)

Squared loss ω2/2 ν2/2
Kullback-Leibler ω log(ω) exp(ν − 1)

Shifted KL (ω − 1){log(ω − 1)− 1} ν + exp(ν)
Empirical likelihood − log(ω) −1 − log(−ν)
Squared Hellinger (

√
ω − 1)2 ν/(ν − 1)

Rényi entropy 1
α+1ω

α+1 α
α+1ν

α+1
α

(α ̸= 0,−1)
Table: Examples of generalized entropies, G(ω) and the corresponding convex conjugate functions
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Generalized entropy calibration estimation

Remark

The primal problem (the constrained optimization problem) can be solved by its
dual problem (which is the unconstrained optimization problem).
The primal problem is a n-dimensional optimizaton problems while the dual problem is
p-dimensional optimization problem. The dual problem is numerically more stable.
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Generalized entropy calibration estimation

Adding weight bound constraint
In addition to the calibration constraint, suppose that we impose

ωi ≤ M
for some M. That is, we wish to achieve

ω̂i(λ) = ρ(1)(x⊤i λ) ≤ M
To achieve the goal, one way is to use a Huber’s loss function

ρ(ν) =


1
2ν

2 |ν| ≤ M
M

(
|ν| − 0.5M

)
|ν| > M

and obtain G corresponding to ρ:

G(ω) =


ω2

2 |ω| ≤ M
∞ |ω| > M
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Generalized entropy calibration estimation

Huberization

For a given G(ω), we can construct GH(ω) such that

GH(ω) =

{
G (ω) |ω| ≤ M
∞ |ω| > M

(15)

However, (15) is not continuous at ω = M.
We need an extra step to handle the discontinuity at ω = M.
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Statistical properties

Goal

Let θ̂cal =
∑

i∈S ω̂iyi be the proposed calibration estimator using a generalized entropy
function.
The calibration weight satisfies ∑

i∈S
ω̂ixi =

N∑
i=1

xi. (16)

We are interested in linearizing θ̂cal:

θ̂cal ∼=
N∑

i=1
ηi

where ηi = η(xi, yi, δi) is the influence function of θ̂cal.
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Statistical properties

Outline for linearization
The proposed estimator θ̂cal is a function of λ̂. Thus, we can express

θ̂cal = θ̂cal(λ̂) =
N∑

i=1
δiω

⋆(x⊤i λ̂)yi

where ω⋆(ν) = g−1(ν) = ρ(1)(ν).
Since λ̂ satisfies (16), we can express

θ̂cal =
N∑

i=1
δiω

⋆(x⊤i λ̂)yi +

 N∑
i=1

xi −
N∑

i=1
δiω

⋆(x⊤i λ̂)xi

⊤

︸ ︷︷ ︸
=0

γ

:= θ̂ℓ(λ̂,γ).

That is, θ̂ℓ(λ̂,γ) = θ̂cal(λ̂) for all γ.
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Statistical properties

Let λ∗ be the probability limit of λ̂.
Now, if we can find γ∗ such that

E
{

∂

∂λ
θ̂ℓ(λ

∗,γ)

}
= 0 (17)

at γ = γ∗, then the effect of estimating λ∗ can be safely ignored (Randles, 1982).
Therefore, we can establish that

θ̂cal = θ̂ℓ(λ
∗,γ∗) + op(n−1/2N)

where

θ̂ℓ(λ
∗,γ∗) =

N∑
i=1

{
x⊤i γ∗ + δiω

⋆(x⊤i λ∗)(yi − x⊤i γ∗)
}

︸ ︷︷ ︸
:=ηi

.
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Statistical properties

Theorem

Under some regularity conditions, the resulting calibration estimator ŶGEC =
∑

i∈S ω̂iyi
satisfies

ŶGEC =
N∑

i=1
ηi + op

(
n−1/2N

)
(18)

where
ηi = x⊤i γ∗ + δiρ

(1)
(

x⊤i λ∗
)(

yi − x⊤i γ∗
)
,

γ∗ =

 N∑
i=1

ρ(2)
(

x⊤i λ∗
)

xix⊤i

−1 N∑
i=1

ρ(2)
(

x⊤i λ∗
)

xiyi

with ρ(2)(ν) = d2ρ(ν)/dν2 and λ∗ = p lim λ̂.
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Statistical properties

Remark

The linearization in (18) does not rely on any model assumptions.
The consistency of ŶGEC can be established under one of the two model assumptions.

1 Outcome regression (OR) model
yi = x⊤i β + ei (19)

where ei satisfies E(ei | xi) = 0.
2 Propensity score (PS) model given by

P
(
δi = 1 | xi

)
=

{
ρ(1)

(
x⊤i ϕ

)}−1
. (20)

for some ϕ.
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Statistical properties

Justification under the OR model
Under the OR model in (19), we have γ∗ = β0 and

ηi = x⊤i β + δiω
∗
i

(
yi − x⊤i β

)
,

where ω∗
i = ρ(1)

(
x⊤i λ∗

)
.

Thus, we obtain
E(ηi | xi) = x⊤i β = E(Yi | xi)

and ŶGEC is asymptotically unbiased for θN.
Its asymptotic variance equal to

V
(

ŶGEC
)
∼= V

 N∑
i=1

x⊤i β

+ E


N∑

i=1
δi
(
ω∗

i
)2 V(yi | xi)

 .

Including unnecessary covariates into calibration will increase
(
ω∗

i
)2 term in the

conditional variance.
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Statistical properties

Justification under the PS model in (20)
Under the PS model in (20), we have λ∗ = ϕ and

ηi = x⊤i γ∗ +
δi
πi

(
yi − x⊤i γ∗

)
,

where πi = P(δi = 1 | xi) = {ρ(1)
(

x⊤i ϕ
)
}−1.

Thus, we can establish
E
(
ηi | xi, yi

)
= yi

where the conditional distribution is with respect to the probability law in [δ | x, y].
Thus, under (20), ignoring the smaller order terms,

V
(

ŶGEC
)
∼= V

 N∑
i=1

yi

+ E


N∑

i=1

(
π−1

i − 1
)(

yi − x⊤i γ∗
)2

 . (21)
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Statistical properties

Variance estimation

For variance estimation, we can use

V̂ =
N

N − 1

N∑
i=1

(η̂i − η̄N)
2

where
η̂i = x⊤i γ̂∗ + δiω̂i

(
yi − x⊤i γ̂∗

)
,

γ̂∗ =

∑
i∈S

ρ(2)(x⊤i λ̂)xix⊤i

−1 ∑
i∈S

ρ(2)(x⊤i λ̂)xiyi,

and η̄N = N−1 ∑N
i=1 η̂i. The above variance estimator is doubly robust.
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Extension

1. From PS model to GEC weighting

The propensity score model
P(δi = 1 | xi) = π(x⊤i ϕ) (22)

where π(ν) ∈ (0, 1] is a known monotone function and ϕ is the unknown parameter.
Our first goal is to construct a calibration weighting method in which the calibration
equation ∑

i∈S

1
π
(

x⊤i ϕ
)xi =

N∑
i=1

xi (23)

can be interpreted as the GEC weighting.

Kim (ISU) Voluntary survey data 40 / 68



Extension

That is, we wish to find a convex conjugate function F such that the solution to (23) is
equivalent to

ϕ̂ = argmax
ϕ

 N∑
i=1

x⊤i ϕ−
∑
i∈S

F
(

x⊤i ϕ
) . (24)

Thus, we require that
d
dν F(ν) =

{
π(ν)

}−1
. (25)

To guarantee that F is also a convex function, we require that {π(ν)}−1 is monotone
increasing with ν.

Kim (ISU) Voluntary survey data 41 / 68



Extension

The convex conjugate function of F satisfying (25) is given by

G(ω) = ωπ−1(1/ω)− F{π−1(1/ω)}. (26)

Using (26), we find the GEC weights that minimize∑
i∈S

G(ωi)

subject to ∑
i∈S

ωixi =
N∑

i=1
xi. (27)
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Extension

Example: Logistic regression PS model

If
π(ν) = {1 + exp(ν)}−1,

then π(ν) is monotone decreasing in ν and

F(ν) = ν + exp(ν). (28)

Using F(ν) in (28) to solve the dual optimization in (24) is the basic idea of the
calibrated maximum likelihood method of Tan (2020).
Now, using (26), we obtain

G(ω) = (ω − 1) log (ω − 1)− (ω − 1). (29)

Use of G(ω) in (29) for calibration was proposed by Wang and Kim (2024) using
information projection argument.
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Extension

2. How to incorporate π̂i into calibration weighting?

Two approaches
1 Change the objective function (Deville and Särndal, 1992): Instead of minimizing

Q(ω) =
∑N

i=1 δiG(ωi) for some convex function G with G′(1) = 0, we minimize

QDS(ω) =
N∑

i=1
δidiG

(
ωi/di

)
subject to (1), where di = π̂−1

i .
2 Change the constraints (Kwon et al., 2024): Make no change on the objective function.

Instead, include an additional constraint to make the resulting estimator design-consistent.
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Extension

Proposal by Kwon et al. (2024)

Construct the calibration weights for the sample by maximizing

Q(ω) = −
N∑

i=1
δiG(ωi)

subject to
N∑

i=1
δiωixi =

N∑
i=1

xi (30)

and
N∑

i=1
δiωig(π̂−1

i ) =
N∑

i=1
g(π̂−1

i ) (31)

where π̂i is the estimated sample selection probability under the working PS model.
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Extension

Remark

Constraint (30) is based on the following “working” OR model

E(Y | x) = x′iβ

for some β.
If the parameter of interest is the solution to

E{U(θ;X,Y)} = 0,

then (30) can be changed to

N∑
i=1

δiωiŪ(θ; xi) =
N∑

i=1
Ū (θ; xi)

where Ū(θ; x) = E{U(θ; x,Y) | x}.
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Extension

Understanding (31)

The final weights are computed from the solution to the Lagrange dual problem. Let

L(ω,λ) = −
N∑

i=1
δiG(ωi) + λ⊤

1

 N∑
i=1

δiωixi −
N∑

i=1
xi


+λ2

 N∑
i=1

δiωig(di)−
N∑

i=1
g(di)

 .

Since
∂

ωi
L(ω,λ) = −g(ωi) +

(
λ⊤

1 xi + λ2g(di)
)
= 0,

we obtain
ωi(λ) = g−1

(
λ⊤

1 xi + λ2g(di)
)
. (32)
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Extension

To achieve the consistency under the PS model, the calibration weights should satisfy

ω̂i = g−1
(
λ̂⊤

1 xi + λ̂2g(di)
)
−→ di

as N → ∞, where λ̂1 and λ̂2 are obtained from the calibration constraints in (30) and
(31).
This is true when

p lim λ̂1 = 0 and p lim λ̂2 = 1. (33)

Therefore, as long as (33) is satisfied, the proposed method with debiasing constraint
(31) can achieve the consistency under the PS model.
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Extension

Constraint (31) is the debiasing constraint. Its role is to achieve the consistency under
the PS model, regardless of whether the OR model holds or not.
Thus, constraint (31) is used to achieve the doubly robust estimation.
If there are multiple PS models, then we can use multiple debiasing constraints. That is,
we may use

N∑
i=1

δiωig(1/π̂(k)
i ) =

N∑
i=1

g(1/π̂(k)
i ) (34)

for k = 1, . . . ,K. In this case, we can achieve the so-called multiple robustness (Han,
2014).
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A toy example

CRAN – R Package GECal

# Install GECal package in Rstudio:
install.packages("GECal")
library(GECal)
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A toy example

Toy example

# Sampled study variable
y=c(5, 4, 7, 9, 11, 10, 13, 12, 15, 15)
# Sampled auxiliary variables
Xs=cbind(

c(1,1,1,1,1,1,1,1,1,1),
c(1,1,1,1,1,0,0,0,0,0),
c(1,3,5,7,9,6,7,8,9,10)

)
# vector of population totals
total=c(160,124,700)
# Population size
N = total[1]
d = rep(1, 10)

y x1 x2 x3
5 1 1 1
4 1 1 3
7 1 1 5
9 1 1 7
11 1 1 9
10 1 0 6
13 1 0 7
12 1 0 8
15 1 0 9
15 1 0 10
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A toy example

# GEC estimator using ET(exponential tilting) divergence
cal_ET <- GEcalib(~ 0 + Xs, dweight = d, const = total,

method = "GEC0", entropy = "ET")
head(cal_ET$w)

1 2 3 4 5 6
48.359404 31.828847 20.948884 13.787987 9.074879 10.475456

GECal::estimate(y ~ 1, calibration = cal_ET)$estimate

Estimate Std. Error
y 1189.612 84.30957
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A toy example

# GEC estimator using EL(empirical likelihood) divergence
cal_EL <- GEcalib(~ 0 + Xs, dweight = d, const = total,

method = "GEC0", entropy = "EL")
head(cal_EL$w)

1 2 3 4 5 6
54.743353 27.066422 17.977452 13.458167 10.754606 8.232996

GECal::estimate(y ~ 1, calibration = cal_EL)$estimate

Estimate Std. Error
y 1209.387 89.30535
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A toy example

# GEC estimator using CE(cross entropy or shifted KL) divergence
cal_CE <- GEcalib(~ 0 + Xs, dweight = d, const = total,

method = "GEC0", entropy = "CE")
head(cal_CE$w)

1 2 3 4 5 6
55.039987 26.830847 17.856881 13.446878 10.825408 8.134369

GECal::estimate(y ~ 1, calibration = cal_EL)$estimate

Estimate Std. Error
y 1210.314 89.56127
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A toy example

y x weights
x1 x2 x3 ET EL CE

5 1 1 1 48.36 54.74 55.04
4 1 1 3 31.83 27.07 26.83
7 1 1 5 20.95 17.98 17.86
9 1 1 7 13.79 13.46 13.45
11 1 1 9 9.07 10.75 10.83
10 1 0 6 10.48 8.23 8.13
13 1 0 7 8.50 7.65 7.60
12 1 0 8 6.89 7.14 7.14
15 1 0 9 5.59 6.69 6.74
15 1 0 10 4.54 6.30 6.38

Table: Comparison of ET, EL, and CE(shifted KL) weights.
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Simulation study

Simulation setup

A finite population of size N = 10, 000 was generated from

Yi = β0 + β1x1i + β2x2i + β3x1ix2
2i + ei

where X1i ∼ N(2, 1), X2i ∼ Unif(0, 4), and ei ∼ N(0, 1).
We use two scenarios:

Scenario 1: β3 = 0
Scenario 2: β3 ̸= 0

From each of the finite populations, samples are selected using Poisson sampling with
πi = min

(
Φ3(−x1i/2 − x2i/2), 0.7

)
where Φ3(·) is the cumulative distribution function of

the t distribution with degrees of freedom 3.
We assume that πi are known throughout the population.
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Simulation study

The parameter of interest is θ = N−1 ∑N
i=1 yi.

We use
N∑

i=1
δiωi(1, x1i, x2i) =

N∑
i=1

(1, x1i, x2i)

as the constraint for calibration.
Thus, we use

Yi = β0 + β1x1i + β2x2i + ei (35)

as the working model for calibration estimation.
Therefore, the working model (35) is correct under Scenario 1, but incorrect under
Scenario 2.
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Simulation study

We compare the following estimators:
1 Hájek: Solves

∑N
i=1 δidi(yi − θ) = 0 for θ.

2 DS: Calibration estimator of Deville and Särndal (1992).
3 GEC: The proposed calibration estimator using generalized entropy function.

Generalized entropy functions considered
1 Empirical likelihood (EL): G(ω) = − log(ω)
2 Exponential tilting (ET): G(ω) = ω(log(ω)− 1)
3 Cross Entropy (CE): G(ω) = (ω − 1) log(ω − 1)− ω log(ω)
4 Hellinger distance (HD): G(ω) = −4√ω
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Simulation study

Simulation results (Scenario 1: β3 = 0)

Bias(×100) SE(×100) RMSE(×100) CR(%)
Hájek 0.51 7.96 7.97 96

EL DS 0.10 3.91 3.91 96
GEC 0.13 3.92 3.92 96

ET DS 0.10 3.91 3.91 96
GEC 0.10 3.91 3.91 96

CE DS 0.10 3.91 3.91 96
GEC 0.13 3.92 3.92 96

HD DS 0.10 3.91 3.91 96
GEC 0.11 3.91 3.91 96
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Simulation study

Simulation results (Scenario 2: β3 ̸= 0)

Bias(×100) SE(×100) RMSE(×100) CR(%)
Hájek -0.32 19.87 19.87 95

EL DS -0.23 8.28 8.29 93
GEC -0.05 5.31 5.31 95

ET DS -0.32 8.28 8.29 93
GEC 0.20 5.15 5.16 95

CE DS -0.40 8.28 8.29 94
GEC -0.08 5.42 5.43 95

HD DS -0.28 8.28 8.29 93
GEC -0.04 5.16 5.16 95
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Simulation study

Discussion

Under Scenario 1 (working model is correct), DS estimator is slightly better than the GEC
estimator.
Note that the GEC estimator is using the following augmented regression model as the
working model for calibration:

Yi = β0 + β1x1i + β2x2i + β3g(di) + ei

When the working model is correct AND the sampling mechanism is non-informative,
then β3 = 0 and the debiasing constraint in the GEC estimator is unnecessary.
The GEC estimator pays the price by including the debiasing constraint. That is, the
variance is increased by including the unnessary constraint in the calibration.
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Simulation study

Discussion (Continued)

Under Scenario 2 (working model is incorrect), GEC estimators are significantly more
efficient than the DS estimator.
The efficiency gain is due to the additional covariate g(di) in the regression model for
calibration.
Note that

Cov
(
yi, g(di) | xi

)
̸= 0

under Scenario 2, where xi = (x1i, x2i). Thus, including g(di) in the working regression
model helps to increase the prediction power and reduce the variance of the resulting
calibration estimator.
The benefit (efficiency gain under incorrect model) is of order O(n−1), while the risk
(efficiency loss under correct model) is of order o(n−1).
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Concluding Remark

Concluding Remarks

Generalized entropy calibration (GEC) method is developed as a tool for analyzing
voluntary survey data.
Different choice of G-function can lead different calibration weights.
We identify the dual relationship between the regression outcome model and the
calibration weighting.
The resulting GEC method is doubly robust under two working models: One is the
outcome regression model and the other is the propensity score model.
An R package, GECal, is freely available in CRAN.
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