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Introduction

Official statistics:
• Traditionally probability samples with design-based or model-assisted

inference
• Advantage:

• Robust for model-misspecification
• Designed data, which implies control over:

• Precision (through sample design)
• Availabilty and stability over time of the data
• Operationalization of concepts (through questionnaire design)

• Low risk level of impairment under this approach



Introduction

• Problems with survey sample data:
• expensive
• not very timely
• high variances for small domain estimates (under design-based inference

methods)
• non response
• response burden

• Increasing interest in alternative data sources (big data):
• time and location of network activity available from mobile phone companies,
• social media messages from X (Twitter) and Facebook
• internet search behaviour from Google Trends
• sensor data and satellite or aerial images
• administrative data like tax registers



Introduction

Strong points non-probability data
• Large amount of records
• Cost effective
• High frequency (in real time)
• Detailed level
• Direct measurement of behaviour instead of asking



Introduction

Weak points non-probability data
• Selection bias / DGP unknown
• Unstructured
• No/poor auxiliary variables
• Often suboptimal construct for the intended target variables
• High risk level

• No design-phase to control accuracy
• Model-based inference procedures to combine non-probability data with survey

data or to correct for selection bias
• No control over availability, stability, and consistency of the data source



Introduction

Use of non-probability data in official statistics:
• Primary data source
• Covariates in model-based estimation methods
• Auxiliary information to improve sampling strategy in a design-based

approach



Non-probability data as primary data
source



Non-probability data as primary data source

• Selection bias
• X. Meng (2018), Statistical paradises and paradoxes in big data :

• Estimation error product of
• Data-defect correlation: ρ = cor(Yi ,Ri)
• Data-quantity measure:

√
(N − n)/n

• Problem difficulty measure:
√

S2
Y

• Small deviation of ρ = 0 result in large bias
• Effective sample size of a NP sample with n = 2,300,000 reduces to SRS with

n = 400 (if ρ = -0.005)



Non-probability data as primary data source

Literature for bias correction in non-probability samples:
• Weighting and calibration (Särndal et al., 1992)
• Informative sampling (Pfeffermann and Sverchkov, 2003, 2009)
• Quasi-randomization: explicit model for estimating inclusion probabilities

(Elliot and Valliant, 2017, Valliant and Dever, 2011, Chen et al. 2020, Rafei et
al., 2020)

• Super population model to predict target variables not included in the sample
(Valliant et al. 2000)

• Reference sample to assess the selectivity of a non-probability sample (Kim
and Wang, 2018, Beaumont et al., 2024)



Non-probability data as primary data source

Literature for bias correction in non-probability samples (cnt.):
• Literature inference methods for NP data

• Rao (2020), On Making Valid Inferences by Integrating Data from Surveys and
Other Sources, Sankya, B.

• Beaumont (2020), Are probability samples bound to dissapear for the production
of official statistics? Survey Methodology

• Wu (2022), Statistical inference with non-probabilty survey samples, Survey
Methodology



Non-probability data as primary data source

• Issues with big data as primary data source:
• Methods assume structured data (identify units of the target population in the

non-probabilty data source)
• Methods assume availability of auxiliary information in the non-probabilty data

source
• Aforementioned literature: opt-in panels



Non-probability data as primary data source

• Appropriate for official statistics?
• Strong assumptions
• No control over availability and comparability over time of the data
• Results in a higher risk level

• Applications:
• Scanner data for measuring price indices
• Income statistics from tax and social benefit registers
• Business statistics from VAT registers
• Aerial images for measuring solar power panels and land use
• ...



Non-probability data as covariates in a
model-based inference approach



Non-probability data as covariates

• Relevance of statistical information increases with the level of detail, its
timeliness and its frequency

• Design-based methods: large variances under small sample sizes
• Model-based inference procedures

• Small area estimation models
• Nowcasting models

• Potential way to use new data sources:
• Potential covariates in SAE and nowcast models
• High frequency to produce more timely nowcasts
• Manageable risk level: primary data are survey data



Non-probability data as covariates

• Relevant literature
• Marchetti et al. (2015): mobility of cars tracked with GPS as a covariate for

poverty in an Area Level Model
• Blumenstock et al. (2015): mobile phone data to predict poverty
• Steel at al. (2017): mobile phone data and satellite images to predict poverty
• Schmid et al. (2017): mobile phone data for estimating literacy with an Area

Level Model
• ...



Non-probability data as covariates

• Official statistics
• Repeated surveys
• Time series models

• borrow strength over time and space as a form of SAE
• combine with auxiliary series derived from big data sources

- further improves precision
- high frequency: estimation in real time (nowcasting)

• Example: Dutch Labour Force Survey
• Structural time series model for monthly labour force figures
• Extensions

• Claimant counts
• Google trends

• Time varying correlations



Application: Time Series Models for the
Dutch LFS

Joint work with Caterina Schiavoni, Stephan Smeekes and Siem Jan Koopman



Dutch Labour Force Survey (LFS)

• Rotating panel design
• Each month: stratified two-stage sample of addresses
• Sample observed 5 times at quarterly intervals
• Data collection

• First wave: CAWI, CATI CAPI
• Follow-up waves CATI

• Inference: general regression (GREG) estimator



LFS: Problems
• Sample size:

• Too small for monthly figures with GREG estimator
• Rolling quarterly figures as an alternative

• Rotation group bias (RGB)
• Discontinuities due to survey redesigns

Figuur: RGB unemployed labour force



LFS: Solution

• Multivariate state space model (Pfeffermann, 1991)
• Small area estimation to borrow strength over time and space
• Account for RGB
• Account for serial correlation due to panel overlap
• Modelling shocks due to survey redesigns
• Extend the model with auxiliary series



LFS: Multivariate state space model

• Rotation scheme: data collected in 5 independent samples
• ŷ (j)

t GREG estimate month t , based on the panel that is observed for the j-th
time

• ŷ (1)
t : sample entered the panel in t , observed for first time

• ŷ (2)
t : sample entered the panel in t − 3, observed for second time

• ŷ (3)
t : sample entered the panel in t − 6, observed for third time

• ŷ (4)
t : sample entered the panel in t − 9, observed for fourth time

• ŷ (5)
t : sample entered the panel in t − 12, observed for fifth (and last) time



LFS: Multivariate state space model
Pfeffermann (1991)
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Population parameter: θt = Lt + St + It
• Lt : trend-cycle modelled with smooth trend model

Lt = Lt−1 + Rt−1

Rt = Rt−1 + ηt , ηt ∼ N(0, σ2
ηy )

• St : trigonometric seasonal component
• It : population white noise It ∼ N(0, σ2

Iy )



LFS: Multivariate state space model
Pfeffermann (1991)
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RGB: λt

• First wave unbiased
• Difference follow-up waves and first wave: λ(j)

t = λ
(j)
t−1 + µ

(j)
t , µ

(j)
t ∼ N(0, σ2

µ)



LFS: Multivariate state space model
Pfeffermann (1991)
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Sampling error: et

• Heteroscedasticity: e(j)
t =

√
var(ŷ (j)

t )ẽ(j)
t

• First wave ẽ(j)
t ∼ N(0, σ2

e1
)

• Serial correlation follow-up waves: ẽ(j)
t = ρẽ(j−1)

t−3 + ε
(j)
t , ε
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)



LFS: Multivariate state space model

• Models in state space form:
• yt = Zαt + ϵt , ϵt ∼ N(0,H)
• αt = Tαt−1 + ξt , ξt ∼ N(0,Ω)

• αt = (Lt ,Rt ,S1
t , ..., λ

(2)
t , ...)′

• Kalman filter: optimal estimates for αt

• Software: OxMetrics and Ssfpack



LFS: Multivariate state space model

Official monthly labour force figures:
• Unemployed labour force
• Employed labour force
• Total labour force
• Publication levels:

• National level
• Breakdown in 6 domains gender [2]× age[3]

• Unemployment rate: ratio of model predictions unemployed and total labour
force



Unemployed labour force national level: Trend



Unemployed labour force national level: Trend+Seasonal



St. Error Unemployed labour force national level



LFS: Multivariate state space model

Possible extensions:
• Combine the 6 domains in a 30 dimensional state space model

• Model cross-sectional and temporal relations
• Combine the LFS series with auxiliary series

• Claimant counts
• Google trends



LFS: Multivariate state space model for 6 domains
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θt ,d = Lt ,d + St ,d + It ,d d = 1, . . . ,6.

Correlated trends:
• Lt ,d = Lt−1,d + Rt−1,d and Rt ,d = Rt−1,d + ηt ,d
• ηt ∼ N(0[6],Σ)

• ηt = (ηt,1, ηt,2, . . . , ηt,6)
′

• Σ: 6 × 6 full covariance matrix



LFS: Multivariate state space model for 6 domains

Correlations trend unemployed labour force
M 15-24 W 15-24 M 25-44 W 25-44 M 45-64 W 45-64

M 15-24 1
W 15-24 0.76 1
M 25-44 0.93 0.94 1
W 25-44 0.65 0.99 0.88 1
M 45-64 0.47 0.93 0.75 0.98 1
W 45-64 0.10 0.70 0.41 0.80 0.81 1



LFS: Multivariate state space model with
claimant counts

Black: input series LFS
Red: claimant counts



LFS: Multivariate state space model with
claimant counts
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LFS: Comparison multivariate state space models



LFS: Dynamic factor models

Further extension model with claimant counts:
• Google trends search terms related to LFS figures



LFS: Dynamic factor models

• Google trends:
• High frequency
• Potentially improve accuracy and timeliness

• Issue:
• Large amount of potential series: 80 series in this application
• High dimensionality problems

• Solution:
• Dynamic factor model fitted with a two-step estimator
• Giannone et al. (2008), Doz et al. (2011)



Dynamic factor model: Estimation step 1

• Estimate common factors in Google trends (GT)

xgt
t = Λft + ϵt Var(ϵt) = Ψ

ft = ft−1 + µt

• xgt
t : n vector with auxiliary series

• ft : r vector with common factors r << n assumed to be I(1)
• Λ: n × r matrix with factor loadings
• ϵt : n vector with idiosyncratic components of xgt

t
• for identifiability reasons: E(µtµ

′

t ) = I[r ]
• ft , Λ, Ψ are estimated with Principal Component Analysis applied to the

weekly data of GT



Dynamic factor model: Estimation step 2
• State space model entire data set ŷ t
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• Λ̂, Ψ̂ obtained in step 1 are kept fixed
• ft are re-estimated with the Kalman filter



Dynamic factor models: results

Models:
• Production model: no auxiliary series
• Production model + claimant counts
• Production model + google trends
• Production model + claimant counts + google trends



Dynamic factor models: results

• Period January 2004 until December 2017 (168 months)
• Estimation accuracy: MSE filtered estimates over last 56 months
• Nowcast accuracy

• MSFE (one-step-ahead prediction error) over last 56 months
• nowcast for t : LFS and CC missing, only GT available
• Hyperparameter estimates based available information in t



Dynamic factor models: results

• Number of common factors for Google trends: 2
• Correlations trend disturbance terms:

Model ρ̂1,gt ρ̂2,gt ρ̂cc
(p-value) (p-value) (p-value)

CC 0.92 (0.002)
GT -0.785 (0.000) -0.591 (0.014)
GT+CC -0.381 (0.082) -0.456 (0.015) 0.80 (0.001)

p-value: LR test H0 : ρx = 0



Dynamic factor models: results

Results trend Ly
t relative to production model

model
CC GT CC+GT

M̂SE(Ly
t ) 0.869 0.861 0.849

M̂SFE(Ly
t ) 0.815 0.935 0.889

Results signal θy
t = Ly

t + Sy
t relative to production model

model
CC GT CC+GT

M̂SE(θ
[y ]
t ) 0.889 0.899 0.881

M̂SFE(θ
[y ]
t ) 0.827 0.942 0.899



Dynamic factor models: results

• Claimant counts
• Strong correlation with LFS
• Improves estimates but also nowcasts
• Relative simple model

• Google trends
• 2 common factors have strong correlation with LFS
• Improves estimates but also nowcasts
• Complex model: worthwhile the effort?
• Useful for countries without register of claimant counts



State space model with claimant counts
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ŷ t
xt

)
=

(
1[5]θ

y
t

θt ,x

)
+

(
λt
0

)
+

(
et
0

)
θy

t = Ly
t + Sy

t + Iy
t

θx
t = Lx

t + Sx
t + Ix

t

• Trend: Lz
t = Lz

t−1 + Rz
t−1 and Rz

t = Rz
t−1 + ηz

t for z = (y , x)
• Correlation between slope disturbance terms:(

ηy
t
ηx

t

)
∼ N

((
0
0

)
,

(
σ2
ηy ρσηyσηx

ρσηyσηx σ2
ηx

))
• Strong assumption: ρ is time invariant



State space model with claimant counts

Relationship between LFS and claimant counts change over time:
• Legislative changes:

• February 2015: people that find a job keep unemployment benefits for 2
additional months

• Global Financial Crisis 2008:
• Unemployment benefits for a maximum of 2 years
• Long-term unemployment as a result of a crisis is not picked up by claimant

count series



State space model with claimant counts
Relationship between LFS and claimant counts change over time:



Time varying state correlations

State space model with time varying state correlations:(
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Time varying state correlations

Two specifications for ρt :
• Deterministic specification based on cubic splines:

• State space model remain linear
• Estimation proceeds with Kalman Filter

• Stochastic specification
• State space model becomes non-linear
• Estimation proceeds with indirect inference using cubic splines as an auxiliary

model followed by a particle filter that is based on the Rao-Blackwellised
bootstrap filter (RBBF)



Time varying state correlations

Deterministic specification based on cubic splines:
• Transformation: γt = tanh(ρt)
• Cubic splines: γt = w′

tϕ
• wt : k × 1 vector with weights
• ϕ: k × 1 vector with coefficients estimated with maximum likelihood

(like the other hyperparameters)
• Advantage

• γt known/not random
• Computationally fast

• Disadvantage
• Prior selection of the knots
• Large uncertainty of the splines at the beginning and the end of the series



Time varying state correlations

Stochastic specification:
• Model: γt = γt−1 + ζt , ζt ∼ N(0, σ2

ζ )

• γt : treated as an additional state variable
• makes the state space model non-linear

• ME: yt = Zαt + ϵt , with ϵt ∼ N(0,H)
• TE: αt = Tαt−1 + ξt , with ξt ∼ N(0,Ωt)
• Kalman filter not applicable

• Proposed solution:
• Estimate σ2

ζ by indirect inference with cubic spline model as an auxiliary model
(Gourieroux et al. 1993)

• Estimate the state variables with a particle filter (Rao-Blackwellised Bootstrap
filter)

• Details: Schiavoni, Koopman, Palm, Smeekes and van den Brakel (2021)



Application to unemployed labour force
Estimated correlation

constant in blue, with splines in red, with RBBF in black



Application to unemployed labour force

Correlation estimates based on T with 95% confidence intervals

Left: cubic splines, right: RBBF



Application to unemployed labour force
Filtered trend (Ly

t )

constant in blue, with splines in red, with RBBF in black



Application to unemployed labour force
Variance filtered trend

constant in blue, with splines in red, with RBBF in black



Application to unemployed labour force
Constant correlation estimates in real time



Application to unemployed labour force
Trend in real time (until December 2012)

constant in blue, with RBBF in black, model without claimant counts



Application: Predicting poverty from aerial
images

Joint work with Joep Burger and Harm Jan Boonstra



Predicting poverty from aerial images

Refined regional estimates for poverty
• Literature to predict poverty from satellite or aerial images
• Machine learning (ML) algorithms trained using sample data
• Predictions are based on ML only
• Popular for developing countries and combat areas
• Overview: Anderson et al. 2017
• Suboptimal to base predictions on the ML algorithm only



Predicting poverty from aerial images

Netherlands
• Income and poverty statistics: registers
• Unique data set to test this approach
• Purpose this project:

• Deep learning algorithm to predict poverty
• Simulations with sample designs
• Illustrate how to use in SAE models
• Compare outcomes with the truth



Predicting poverty from aerial images
Images

• 2 spectral bands: RGB and near infrared (CIR)
• 2 spatial scales: 100m*100m and 500m*500m
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Predicting poverty from aerial images

Data
• Disposable household income all households
• Households are geocoded
• Annotate all images:

• Inhabitation
• Indicator for poverty
• Poverty rate



Predicting poverty from aerial images

Methods
• Training and prediction: convolutional neural network
• Architecture: Interception V3 (48 layers deep)
• Minimize negative log lik. of a binomial distribution
• Performance: relative loss and RMSE with respect to random guessing (latter

is based on the fraction of the label in the training set)
• Training and prediction on a 32 GB Nvidea Tesla V100 GPU



Predicting poverty from aerial images

Methods
• Difficulty: poverty is not an object at an image
• Training and prediction of the following tasks:

• inhabitation
• existence of poverty given inhabitation
• poverty rate given there is poverty



Predicting poverty from aerial images

Process flow:

Aerial images

• 1 vs 25 ha

• RGB vs CIR

Household register data

• Geolocation

• Disposable income

Model performance

Sample 

size Learning 

rate

Trn 1 Trn 2

Val 2

Val 1

Split

Convolutional 

Neural 

Network



Predicting poverty from aerial images

Results for inhabitation
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Predicting poverty from aerial images
Results for poverty given inhabitation
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Predicting poverty from aerial images
Results for poverty rate given poverty
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Predicting poverty from aerial images

Results different sample sizes for predicting inhabitation
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Predicting poverty from aerial images

Results different sample sizes for predicting poverty given inhabitation

0 10 20 30
epoch

0.00

0.25

0.50

0.75

1.00

re
la

tiv
e 

lo
ss

m=1e+02

0 10 20 30
epoch

m=1e+03

0 10 20 30
epoch

m=1e+04

0 10 20 30
epoch

m=1e+05

bm
trn
val



Predicting poverty from aerial images

First results
• Good results for predicting inhabitation
• Reasonable results for predicting poverty given inhabitation
• Predicting poverty rate is difficult
• Best results for 500m*500m images
• No difference between RGB and CIR
• Predicting inhabitation and poverty also possible with small samples
• Details: Burger et al. (2024)



Predicting poverty from aerial images

Ongoing work
• Simulations with different sample designs
• Two stage sampling:

• m out of M images
• for sampled image i : ni out of Ni households
• ŷi direct estimate poverty

• Training a CNN
• ỹi : prediction poverty for M images
• Estimation:

• Prediction based on images only
• SAE: ŷi = β′ỹi + νi + ei

• Benchmark: true values yi from tax registers



Predicting poverty from aerial images

Final remarks
• Purpose

• Evaluate this approach that is frequently found in literature
• Unique data set in the Netherlands
• Simulation with different sample designs
• Illustrate the benefits of combining sample data with ML predictions

• It is understood
• Not to predict poverty in the Netherlands
• CNN not directly applicable in other countries due to differences in social and

urban structures



Machine learning (ML) to improve the
sampling strategy

Joint work with Jonas Klingwort, Kees van Berkel and Piet Daas



ML to improve the sampling strategy

Community and innovation survey (CIS)
• Publish information about innovative companies
• Bi-annual survey
• Stratified sample among 10,000 companies
• Daas and van der Doef (2020):

• ML algorithm to predict innovative companies
• Input text scraped websites
• CIS: used to annotate web scraped texts
• ML applied to classify companies based on web texts



ML to improve the sampling strategy

Predicted probabilities that companies have innovation activities
Source: Daas and van der Doef (2020)



ML to improve the sampling strategy

How to use this information:
• Primary data source to predict number of innovative companies

• Cost-effective way of data collection
• High risk appetite to extrapolate to future periods
• Future editions: survey data are required to update the ML algorithm
• Sub optimal not to use survey data



ML to improve the sampling strategy

How to use this information (cont.):
• Auxiliary information in a model based inference approach

• SAE models to predict at refined regional level
• ŷCIS

i = β′ỹML
i + νi + ei

• ŷCIS
i sample estimate based on the CIS for region i

• ỹML
i prediction based on ML for region i

• Similar to Marchetti et al. (2015)
• Lower risk appetite since primary data are survey data
• Inference still model-based



ML to improve the sampling strategy

How to use this information (cont.):
• Auxiliary information to optimize sampling strategy of the CIS in a design

based inference approach
• Improve the sample design

• PPS using predicted probabilities that companies have innovative activities
• Stratification based on predicted innovation probabilities

• Improve weighting scheme GREG estimator
• Lowest risk appetite since survey data are the primary data with design-based

inference approach



ML to improve the sampling strategy

Example: GREG estimator with probabilities of innovative activities
• HT estimator
• GREG1: probability
• GREG2: probability + number of web sites
• GREG3: probability + language website
• GREG4: probability + number of websites + language website



ML to improve the sampling strategy

Estimates four different innovation variables



Discussion



Discussion

Use of new data sources in official statistics
• As a primary source
• Generally a higher risk level

• No control over availability, stability and consistency of a data source
• Selection bias
• Increased risk of relying on model assumptions
• Requires structured data with strong auxiliary information: opt-in panels



Discussion

Use of new data sources in official statistics
• Covariates in model-based inference procedures

• Primary data are still designed data
• Useful to produce more detailed and timely data
• Time series models versus cross-sectional models
• Example: Dutch LFS

• Multivariate state space model for official monthly LFS figures
• Extensions to use claimant counts and Google trends as auxiliary series
• Strong assumption: time invariant state correlations
• Modelling time varying state correlations

• SAE for poverty using information from aerial images
• Dynamic factor model for economic growth



Discussion

Use of new data sources in official statistics
• Auxiliary information to improve sampling strategy

• Traditional design-based approach
• Control over availability, stability and consistency of a data source



Thank you for your interest!


