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ABSTRACT 

 To our knowledge, attempts to directly model longitudinal change in macronutrients and 

energy intake of a population, with taking into account that individual change may not occur in the 

same fashion (i.e., develops at same growth rate), have never been practiced. In this respect, 

ambition of this paper is to propose the latent approach, by means of Latent Growth Curve 

Modeling (LGCM; Bollen & Curran, 2006) to the analysis of change in the nutritional status, 

namely fats, proteins and carbohydrates, and energy intake) of a target population in order to 

understand the time trend of the nutritional patterns at individual level. To this end, LGCM is able 

to outline the functional form of the individual growth trajectories and estimates the degree of 

individual variation and covariation around these just specified functions along with individualizing 

points of convergence and curvature. The subsequent application of multivariate LGCM allowed to 

check for gender invariance within people belonging to the same family and for multiple 

developmental trajectories while passing from urban to rural zone. The longitudinal data used as 

real example were taken from China Health and Nutrition Survey (CHNS) Household Food 

Inventory. From this survey a sample of 1229 households from urban and rural area, comprising of 

two adult family members of different gender, with having complete records of 3-day 

macronutrients and energy intake in 2000, 2004, 2006, 2009, 2011 was randomly selected. 

Interestingly, linear trajectories were found for fats and proteins at family level with convergence in 

2009, and in 2006 and in 2012 respectively at rural and urban family level, whereas non-linearity 

was found for carbohydrates and energy intake. These nonlinearities were accommodated with 

polynomial functions and piecewise linear components with curvatures and knots for energy intake 

focalized respectively in 2006 and 2007. On the whole, the trajectories highlighted an equilibrium in 

the growth process with decreasing in the rate of change while passing from an initial 

heterogeneous amount of macronutrients and energy intake in 2000 to a more homogeneous status 

over the subsequent time period up to 2011. These results seemed in line with Chinese agricultural 
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reforms started in 2004-05, and 2008-09, from which Chinese families took benefit from by 

following a more balanced diet as well. 

Keywords: Macronutrients, Latent Growth Curve Models, Structural Equation Models. 

1. The nature of dynamics patterns

 We define dynamics patterns as connected routes of repeated measures of variables at 

individual level. Repeated measures can be associated to time, as they usually do with typical 

longitudinal studies, or to different situations of repeated measurement such as the strength of an 

external stimulus (e.g., drug dosage). The main rationale of dynamics patterns is to have repeated 

measures “assessed or administered in a within-subject fashion and ordered in some logical way” 

(Preacher, 2010; p. 187). By simultaneously observing how these repeated measures vary across 

waves of measurement means studying how each individual behavior changes in terms of those 

measures. Hence, the study of dynamics patterns concerns the study of change in individual 

behaviors and how they deviate from a group-level change in common behaviors. This study is 

known as growth curve modeling (Muthén, 2001; p. 291). Despite of the fact that individuals may 

differ or not, in such repeated behaviors their connected routes outline trajectories. All these 

trajectories can follow a common average path or depart from it (Bollen & Curran, 2006). Further, 

they may have a theory of change behind, or take form of unspecified curves, but what is pretty sure 

is that they are ruled by a lawful, often unknown, developmental path that encompasses continuous 

and/or discontinuous phases. This effort to find out types of laws that rule over individuals, and 

group of individuals, change has already been faced over a century of research (see Bollen & 

Curran, 2006; p. 9-14), but it is still an ongoing challenge across scientific disciplines. 

Notwithstanding, what is of actual experiment is to understand this individual growth changing 

behavior as much as it does in the real world where individuals do not develop at the same rate and 

everything covaries. In this manner, a concrete starting point has been placed by the latent approach 

to the analysis of change. In this respect, the spirit of this paper is pioneering as it wants to propose 

such approach to an unusual area of research like nutrition and therefore making known 

potentialities and cutting edges.  

2. Latent growth curve modeling rationale and outcomes

Unfortunately, when a researcher is dealing with a large number of repeated observations and 

wants to understand their patterns it is impossible to capture an immediate functional form, or 

known rule, that summarizes all these individual dynamics at first glance. A researcher can 

hypothesize that the patterns may follow some growth theory in advance and therefore confirming, 

or disconfirming, this theory with imposing, more or less realistic, constraints on these paths. But, 

what happens when no theory is available at the outset? An opening simple answer rises up: to 

leave the repeated measures free to covary and thus observing how they interplay each other over 

the waves of measurement. By doing so, a researcher is indirectly postulating that a possible 

unobserved common pattern may rule over this longitudinal covariation among the repeated 

measures. This latter is the main rationale of the latent approach to the analysis of individual growth 

change: the unobserved common pattern is a latent trajectory outlined by latent common factors that 

gives rise to the way how the repeated measures covary across the waves of measurement.  By 

gambling on this hypothesis, a researcher combines the study of growth curve modeling with 
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structural equation modeling (SEM) that typically estimates relations between latent factors and 

observed variables. This fusion takes the name of latent growth curve modeling (LGCM; Bollen & 

Curran, 2006) whereas the aforementioned latent common factors take the name of latent growth 

factors. 

The so-called unconditional LGCM is condensed in the following simple equation: 

iyit = i + λt  + it (2.1)

i

i

i i

i i

i i

where yit are the repeated measures of a variable y for each individual i across points in time t (t=0, 

n),    represents the i individual value of y at the initial time point (i.e., t=0) from which the change 

in y starts and needs to be compared with the following values yit+1. Hence,    is the well-known 

regression intercept for each individual value of yi and thus it has a mean and a deviation from mean 

(i.e., variance):  and 2
. Now, in the most common case that a change is occurring from the

initial value   , and therefore yit  yit+n,  a dynamic trajectory starts to take form with a slope   that 

defines the inclination (i.e., difference from the initial values) of the trajectory for each individual i 

and thus it also has a mean and a variance:  and 2
.

Granted that,  , and   are now a sort of covariates that want to commonly explain the 

dynamics patterns in the repeated measures yit with controlling for the errors it (with the usual 

assumptions of mean equal to zero for all i and t, uncorrelated with the covariates, non- 

autocorrelated and homoscedastic) from which these covariates depart to outline the dynamic 

change. This is the point at which SEM structure with latent factors takes action and the equation 

(2.1) gains, in turn, all the benefits of the SEM analytic technique. The covariates  , and   become 

common latent growth factors that vary and covary by means of the estimated growth parameters 

, 2
, , 

2
 and , respectively; λt are the factor loadings that represent the degree to which

the latent growth factors are able to explain the dynamic change in the repeated measures or, in 

other words, the way how the progress of time (situation) influenced the change in the repeated 

measures. As a consequence, the simultaneity estimation of these SEM-based latent growth 

parameters permits to release the assessment of the compound symmetry and thus taking into 

account that individuals develop at different growth rate alike in the real world. Hence, LGCMs are 

more flexible than traditional ANOVA-like methods for longitudinal studies. 

 It is intuitive from the equation (2.1) that a researcher can outline many different functional 

forms starting from the basic linear function to high-order of polynomials until more complex 

known functions and their re-parametrizations (please refer to Preacher and Hancock, 2015) as well 

as hypothesizing high-order growth factors for modelling multiple measures and groups of 

respondents (e.g., multivariate and multilevel designs; Duncan, Duncan & Stryker, 2006). For 

example, should the function (2.1) not be linear, but depicting a known curvature it is still possible 

to select a new metric λt into the equation (2.1) that, in turn, advances via depending on the selected 

non-linear function. For example, for quadratic (2.2) and cubic (2.3) polynomials the function (2.1) 

respectively becomes:   

(2.2) yit = i + λt1i + λ
2

t2i + it

yit = i + λt1i + λ
2

t2i + λ
3

t3i + it (2.3) 

Where 2i and 3i  are further new growth parameters that take into account the new 

curvatures. Running these models by means of SEM and checking for the well-known diagnostics it 

is possible to confirm or disconfirm the hypothesized functions until reaching the one that fits 

better. In addition, SEM framework allows to explore for non-linearity of the repeated measures by 

leaving λt to be freely estimated for t = 2, .., n, with just setting  λo = 0 and λ1 = 1 or λo = 0 and the 

last λn = 1 for the latent factor metric. So that, the other un-standardized factor loadings are able to 

empirically estimate the type of non-linearity over the underling repeated measures. Furthermore, 
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i

another very useful strategy for accommodating non-linearity in the trajectories is the so-called 

piecewise linear LGCM (Bollen & Curran, 2006). It simply consists in breaking the non-linear 

trajectories in the so-called breaking points, or transition (Bollen & Curran, 2006) or even 

discontinuity points (Hancock, Harring & Lawrence, 2013) and therefore connecting these points 

with linear functions till reaching a spline trajectory and thus looking into how it fits. Essentially, 

once λt are formalized, the functional form of the repeated measures is nearly outlined and the latent 

growth parameters , 2
, j, 

2
j and j (with j=1, n) can be estimated. The metric for i  is

always 1 because the intercept is the factor that simply blocks the initial amount of the repeated 

variable when there is no growth over time,  t = 0.  

The literature stipulates further useful statistics that can be inferred from the latent growth 

parameters. The first one is the so-called relative gradient for each slope (RG)= / (Hancock & 

Choi, 2006). The information it provides is about how many trajectories have a positive or negative 

inclinations. Furthermore, if a researcher assumes that the growth rates are distributed as N(, 
2
)

the subsequent non-central standard normal distribution for RG can be re-written as N(RG,1) and it 

is possible to compute the proportion of positive and negative slopes with using the well-known 

non-central normal density curve table. A second statistical index is the so-called aperture 

(Hancock & Choi, 2006). Basically, the aperture is the point in time where the individual 

trajectories converge. It is noteworthy noticing that with a linear trajectory only just one aperture 

point is possible, with a piecewise linear-linear trajectory as many aperture points as the spline 

lines, but with nonlinear functions there might be multiple apertures. To our knowledge the math to 

locate multiple apertures in nonlinear scenarios and the related software commands have to be still 

worked out by academics. So then, we just report the three simple equations to determine the 

aperture shift coefficient a
ap

, and its related moments, for a general linear time/situation interval

metric of {a, b} (Hancock & Choi, 2006):  

(2.4) a
ap

=a + ( / 
2
)

a
ap 

=  + (a−a
ap

)   (2.5) 

2
a
ap

= 2
 − [()

2
 / 2

] (2.6) 

The aperture point and the moments permit, in turn, the estimation of the relative aperture 

location (RAL) and relative aperture variance (RAV) (Hancock & Choi, 2006): 

(2.7) RAL = − a
ap

 / (λp – λ1)

RAV = 2
a

ap
 / (2

 + b22
) (2.8) 

RAL with values between 0 and 1 supplies information on the proportion of time span in 

which the aperture occurs (e.g., with RAL=0.30 the aperture occurs after 30% of the total time 

interval has passed) whereas with values of 0, below 0, 1 and over 1 it reveals that the aperture 

respectively occurs at the initial time point, below the investigated time span, on the final time 

point, over the investigated time span. RAV with values close to 0 indicates that the trajectories 

have a strong degree of convergence around the point a
ap

, with exactly 0 there is perfect 
convergence. On the other hand, with RAV values close to 1 the aperture is wide and the 

convergence is weak since the trajectories tend to be parallel and distant each other; with exactly 

1there is no convergence at all. 
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3. Real data example
In order to illustrate the strength of LGCM we used longitudinal real data from China Health 

and Nutrition Survey (CHNS) Household Food Inventory. From this survey a sample of 1229 

households from urban and rural area, comprising of two adult family members of different gender, 

with having complete records of 3-day average macronutrients (fats, proteins and carbohydrates in 

grams) and 3-day average energy intake (in kcal) in 2000, 2004, 2006, 2009, 2011 was randomly 

selected. To simulate the growth change of the macronutrients and energy intake trajectories and to 

reflect the effective passage in time from 2000 (the reference point in time from which the change 

starts) to 2011the change in score per unit of time metric λt was fixed to the following unequal 

spaced units λ00=0, λ04=4, λ06=6, λ09=9, λ11=11 so as to respect the yearly intervals {0,1}. The 

increasing sequence of numbers for λt hypothesizes how much an initial linear growth increases. For 

instance, the number 4 indicates that, on average, the change from 2000 to 2004 is 4 times as great 

as the change from 2000 to 2001 and so forth. 

The analyses were initially conducted at member level in order to explore if there were similar 

functional forms for gender, separately. Successively, the final LGCMs were developed at family 

level both for the whole sample and territorial sites (i.e., urban vs rural) by applying multivariate 

representations of the growth process. These high-order levels of latent growth factors models 

accommodates for intra-class correlation occurring at members belonging to the same family (i.e., 

unique errors covariances free to covary) and for invariance of members trajectories (i.e., factor 

loadings between the first and the second order fixed to be equal over time of each family member; 

see Duncan, Duncan & Stryker, 2006; p. 69-74).  In order to preserve space, we report results at 

family levels only since they are also the most relevant. Robust maximum likelihood (RML) 

estimation within LISREL 8.8 (Jöreskog & Sörbom, 2007) for fats and proteins individual 

trajectories provided good data-model fit (according to the main and well-known SEM fit indices 

and cut-off criteria: Chi-square not significant, Root Mean Squared Error of Approximation 

(RMSEA) under 0.05, Comparative Fit Index (CFI) over 0.95, Standardized Root Mean Squared 

Residual (SRMR) under 0.09) for common routes of linear growths in both gender and thus at 

family level (whole sample): Chi-square (df)=661.69(178), p<0.001, RMSEA=0.047 with 90 % 

Confidence Interval (CI) for RMSEA = (0.043 ; 0.051), CFI=0.94, SRMR=0.056. Latent growth 

factors parameter estimates and statistics are reported in table 1. Intercept and slope variances were 

statistically significantly different from zero with yielding to a significant individual difference of 

fats and proteins trajectories both at initial level and in the rate of change, although slope variances 

were smaller than intercept variances. These results would mean that fats and proteins patterns 

became even more similar in their rate of change. Interestingly, the covariance between the growth 

factors is significant and negative, and then the correlation is of -0.55. It means that the families with 

low fats and proteins score started to grow more, while the ones with high score to grow less. These 

latter were the most part since the RG provided 58% of family trajectories with negative slopes. 

Besides, the mean value over the time span was significant and negative as well. The statistics RAL 

and RAV showed a weak tight of convergence after 85.8% of the total time has passed, so then 

roughly 9.4  years after the initial 2000, in the first months of 2009.  

A very interesting result was found when the sample was split in urban (i.e., n=362) and rural 

site (n=867). Although the dynamics patterns for fats and proteins were linear for both urban and 

rural families (i.e., for urban: Chi-square (df)=309.64(178), p>0.001(p=0.162), RMSEA=0.045, with 

90 % CI for RMSEA = (0.037 ; 0.054), CFI=0.96, SRMR=0.066; for rural: Chi-square 

(df)=615.42(178), p<0.001, RMSEA=0.053, with 90 % CI for RMSEA = (0.049 ; 0.058), CFI=0.93, 

SRMR=0.064). For the former the trajectories were most negatively inclined (see table 1) with 

showing a decreasing across years with a convergence, although not very strong, above the time 

period and exactly slightly more than one year beyond 2011, in 2012. On the contrary, fats and 

proteins trajectories for rural families were pretty flat with a convergence, although pretty weak as 

well, after 55.6%  of the time span has passed and therefore after 6.11 years, in 2006. 
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Completely different situation was found for carbohydrates and energy intake dynamics 

patterns. In order to preserving space and due to similar results we present here just the results from 

energy intake (in kcalories). Since the observed variances for kcalories were extreme, the measures 

have been rescaled (i.e., multiplied by 0.1) in order to facilitate the model convergence (Hancock & 

Mueller, 2010) without affecting differences among the scores (Kline, 2011). The fit indices for 

linear trajectories of energy intake by gender suggested to explore potential forms of new curvatures 

that depart from linearity (i.e., for males: Chi-square (df)=94.86(10), p<0.001, RMSEA=0.083, with 

90% CI for RMSEA=(0.068; 0.099), CFI=0.86, SRMR=0.051; for females: Chi-square 

(df)=68.12(10), p<0.001, RMSEA=0.069, with 90% CI for RMSEA=(0.068; 0.099), CFI=0.91, 

SRMR=0.038). By doing so, LGCMs for energy intake individual trajectories at family level were 

run with fixing the first λ00 and the last λ11 loadings respectively to 0 and 1 while leaving the others 

to be freely estimated (Bollen & Curran, 2006). This strategy permits to discover the proportion of 

cumulative change occurred from the initial time point to the specific time period in reference to the 

total change of the entire period. The trend was quite similar for both family members. By 

explaining it for males (M) the values of λ04=0.19, λ06=0.09, and λ09=0.28 respectively reflected that 

19%, 9%, 28% of the total change in energy intake occurred between 2000 and 2004, 2000 and 

2006, 2000 and 2009. By computing the following differences (0.19-0.09=0.10) and (0.28-

0.09=0.14) it yielded to 10% of the total change between 2004 and 2006 whereas 14% between 

2006 and 2009. Similar results were found for females (i.e., λ04=0.19, λ06=0.09, and λ09=0.26). As a 

consequence, it is straightforward noticing that most of change in the energy intake occurred after 

2006 and these two trends seem to reflect an up and down growth process that departs from 

linearity to outline a cubic polynomial function with a potential curvature after 2006. 

Table 1: Estimates and statistics for fats and proteins common trajectories at family levels 

Whole sample 

Parameter 
2
 

2
  ραβ  

Estimate 149.55 1.27 -7.63 -0.55 77.99 -0.22

t-values 8.71 4.87 -4.32 -4.32 102.24 -3.44

Statistic RG N(RG;1) + N(RG;1) - ap RAL RAV 

-0.195 42% 58% -6.01 0.858 0.988 

Urban site 

Parameter 
2
 

2
  ραβ  

Estimate 327.63 3.36 -25.68 -0.77 88.37 -0.75

t-values 6.72 4.77 -5.08 -5.08 54.94 -5.02

Statistic RG N(RG;1) + N(RG;1) - ap RAL RAV 

-0.409 34% 66% -7.64 1.09 0.975 

Rural site 

Parameter 
2
 

2
  ραβ  

Estimate 106.95 0.91 -3.54 -0.36 73.88 -0.01

t-values 6.68 3.58 -2.15 -2.15 88.34 -0.13

Statistic RG N(RG;1) + N(RG;1) - ap RAL RAV 

-0.010 50% 50% -3.89 0.556 0.990 

Note: t-values <|2| are not significant. 
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As a matter of fact, by applying equation (2.3) to the energy intake repeated measures we 

obtained excellent fit indices: Chi-square (df)=37.38(29), p>0.001(p=0.137), RMSEA=0.015, with 

90% CI for RMSEA=(0.00; 0.028), CFI=1.00, SRMR=0.018. So then, the energy intake dynamics 

are definitely cubic. Nevertheless, in order to better detangle these nonlinear patterns, a piecewise 

LGCM strategy was applied here with splitting the curve into two linear trajectories and fixing the 

breaking point at year 2006 from which a second line departs. By doing so, the loadings λ06, λ09, and 

λ11 of the second linear slope β2i were respectively fixed to 0, 3 and 5 according to the initial metric 

and thus simulating a new linear form departing from 2006. The piecewise linear model fitted well: 

Chi-square (df)=100.76(35), p<0.001, RMSEA=0.039, with 90% CI for RMSEA=(0.030; 0.048), 

CFI=0.97, SRMR=0.029. In the tables 2 and 3 are depicted the cubic and the piecewise linear 

LGCMs growth parameters for energy intake directly at family level (results about urban and rural 

area were not shown for preserving space. They can be requested, but they showed similar negative 

trends although more marked in the urban site families). Three slope factors (table 2) described the 

curvilinear function with showing significant variances in decreasing sequence indicating that the 

growth change in energy intake became more and more similar across individuals while passing 

time. This was a decreasing change since two factor means out of three were negative along with 

higher percentages of negative slopes as well. The covariances (correlations) indicated this 

decreasing growth process that already started from the linear part of the polynomial function (i.e., 

parameters of slope β), with a little increasing when passing to the quadratic part until decreasing 

again with a steeper acceleration down in the cubic part. These results were confirmed more clearly 

by piecewise linear model (table 3) with a decreasing of energy intake especially after 2006. 

Furthermore, a strong convergence point (i.e., RAVββ2=0.04) occurred when roughly 21.5% of time 

passed after 2006. It means after 1.07 years after 2006, in 2007. 

Table 2: Estimates and statistics for energy intake trajectories at family level

Family whole sample cubic trajectories 

Parameter 
2
 

2
 

2
2 

2
3   2 3 RGβ RGβ2 RGβ3 

Estimate 4214.72 1195.70 45.49 0.16 246.49 -6.15 1.61 -0.12
+
43% 

+
59% 

+
39% 

t-values 22.50 8.33 5.21 4.97 143.31 -4.24 4.58 -5.47
-
57% 

-
41% 

-
61% 

Parameter  (ραβ) 2 (ραβ2) 3 (ραβ3) β2 (ρββ2) β3 (ρββ3) β23 (ρβ2β3)

Estimate -1670.68(-0.74) 232.95(0.53) -10.24(-0.39) -218.01(-0.93) 11.66(0.84) -2.64(-0.98)

t-values -15.84 10.48 -7.80 -6.30 5.73 -5.02

Table 3: Estimates and statistics for energy intake trajectories at family level

Family whole sample piecewise linear-linear trajectories 

Parameter 
2
 

2
 

2
2



(ραβ) 

2 

(ραβ2) 

β2 

(ρββ2) 
  2

Estimate 635.75 24.37 103.53 
-29.37

(-0.24)

35.30 

(0.14) 

-45.12

(-0.90)
246.04 -0.64 -3.35

t-values 2.45 2.16 3.57 -0.57 0.49 -2.74 145.78 -1.88 -5.30

Statistic RGβ RGβ2 ap
αβ

ap
ββ2

RAL
αβ

RAV
αβ

RAL
ββ2

 RAV
ββ2

-0.130

(
+
45%; 

-
55%)

-0.329

(
+
47%; 

-
63%)

-1.20 -0.43 0.171    0.96   0.215 0.04 
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4. Wrap-up and conclusion

At present, we do believe that by attempting to detangle the complexity of nutritional growth 

processes in the human over a time span, or different situations of intervention, requires of 

inspecting variations at individual level. In this respect, what is needed is of a statistical technique 

that is able to estimate variations and shared-variations among individual trajectories, 

simultaneously. Advances in this direction have been made by latent growth curve models. Latent 

growth parameters of such curves permit to catch a lot of detailed information that deserve to be 

further investigated. The real data example concerning fats, proteins, carbohydrates and energy 

intake individual trajectories of Chinese people collected in unequal blocks of years from 2000 to 

2011 showed different growth functions. Nevertheless, all the individual trajectories tended to be 

negatively inclined with also reducing the high discrepancies occurred before Chinese agricultural 

reforms took place in 2004-05 and 2008-09. The former introduced direct subsidies to farmers, 

agricultural tax reduction, support to seed and machinery purchases whereas the latter introduced 

investments to housing, to rural constructions and infrastructure so as to enhance domestic demand 

and people’s livelihood . These reforms presumably encouraged people to follow a more balanced 

diet since the general reducing of macronutrients and energy intake discrepancies yielded to many 

convergence points (in 2006, 2007, 2009, 2012) and interesting curvatures in 2006 occurred both 

after and throughout the corresponding aforementioned time intervals of such reforms. 
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