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1. Introduction

The Land Monitoring Service of the EU (European Union) Copernicus programme 

(land.copernicus.eu) includes High Resolution Layers (HRL) that provide information on specific land 

cover characteristics produced from 20 m resolution satellite imagery. The main 5 themes covered are: 

imperviousness, (sealed soil), tree cover density and forest type, permanent grasslands, wetlands and 

water bodies. Pixels of 20 by 20 m are aggregated into 100 by 100 m grid cells for final products. The 

imperviousness layer was the first one to be produced in 2006-2008. New imperviousness layers have 

been produced for 2009 and 2012. They cover the 33 Member States of the European Environment 

Agency (EEA) and 6 associated West-Balkan countries representing a total of 6 million km². Some 

countries are missing at the time of drafting this paper (Spain, Greece, Cyprus and the French overseas 

regions are missing). The imperviousness HRL captures the spatial distribution of artificially sealed areas, 

with a degree 1-100% is produced using an automatic algorithm based on a calibrated normalised 
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difference vegetation index (NDVI). The methodology was described by Gangkofner et al. (2010) for the 

2009 update and by Lefebvre et al (2013) for the 2012 update. Similar methods have been also applied in 

the USA for the development of the National Land Cover database (Xian et al. 2011). A density threshold 

of 30% was used to derive a 0-1 mask. In Europe, it is currently estimated that artificial areas represent 

less than 5% of the total EEA39 (Büttner et al. 2012) and impervious surfaces only represent a subset of 

this area. Because of this relatively low share, commission and omission errors may be high even when 

the overall accuracy of the layer is apparently good.  

2. Sampling Scheme.

Similar products are provided by the National Land Cover Database of the Conterminous United 

States (Wickham et al. 2013) and a recent study from Hansen et al. (2014). Wickham et al. (2013) applied 

a stratified random sampling approach using the land cover classes as strata. For the European 

Imperviousness layer, a similar approach was applied but based on a stratified systematic sampling 

approach using the LUCAS sampling frame (Gallego and Delincé 2010) targeting also imperviousness 

changes for which relatively low accuracies are reported, in part because the area increase occupies a very 

small proportion of the total land area. Using the LUCAS based approach improves traceability and 

sample sharing for assessing several products. Estimation domains are countries or groups of countries 

with an area greater than 90,000km². In each domain 6 strata were determined as follows: 

 Commission 2006-2009-2012: Imperviousness Degree 30-100% in 2006-2009-2012. This

category is divided into two strata defined by intersection with the CORINE Land Cover (CLC)

artificial and non-artificial classes.

 Omission High Probability 2006-2009-2012: Imperviousness Degree 0-29% & CLC impervious

classes 2006-2009-2012

 Omission Low Probability 2006-2009-2012: Rest of the area 2006-2009-2012

 Commission Change 2006-2009: all changes

 Commission Change 2009-2012 : all changes

A sample of 20,164 PSUs (primary sampling units) was selected. PSU were squares of 100 m × 100 m. It 

was decided to select a minimum of 50 PSU per stratum in each of the 23 zones. In each PSU a grid of 

5 x 5 Secondary Sample units (SSUs) with a 20 m step is selected and photo-interpreted on orthophotos 

(figure 1). If a point falls on the boundary of an impervious element, a shifting rule is applied so that 

roughly half of the points in this situation are classified as impervious. 

Figure 1: Example of PSU with a grid of points. 
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3. Thematic accuracy.

The usual validation scheme for land cover maps or satellite image classification is based on 

confusion matrices that assume sharp categories (Congalton and Green, 1999): each point is allocated to 

one single category as well as each validation unit. When both validation data and product under validation 

are continuous, a confusion matrix approach can be used by applying a threshold to produce a mask. For 

the Copernicus imperviousness layer, a threshold of 30% had been foreseen. However better alternatives 

can be found in the modelling literature to deal with quantitative products (Wilmott, 1981, Legates and 

Mc Cabe, 1999, Duveiller et al., 2016). Agreement indicators for quantitative parameters have been also 

widely used in the remote sensing literature (Ji and Gallo, 2006, Silván Cárdenas and Wang, 2008, Meroni 

et al., 2013).  

Among the indicators that have been proposed, we have chosen to quantify the disagreement at the PSU 

level as the difference between the map value mi and the reference ri. If the map value is larger than the 

reference value for a PSU, it will contribute to the commission error, but it will contribute to the omission 

error if the oposite happens (Figure 2).  

Figure 1: Commission and omission errors with continuous data between 0 and 1. 

The commission 𝜑 and omission 𝜓 errors would be computed as: 

𝜓 =  
∑𝑖 𝑤𝑖 𝑝𝑜𝑠(𝑟𝑖−𝑚𝑖)

∑𝑖 𝑤𝑖 𝑟𝑖
(1) 𝜑 =  

∑𝑖 𝑤𝑖 𝑝𝑜𝑠(𝑚𝑖−𝑟𝑖)

∑𝑖 𝑤𝑖 𝑚𝑖

and the overall accuracy   𝜃 =  
∑𝑖 𝑤𝑖 (𝑚𝑖𝑛(𝑟𝑖,𝑚𝑖)+𝑚𝑖𝑛(1−𝑟𝑖,1−𝑚𝑖)) 

∑𝑖 𝑤𝑖
(2) 

where wi  is the extrapolation weight (inverse of the sampling probability) and  𝑝𝑜𝑠(𝑥) is the positive part. 

With these criteria we have a commission error of 21.9% and an omission error of 40.2%, even if the 

overall accuracy is 98.4%. Part of the disagreement between reference comes from the incomplete 

information on the cell for our reference data: if we assume that the map and the reference data are in 

perfect agreement, there would be still a difference between mi and ri because the spatial support is 

different: mi refers to the whole PSU while ri refers to a sample of points inside. Our ri has a probabilistic 

distribution that we can approximate by a binomial B(25, pi) with a somewhat lower variance due to the 

systematic sampling. This has an impact on the expected commission and omission errors. One possible 

way to take this into account is delineating a confidence band under the null hypothesis  mi=pi (figure 3). 

For any pair (ri,mi) inside this band we are not reasonably sure that 𝑚𝑖 ≠ 𝑝𝑖. A possible way to deal with

this source of uncertainty is quantifying the commission and omission errors:   

𝜑 =  
∑𝑖 𝑤𝑖 𝑝𝑜𝑠(𝑚𝑖−𝑟0𝑖)

∑𝑖 𝑤𝑖 𝑚𝑖
𝜓 =  

∑𝑖 𝑤𝑖 𝑝𝑜𝑠(𝑟1𝑖−𝑚𝑖)

∑𝑖 𝑤𝑖 𝑟𝑖
(3) 

where r0i and r1i  are the closest points in the confidence band. With these criteria the commission error 

is around 10% and the omission error around 20%.  
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Figure 3: 95% confidence band (ri,mi) under the hypothesis mi= pi. 

4. Area estimation.

A naïf approach for area estimation using classified satellite images is pixel counting or 

equivalent for classifications that focus on the proportion of a parameter, as it happens in our case: 

�̃� = ∑𝑖 𝑚𝑖 (4) 

The result for this estimator for the zones covered at the moment (excluding Spain, Greece, Cyprus 

and French overseas territories) is 2.06%, approximately 107,000 km2. It is well known that this area 

estimation has a bias that can be very large (Bauer et al, 1978, Houston and Hall, 1984, Czaplewski, 

1992) and roughly corresponds to the difference between the commission and the omission errors 

(Carfagna and Gallego, 2005). A simple reasonable idea may be correcting the bias with the 

difference between the commission and omission errors computed on a confusion matrix. 

Unfortunately it is still frequent that remote sensing practitioners compute confusion matrices on the 

basis of a purposive set of units instead of a proper probability sample. In the scientific literature 

purposive samples have nearly disappeared thanks to the effort of a number of authors (Congalton 

and Green, 1999, Stehman, 2009, Olofsson et al., 2014), but they are still frequent in reports of 

projects carried out for various institutions and remain unpublished. We can simulate a purposive 

sample using our sample by omitting the weights in equations (1). We would get table 1 that suggests 

us reducing the estimate by approximately the difference between 26.6% (apparent commission error) 

and 20.8% (apparent omission error) to obtain an estimate just above 100,000 km2. If we apply the 

correct weights we get the confusion matrix in table 2, in which we find that the omission error 

(40.7%) is much higher than the commission error (21.9%). The figures of the confusion matrix can 

be interpreted as area in km2 and we can obtain an area estimation by adding something that is close 

to the difference (40.7-21.9)%. A better estimate is obtained by simply adding the difference between 

the off-diagonal terms: 107,000+57,000-23,200 ~ 140,000 km2, i.e the 2.74% of the territory. 
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Table 1: Unweighted confusion matrix. 

Map 

Impervious Other Total Omission error 

Reference Impervious 4280.4 1124.1 5404.5 20.8% 

1553.3 13041.2 14594.5 Other 

Total 5833.7 14165.3 19999 

Commission error 26.6% 

Table 2: Weighted confusion matrix. 

Map 

Impervious Other Total Omission error 

Reference Impervious 82859 56981 139840 40.7% 

23232 4961592 4984824 Other 

Total 106091 5018573 5124664 

Commission error 21.9% 

The most reasonable principle is combining the two sources of information we have: more accurate 

data on a sample and less accurate but nearly-exhaustive information from the image classification 

(i.e. the imperviousness layer we are validating). We have given above a coarse view on starting with 

remote sensing based estimates using reference data on a sample. The opposite approach is more 

frequent: a sample-based estimate modified using the co-variate provided by a classified image. At 

the first step of this approach we compute an estimate of 139.800 km2 with a coefficient of variation 

of 3%. The estimate is very close to the estimate obtained with a simple correction on commission-

omission errors computed from the weighted confusion matrix. The observation of the variances by 

stratum, not reported here, suggests that major improvements can be obtained by applying a Neyman 

allocation in the future.  

A better estimator is generally obtained combining the more accurate data on a sample (reference 

data) with less accurate exhaustive data obtained from satellite images. If both data are quantitative, 

the standard technique to do so is the regression estimator (Cochran, 1977). For the impervious areas 

in 2012 in the zones considered for the Copernicus validation, table 3 reports the naïf estimator 

obtained directly from the image-derived values, the stratified sampling estimator from the reference 

data and the stratified regression estimator. Just by chance the overall regression estimator for the 

study area nearly coincides with the extrapolation from the reference data (139,800 km2) with a 

coefficient of variation of 2.77%. This means that the relative efficiency is around 1.17, a rather 

modest value.  

Table 2: Different estimates of impervious areas in 2012 (in km2). 

Naïf from 

image 

From reference 

data 

Regression 

estimator 

CV regression 

(%) 

Turkey 6342 11032 10914 23 

France 15566 21111 21827 5 

Sweden 2156 5223 5196 15 

Germany 18346 16999 17269 4 

Finland 2010 2472 2448 15 

Norway 895 1395 1457 11 

Poland 7831 8354 8239 9 
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Italy 11449 19894 19776 7 

UK-Ireland 9611 16212 15641 7 

Romania 3915 4044 3864 14 

Bulgaria 2154 1680 1692 6 

Iceland 142 81 82 3 

Hungary 2987 2830 2708 10 

Portugal 2719 2778 2798 7 

AT-CH-LI 2877 4397 5629 7 

BENELUX- DK 7237 9535 8650 7 

AB-MN-MK-SB-KO 2194 1833 1784 8 

SI-HR-BH 2116 2488 2284 13 

CZ-SK 3989 5410 5350 9 

Baltic Republics 2426 2065 2225 15 

5. Conclusions.

The direct area estimation by pixel counting in a classified image, or equivalent approaches, is

known to have a bias because commission and omission errors. We have illustrated with the example 

of the estimation of impervious areas in Europe that a simple correction of bias using a confusion 

matrix gives acceptable results if the confusion matrix has been properly weighted with the inverse 

of sampling probabilities. In exchange if these weights are ignored, the correction can be completely 

wrong and even “correct” the estimates in the wrong direction. In our example the bias of the naïf 

(direct) estimation of impervious area from classified satellite images is above 20%, even if the 

overall accuracy of the classification is above 98%. This observation has an implication on the use of 

remote sensing for area estimation that is not new, but is worth reminding:  

 the risk of bias in direct area estimation from classified images is particularly strong if the

targeted classes occupy a small proportion of the geographic area.

 Bias correction with a sample of more accurate and approximately unbiased data requires

applying the correct weights from the sampling plan.
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