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Abstract

The wheat production has been grown along the years and is one of the most important food grain source 
for humans. We analyze the productivity of two varieties of wheat planted in a regular sampling grid in an 
experimental area in south region of Brazil. We considered as explanatory variables the variety of wheat, 
spike length, average plant height and average number of tillers in 60 days. To model the mean of the wheat 
productivity we fitted a Gaussian spatial linear model, with different geostatisticals models for the 
variance-covariance matrix. To asses the influence of some observations we considered local diagnostics 
techniques based on Cook’s approach. We considered appropriate perturbation scheme in the response 
variable. Then, we have substantial information to select the final model.
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1 Introduction

Wheat (triticum spp.) originated in southwestern Asia. According to Curis (2002), wheat was one of the 
first domesticated food crops and for 8000 years has been the basic staple food of the major civilizations of 
Europe, West Asia and North Africa, whilst is grown on more land area than any other commercial crop and 
continues to be the most important food grain source for humans. World wheat production increased 
dramatically during the period 1951-1990, although the expansion of the area sown to wheat has long 
ceased to be a major source of increased wheat output (CIMMYT, 1996). In Brazil the production is 
concentrated in south region.
The wheat grain is used to make flour for bread, pasta, pastry, etc. Wheat is also a popular source of animal 
feed, particularly in years where harvests are adversely affected by rain and significant quantities of the 
grain are made unsuitable for food use (Curis, 2002). It is considered a good source of protein, minerals, B-
group vitamins and dietary fiber (Shewry, 2007). Davy et al (2002) has shown that whole wheat, rather 
than refined wheat, is a good choice for obese patients. Sidorova et al (2012) performed a geostatistical 
analysis of the spatial variability of the soil properties, the sowing parameters, and the wheat yield in a field 
experiment under precision agriculture conditions.

https://urlsand.esvalabs.com/?u=https%3A%2F%2Fdoi.org%2F10.1481%2FICASVII.2016.G40B&e=1b20e90c&h=e68b95e7&f=n&p=y
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We analyze the wheat productivity data and four explanatory variables from an agricultural area in south
Brazil. To consider the dependence between observations, the analysis were conducted using geostatistics
techniques, where the data are collected at known sites in space, from a process that has a value at every
site in a certain domain. To model the mean of the wheat productivity we fitted a Gaussian spatial
linear model (GSLM) by maximum likelihood (ML) method given in Section 2. To asses the influence of
some observations we considered local diagnostics techniques based on Cook’s approach. We considered
appropriate perturbation scheme in the response variable as shown in Section 2. The results are presents
in Section 3 and some conclusions are given in Section 4.

2 Methodology

Let Y = Y(s) = (Y1(s1), . . . , Yn(sn))
⊤ be an n×1 random vector of an isotropic and stationary stochastic

process, that belong to the family of Gaussian distributions and depend on the sites sj ∈ S ⊂ R
2, for

j = 1, . . . , n, s = (s1, . . . , sn)
⊤. This stochastic process can be written in matrix form by

Y(s) = µ(s) + ǫ(s).

where, the deterministic term µ(s) is an n×1 vector, the means of the process Y(s), ǫ(s) is an n×1 vector
of a stationary process with zero mean vector, E[ǫ(s)] = 0, and n× n covariance matrix Σ = [C(su, sv)].
The mean vector µ(s) can be written as a spatial linear model by µ(s) = X(s)β, where, β = (β1, . . . , βp)

⊤

is a p×1 vector of unknown parameters, X = X(s) = [xj1(s) . . .xjp(s)] is an n×p matrix of p explanatory
variables, for j = 1, . . . , n.
The matrix Σ is symmetric and positive defined, where the elements C(su, sv) depend on the Euclidean
distance duv = ||su−sv|| between points su and sv, sometimes C(su, sv) is also denoted by C(duv) or C(d).
The covariance matrix structure which depends on parameters φ = (φ1, . . . , φq)

⊤ as given in Equation
(1) (Uribe-Opazo et al, 2012):

Σ = φ1In + φ2R, (1)

where, φ1 ≥ 0 is the parameter known as nugget effect; φ2 ≥ 0 is known for sill ; R = R(φ3, φ4) = [(ruv)]
or R = R(φ3) = [(ruv)] is an n × n symmetric matrix, which is function of φ3 > 0, and sometimes also
function of φ4 > 0, with diagonal elements ruu = 1, (u = 1, . . . , n); ruv = φ2

−1C(su, sv) for φ2 6= 0, and
ruv = 0 for φ2 = 0, u 6= v = 1, . . . , n, where ruv depends on duv; φ3 is a function of the model range,
φ4 when exists is known as the smoothness parameter, and In is an n × n identity matrix. The Matérn
(Matern, 1960) is a covariance function particularly attractive. Table 1 presents few special cases of the
Matérn class of models.

Table 1: Special cases of the Matérn covariance function.
smooth parameter covariance function model
φ4 = 1/2 C(duv) = φ2 exp(−duv/φ3) exponential
φ4 = 1 C(duv) = φ2(duv/φ3)Kφ4

(duv/φ3) Whittle
φ4 → ∞ C(duv) = φ2 exp(−(duv/φ3)

2) Gaussian

Let θ = (β⊤,φ⊤)⊤ be the vector of unknown parameters. The log-likelihood and score functions for the
GLSM are given by

L(θ) = −
n

2
log(2π)−

1

2
log |Σ| −

1

2
(Y −Xβ)⊤Σ−1(Y −Xβ), (2)

U(β) =
∂L(θ)

∂β
= X⊤Σ−1ǫ,

U(φ) =
∂L(θ)

∂φ
= −

1

2

∂ vec⊤(Σ)

∂φ
vec(Σ−1) +

1

2

∂ vec⊤(Σ)

∂φ
vec(Σ−1ǫǫ⊤Σ−1),
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where ǫ = Y − Xβ. From the solution of the score function of β, U(β) = ∂L(θ)

∂β
= 0, the maximum

likelihood estimator β is given by β̂ = (X⊤Σ−1X)−1X⊤Σ−1y. The derivatives of first and second-order
of the scale matrix Σ, with respect to φ1, φ2 and, φ3, for some covariance functions are presented in
Uribe-Opazo et al (2012), however the score equation for φ do not lead to a closed-form solution for φ̂.
We consider the parameter φ4 as fixed. The criteria considered to choose the geostatistical model for
the covariance matrix were the cross-validation (CV), trace of the asymptotic covariance matrix of an
estimated mean (Tr) and the log-likelihood maximum value (LMV) (De Bastiani et al, 2015).
Asymptotic standard errors can be calculated by inverting either observed information matrix, I(θ)
or the expected information matrix, F(θ), where I(θ) is I(θ) = −L(θ), evaluated in θ = θ̂, with
L(θ) = ∂2L(θ)/∂θ∂θ⊤ and F(θ) is given by (see Waller & Gotway, 2004)

F(θ) = F =

(

Fββ 0

0 Fφφ

)

,

where Fββ = X⊤Σ−1X, and Fφφ =
1

2

∂ vec⊤(Σ)

∂φ
(Σ−1 ⊗Σ−1)

∂ vec(
⊤

Σ)

∂φ
.

ˆ

2.1 Local Influence

One of the purposes of diagnostic techniques is to evaluate the stability of the fitted model in a data set
and should be part of all statistical analysis, since influential observations may distort the values of the
statistic interest and lead us to misleading results.
In the local influence method, introduced by Cook (1986), a perturbation scheme is introduced into
the postulated model through a perturbation vector ω = (ω1, . . . , ωk)

⊤ (ω ∈ Ω ⊂ R
k), generating the

perturbed model, where L(θ|ω) is the corresponding log-likelihood function. The influence measure is
constructed using the basic geometric idea of curvature of the likelihood displacement given by

LD(ω) = 2[L(θ̂)− L(θ̂ω)],

where θ is the ML estimator of θ = (β⊤,φ⊤)⊤ in the postulated model, with β = (β1, . . . , βp)
⊤, φ =

(φ1, . . . , φq)
⊤ and θ̂ω is the ML estimator of θ in the perturbed model.

The plot of the elements |lmax| versus index (order of data) can reveal what type of perturbation has
more influence on LD(ω), in the neighbourhood of ω0, Cook (1986). Poon & Poon (1999) proposed the
conformal normal curvature Bl = Cl/ tr(2J), where J = ∆

⊤L−1
∆. The conformal curvature in the unit

direction with j-th entry 1 and all other entries 0 is given by Bi = 2|jii|/ tr(2J). The plot of Bi versus
index can reveal potential influential observations.
To verify if a perturbation scheme is appropriate, Zhu et al (2007) proposed to use the Fisher information
matrix of ω in the perturbed model considering the vector θ as fixed. In the following Section we give
the results for the response variable perturbation scheme.

2.1.1 Perturbation on the response variable

Let consider as perturbation scheme the model shift in mean, i.e. Y = µ(ω) + ǫ, with µ(ω) = Xβ+Aω

where A, n×n, is a matrix that does not depend on β or on ω. In this case ω0 = 0. Equivalently we can
write Yω = Xβ+ ǫ, with Yω = Y+(−1)Aω, that corresponds to a perturbation scheme of the response
vector.
The perturbed log-likelihood is given by

L(θ|ω) = −
n

2
log(2π)−

1

2
log |Σ| −

1

2
[Y − µ(ω)]⊤Σ−1[Y − µ(ω)].
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To select an adequate matrix A we can use the methodology proposed by Zhu et al (2007). In effect, the
score function for ω in the perturbed log-likelihood function (2.1.1) is given by

U(ω) =
∂L(θ|ω)

∂ω
= A⊤Σ−1[Y − µ(ω)].

Let G(ω) = Eω[U(ω)U⊤(ω)] = diag[g11(ω1), . . . ,gnn(ωn)] be the Fisher information matrix with respect
to the perturbation vector ω. A perturbation ω is appropriate if it satisfies gjj(ω0) = cIn, where c > 0.
In our case, we have gjj(ω0) = cA⊤Σ−1A, with c = 1. Notice that usually A⊤Σ−1A 6= In. However
if A = Σ1/2, then gjj(ω0) = cIn and so µ(ω) = Xβ + Σ1/2ω is a perturbation scheme appropriate, as
shown in De Bastiani et al (2015).
Considering the appropriated perturbation scheme for the response variable, where ∆β is an p×n matrix
and ∆φ is an 3× n matrix given by

∆β =
∂2L(θ|ω)

∂β∂ω⊤
= −X⊤Σ̂

−1/2
and

∆φ =
∂2L(θ|ω)

∂φ∂ω⊤
= −

∂ vec⊤(Σ)

∂φ
vec(Σ−1 ⊗Σ−1/2) vec(ǫ⊗ 1⊤).

evaluated in ω = ω0 and θ = θ̂, where ǫ̂ = (Y −Xβ̂) and 1 is an n× 1 vector of ones.

3 Results

The data were collected in 2003 in Cascavel city, south region of Brazil in an area of 22.63 hectares. The
climate, according to Kppen is Cfa, temperate mesothermal and super humid. We analyze 84 element
samples of two varieties of wheat CD101 and CD103, corresponding to 4.46 ha and 18.17 ha, respectively,
collected in a regular grid of 50× 50m. The explanatory variables are: average plant height - alt60 and
average number of tillers - perfilho60 in 60 days, spike length - cespigas and the wheat variety treated
as a dummy variable (0 or 1). So, Y represents a vector 84× 1.
Table 2 presents a descriptive analysis of the response variable wheat, wheat productivity, and the ex-
planatory variables. The wheat productivity mean is 3.372 t ha−1. The average plant height in 60 days
varies from 13.40 cm to 36.60 cm. The average number of tillers presents the greatest value for the variance
coefficient, however it still can be considered homogeneous. The mean and median of the spike length are
the same considering one decimal.

Table 2: Descriptive analysis of response and explanatory variables.
Variable Min. 1st Quartil Median Mean 3rd Quartil Max. var. coef.
wheat 1.480 3.037 3.375 3.372 3.680 5.950 0.23
alt60 13.40 20.65 22.50 23.17 24.62 36.60 0.17

perfilho60 0.40 1.200 1.700 1.661 2.100 3.40 0.38
cespigas 5.00 6.10 6.45 6.47 6.80 7.90 0.09

Figure 1(a) presents the boxplot for wheat productivity where the observations 06, 36, 41, 42, 45, 52, 54,
58 and 78 are outliers with wheat productivity values of 5.95, 1.90, 4.85, 1.88, 1.76, 5.28, 1.48, 4.83 and
1.78 t ha−1, respectively. The site of these observartions are highlighted in Figure 1(b).
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Figure 1: (a) Boxplot and (b) postplot for wheat productivity samples in a regular grid, 50×50m.

We considered the Matérn family class to model the covariance matrix function. We considered values for
φ4 from 0.3 to ∞. According to the criteria LMV, Tr and CV, the choosen covariance matrix function is
the value of φ4 → ∞, which corresponds to the Gaussian covariance function. According to the likelihood
ratio test, all the explanatory variables are significant at a level of 5%. The final choosen model (in
parenthesis is given the corresponding asymptotic standard errors) is given by

µ̂(si) = 0.122+ 0.354dummy(si)+ 0.069alt60(si)+ 0.078perfilho60(si)+ 0.188cespigas(si)
(1.257) (0.266) (0.024) (0.142) (0.146),

with spatial parameters estimates given by φ̂1 = 0.000(0.4058), φ̂2 = 0.548(0.4281) and, φ̂3 = 0.0349(0.0001).
Figure 2 presents Bi versus index and |Lmax| versus index plots where observation #16 is detected as
the most potential influent. Non of the observations pointed out where identified in the boxplot given in
Figure 1(a).
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Figure 2: Local influence plots, (a) Bi versus index and (b) |Lmax| versus index considering the
appropriate perturbation scheme.

We analized the data set without observation #16, and the chosen model for the covariance function
remain the Gaussian one. The model is given by

µ̂(si) = 0.255+ 0.307dummy(si)+ 0.070alt60(si)+ 0.083perfilho60(si)+ 0.175cespigas(si)
(1.268) (0.276) (0.024) (0.151) (0.146),
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with spatial parameters estimates given by φ̂1 = 0.000(0.2323), φ̂2 = 0.560(0.278) and, φ̂3 = 0.040(0.0002).
We can note a decrease on the estimate of the asymptotic standard error for φ̂2.
Figure 3 shows the maps with all observations and without observation #16 where we can note a slightly
difference between the maps in the north area. We have information to select the model considering all
the observations as the final model.

(a) with all observations (b) without observation #16

Figure 3: Mean wheat productivity maps considering the model (a) with all observations (b)
without observation #16.

Figure 3 shows the maps with all observations and the scenarios mentioned above. The maps constructed
by kriging with external drift present well defined zones. Note: there is a slight difference between the
maps in the northern area. A difference between the varieties CD101 and CD103 was also noted.

4 Conclusions

We proposed a measure based on the likelihood displacement to assess the stability of the likelihood
function, using the perturbation on the response variable. We applied the methodology to a data set of
wheat productivity collected in south region of Brazil. The spatial linear models enabled us to verify the
spatial dependence between the wheat productivity data in the study area, according to the two varieties
and plant attributes.
The maps constructed allowed us to estimate the wheat productivity in the study area, allowing us to
create management zones with low or high productivity with the purpose of unifying similar areas, apply
localized inputs and then maximize the the profit reducing the environment impact. It was observed the
deletion of potential influential observations according to Zhu, caused changes in the parameters estimates
that define the spatial dependence structure. Then, we have substantial information to select the final
model considering all the observations.
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