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ABSTRACT 

In agricultural survey data, relationship between study variable (e.g., crop yield) and covariates may 

not be same over the study area, this phenomenon is referred to as spatial nonstationarity. Small area 

estimates based on the widely-used area-level model proposed in Fay and Herriot (1979) assume 

that the area level direct estimates are spatially nonstationary. We propose an extension to the Fay-

Herriot model that accounts for the presence of spatial nonstationarity in the area level data. We 

refer to the predictor based on this extended model as the nonstationary empirical best linear 

https://urlsand.esvalabs.com/?u=https%3A%2F%2Fdoi.org%2F10.1481%2FICASVII.2016.F35&e=1b20e90c&h=d5cb08a1&f=n&p=y
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unbiased predictor (NSEBLUP). We also develop two different estimators for the MSE of the 

NSEBLUP. The first estimator uses approximations similar to those in Opsomer et al. (2008). The 

second estimator is based on the parametric bootstrapping approach. Results from simulation 

studies using spatially nonstationary data indicate that the NSEBLUP compares favourably with 

alternative area-level predictors that ignore this spatial nonstationarity. Both of the proposed 

methods of MSE estimation for the NSEBLUP seem to perform adequately. Developed small area 

estimation method is applied to produce district level estimates of crop yield in the State of Uttar 

Pradesh using the data on crop cutting experiments supervised under Improvement of Crop 

Statistics scheme (data collected with much reduced sample size, however, the quality of data is 

very high) and the secondary data from the Census. The results show a considerable gain in 

precision in estimates produced applying small area estimation. These estimates will provide 

invaluable information to policy-analysts and decision-makers. 

Keywords: District level estimates, small area estimation, spatial nonstationarity, geographical 

weighted regression, Census 

1. Introduction

Sample surveys are usually designed so that direct estimators for larger domains lead to 

reliable estimates, where by direct estimators here we mean estimators that use only the sample data 

from the domain of interest. However, direct estimation is typically inefficient for smaller domains 

where sample sizes can be small, and cannot be used when there are no sample units in the domain. 

Following standard practice, we refer to these smaller domains as 'small areas' or just 'areas' from 

now on. Indirect (i.e. model-based) small area estimation (SAE) techniques are now widely 

employed to produce estimates and measures of precision for these small areas. In this context, we 

differentiate between SAE methods based on unit-level models and those based on area-level 

models. In the former case these models are for the individual survey measurements and include 

area effects, while in the latter case these models are used to smooth out the variability in the 

unstable area-level direct estimates. Area-level modelling is typically used when unit-level data are 

unavailable, or, as is often the case, where model covariates (e.g. census variables) are only 

available in aggregate form. Fay and Herriot (1979) proposed an area-level SAE model (hereafter 

the FH model) that relates small area direct survey estimates to area-level covariates. The FH model 

is widely used because of its flexibility in combining different sources of information with different 

error structures, and can be described as follows. Let i index the m areas of interest and let iy  be an 

unbiased direct survey estimator of an unobservable population parameter (for example, the 

population mean)
i

 Y  of a variable of interest y for area i. Let 
iz  be a vector of q auxiliary variables 

for area i that are related to the population mean
i

 Y . These variables are typically obtained from 

administrative and census records. The FH model is then defined by the two equations 

yi −Yi = ei   and 
T

i i i
Y −θ − z λλλλ = u , (1) 

where the first equation models the prediction error of the observed survey estimate iy  of the true 

area i population mean i Y , while the second models the unobservable i Y  in terms of an overall mean 

iz , and is such that the area effects iθ  and a linear combination of the components of the vector  u

i iE(u z ) = 0 . Put (1, z )
T T

i isatisfy  x =  with p = q +1 equal to the dimension of xi
. Combining these

two equations then leads to an area level linear mixed model of form 
T

i i i i
y = x ββββ +u + e ; i = 1,..., m . (2) 

Here  is a p-vector of unknown fixed effect parameters, the area effects ui
 are 
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independently and identically distributed, with E(ui zi ) = 0  and 
2Var( i i uu z ) = σ , and the prediction 

errors
i

 e  are independently distributed, with E( ) = 0i ie z  and
2

 Var( i i eie z ) = σ . The area effects and 

the prediction errors are assumed to be independent of each other within and across areas. An 

important additional assumption that is usually made is that the prediction variances 
2

eiσ are known.

Since the parameters  and 
2

u
σ are the same for every area, they can be estimated using the

data from all m areas. This is usually accomplished by ‘stacking’ the area level direct estimates to 

produce an overall area level mixed model of the form 

(3) 

where 
 
y = y1,..., ym( )

T

, 

is the m×1  vector of direct survey estimates, )1

T

m
X = (x ,…,x  is the m × p

matrix whose i-th row is given by 
 x i

T , )1,...,
T

m
u = (u u  is the m-vector of random area effects and 

)1e = (e ,...,
T

m
e  is the m-vector of prediction errors. This model can be generalised by replacing u in 

(3) by Du, where D is diagonal matrix of dimension m× m  of area-specific covariates that can be

used to characterise heteroskedasticity in the area effects. In the interests of avoiding unnecessary

notational complexity, we ignore this generalisation here. It is assumed that the vector of area

effects u is distributed independently of the prediction errors  e, so that the covariance matrix of the
2

u m evector y  is given by Var(y) = V = σ I + ΣΣΣΣ , where Im
 is the identity matrix of order m and

{ }2

e eiΣΣΣΣ = diag σ ;1≤ i ≤ m  is the known matrix of prediction variances. The parameters
2

uσ and
e

 ΣΣΣΣ

are sometimes referred to as the variance components of (3). Under the assumption that u is 

Gaussian, 
2

u
σ can be estimated using maximum likelihood (ML) or restricted maximum likelihood

(REML). Let 
2σ̂
u  denote the resulting estimator of

2

u
σ and define the plug-in estimator

{ }σ̂ 2 2V̂
u m e u ei

= σ̂ 2I + ΣΣΣΣ = diag +σ ;i =1,…,m  of the covariance matrix V . Under (3), the empirical 

best linear unbiased estimator (EBLUE) of ββββ  and the empirical best linear unbiased predictor 

(EBLUP) of  u  are then 

ββ̂ββ ==== ((((X V̂−1 T V̂−1T X)−1X y  (4) 

and 

σ̂ 2 ˆ 1

u

− ββ̂ββû ==== V ((((y − X )))) , (5) 

respectively. Under (2), the EBLUP estimate of Yi
 is (Henderson, 1975; Fay & Herriot, 1979) 

ˆ σ̂T T

i i i u i i

−= x ββββ̂ + δδδδ V̂
1((((y − Xββββ̂)))) ==== x

Tββ̂ββ + û ,Y
2

      (6)

where  denotes the i
th

 row of Im
. Note that the corresponding EBLUP of the area effect ui

 is

T

i i i iû ˆ (y x β̂β) , where ( )
−1

2 2 2γ̂ σ̂ σ̂i u u eiσtherefore = γ − ββ  = +  defines the shrinkage effect for area i. See 

Rao (2003, chapter 5) for further details. 

In practice areas are unplanned domains, and so many of them have zero sample sizes. 

These areas are referred to as non-sampled areas. The conventional approach for estimating area 

means in this case is synthetic estimation (Rao, 2003, pp. 46), based on a suitable model fitted to 

the data from the sampled areas. Let z j ,out
 denote the vector of covariates associated with non-

sampled area j, and put = (1, z )
T T

j ,out j ,outx . Under model (2), the synthetic EBLUP predictor for the 

unknown population value Y j ,out
 of area j is then 

(7) 

where  is given by (4). We refer to this predictor as SYN in what follows. 
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Model (2) implicitly assumes that direct estimates from different areas are uncorrelated. 

However the boundaries that define an area are typically arbitrarily set, and there appears to be no 

good reason why neighbouring areas should not be correlated. This can be the case, for example, 

with agricultural, environmental, economic and epidemiological data. It is therefore often 

reasonable to assume that the effects of neighbouring areas, defined via a contiguity criterion, are 

correlated. Cressie (1991), Singh et al. (2005) and Pratesi and Salvati (2008) extend the mixed 

model (3) to allow for spatially correlated random effects using conditional autoregressive (CAR) 

and simultaneous autoregressive (SAR) specifications for u (Anselin, 1992). These models allow 

for spatial correlation in the area effects, while keeping the fixed effects parameters spatially 

invariant. Under the area level version of this spatial mixed model, Singh et al. (2005) and Pratesi 

and Salvati (2008) define the spatial empirical best linear unbiased predictor (SEBLUP) for a small 

area mean and also derive an approximately unbiased estimator of the MSE of the SEBLUP. 

An alternative approach to incorporating spatial information in SAE is to assume that the 

model for 
i i

E(Y z )  varies spatially. There are currently two approaches to specifying such a model. 

The first uses a spatially varying surface to model the mean structure of (2). For example, Giusti et 

al. (2012) extend the unit level nonparametric spatial spline approximation of Opsomer et al. (2008) 

in order to define a spatially non-linear area level model. These authors then develop the 

corresponding area-level nonparametric empirical best linear unbiased predictor (NPEBLUP) for a 

small area mean. A key feature of this approach is that it assumes that the regression parameters 

associated with the model do not vary spatially. Instead, spatial variability is accommodated by 

adding spatially varying covariates to the model specification. There are situations, however, where 

this assumption is inappropriate, a phenomenon referred to as spatial nonstationarity, see for 

example Brunsdon et al. (1996) and the references therein. The second approach therefore replaces 

the global regression model (2) by one where the regression specification varies locally. Such a 

model can be fitted using geographically weighted regression (GWR), a method that is widely used 

for data exhibiting spatial nonstationarity (Brunsdon et al., 1996, Fotheringham et al., 2002). Note 

that the model underpinning GWR is a local linear model, i.e. a linear model for the conditional 

expectation of y given z at a specified location. Under GWR the data are assumed to follow a 

location specific linear regression function, with geographically defined weights used to estimate 

the parameters of this local regression function. We use the GWR concept to extend the FH model 

(2) to spatially nonstationary area level data. We refer to this extended model as a spatially

nonstationary FH model, and investigate its suitability for SAE with area level data that exhibit

spatial nonstationarity. Note that we have not provided simulation results, bootstrap approach of

MSE estimation and many other analytical details in this paper. Readers are suggested to refer

Chandra et al. (2015) for these details. The rest of paper is organized as follows. The nonstationary

version of the area level linear mixed model and the estimator of a small area mean under this

model are described in Section 2. Section 3 presents the theoretical expression for mean squared

error of this predictor and an estimator for this mean squared error. Given that the approach is for

the spatially nonstationary situation, a bootstrap procedure to test for the presence of spatial

nonstationarity is also proposed in this Section. Section 4 presents an application of proposed

method in a real data from agriculture survey to produce the crop yield estimates at small area level.

Finally, Section 5 discusses concluding remarks.

2. A Spatially Nonstationary Area Level Model

Under (1), the parameters making up the vector  are spatially invariant, i.e. the expected 

value of Yi
 given z i

 is the same at any two points in the study area that have the same set of values 

for this covariate. However, there are situations, for example in agricultural and environmental data, 

where this relationship is not constant, i.e. where there is spatial nonstationarity in the area level 
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population parameters. In order to accommodate this situation, we now define a spatially 

nonstationary version of the FH model. To start, let the spatial location of area i correspond to the 

coordinates of an arbitrarily defined spatial location in the area, e.g. its centroid, which we denote 

by loci
. Let i

d(loc , loc
j
)  be an appropriate measure of the distance between the spatial locations of 

areas i and j, and define the spatial contiguity of these two locations to be ( )
1

)ij j= 1+ d (loci , loc ω
−

. 

Let denote the positive definite m×m  matrix of spatial contiguities defined by the loci
.

This matrix is assumed to be known. We consider a spatially nonstationary extension of the FH 

model (1) for area i of the form 

i i i
y −Y = e   and (8) 

where  and  is a spatially 

varying multivariate random process of dimension p  . Put )1

T

m
y = ( y ,…, y , ( )1

T
T T

mz = z ,…,z , 

and { }1 m
loc = loc ,…, loc , i.e. the set of locations for the m areas. Then 

( ) 1E pm×z, loc = 0ΓΓΓΓ . 

Since a general specification for the covariance structure of  is complex, we follow Datta et 

. al. (1998) and assume a separable working model for the second order spatial moments of 

This is a model of the form 

where ]kl

(9) 

C = [c  is a p × p  covariance matrix that characterises the correlations between the

components of  at an arbitrary location loc  and ⊗  denotes Kronecker product. Under (8) and (9), 

y = Xββββ + ΨΨΨΨΓΓΓΓ + u + e (10) 

where )
T

Tββββ = (θ ,λλλλ  and )T

iΨΨΨΨ = diag (x ; i = 1,…, m . Then

(11) 

where  is the  i
th

 row  of 

(12) 

. The minimum mean squared error (MMSE) predictor of Yi
 under 

(8) - (12) is the expected value of Y
i
 given y, z and loc. Under a Gaussian errors assumption, and

assuming the inverse of V exists, this is

(13) . 

The vector of MMSE predictors for the population values in Y is therefore 

(14) 

where V is defined by (11). The best linear unbiased estimator (BLUE) of  is then 

, 

and the best linear unbiased predictors (BLUPs) of 

(15) 

 and  u  are 

(16) 

. (17)
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The corresponding BLUP of the vector Y is . In particular, for small area i, the 

BLUP of Yi
 , which we refer to below as the nonstationary BLUP, or NSBLUP, is 

. (18) 

2

uIn practice the parameters σ and C are unknown and have to be estimated from the data.

Replacing these unknown parameters by their estimated values 
2

plug-in estimators by a 'hat', we obtain the empirical BLUE (EBLUE) of  as 

 and the empirical BLUP (EBLUP) of Y
i
 as 

.         (19) 

We refer to (19) as the nonstationary EBLUP, or NSEBLUP, of Yi
. 

We now consider synthetic prediction for non-sampled areas under (10). Suppose that there 

are mout
 of these non-sampled areas, indexed by j. We assume that the covariate vectors zout , j

 and 

the spatial locations locout , j
 (e.g. the centroids) of these areas are known. Let zout

 and locout
 denote 

these auxiliary data. The spatially nonstationary predictor (denoted by NSSYN) of the vector of 

population values Yout
 for the non-sampled areas is the plug-in estimator of the MMSE predictor of 

Y
out

 given y, z, loc, z
out

 and loc
out

, 

where  
 Xout

 is the mout × p  matrix of covariates for the non-sampled areas,

out /in out /in= ΩΩΩΩ, , with ΣΣ̂ΣΣ ⊗ Ĉ .

outHere  is the known m × m  matrix of spatial contiguities between the non-sampled areas and 

the sampled areas. In particular, for non-sampled area j, we have 

where  denotes the row of 

(20) 

 corresponding to this non-sampled area. We refer to the 

predictor (20) as the NSSYN predictor. In contrast to the SYN predictor (7), the NSSYN predictor 

uses the location data for the non-sampled areas to 'borrow strength' from neighbouring sampled 

areas, and so has the potential to improve conventional synthetic prediction for non-sampled areas. 

In particular, we expect that if in fact the population data exhibit spatial nonstationarity, then the 

NSSYN predictor (20) will exhibit less bias than the standard SYN predictor (7). 

2.1 Parameter estimation 
In what follows we restrict our development to the simple single parameter specification 

C =ηI  for the matrix C, where I p
 denotes the identity matrix of order p. That is, the componentsp

of the random vector  are uncorrelated at any particular location, with the parameter η ≥ 0  

reflecting the strength or 'intensity' of spatial clustering in the data, and η = 0  corresponding to the 

situation where the model is spatially homogeneous (no spatial correlation in Yi
). In this case there 

2

uare just 2 parameters (η  and σ ) that need to be estimated. This can be done by maximising a 

. Under restricted maximum likelihood under a Gaussian assumption. Put 

(10), the restricted log-likelihood function is then 

(21) 

where 1 −1 T −1 −1 T 1−
P = V

− − V X(X V X) X V  and, for s = 1,2  
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(22) 

with 

(23) 

(2) 2

2

m

u∂ϕ ∂σ

∂
= = =

V ∂V
V I . (24) 

The restricted ML estimate of  can be obtained by setting the system of equations (22) to zero 

and solving for . This can be done using a Fisher scoring algorithm as follows: 

1. Compute the distance matrix  between the centroids of the areas and define a starting value 

for . 

2. Use the current values of  to calculate  and V . 

3. Update  and P. 

4. Calculate the value  such that the components of (22) are zero. 

5. Return to step 3 and repeat the procedure until the estimates converge, i.e. when difference

 and  obtained from two successive iterations is between the estimated model parameters 

less than a very small value. 

R code (R Development Core Team, 2010) that implements this algorithm is available from the 

authors. 

3. Mean Squared Error Estimation

3.1 Analytic mean squared error estimation 
Analytic estimation of the mean squared error (MSE) of the EBLUP (6) is usually carried 

out using the estimator of Prasad and Rao (1990). A corresponding analytic approach to estimating 

the MSE of the NSEBLUP (19) is developed below. After some algebra, we can show that the 

prediction error of the NSBLUP is 

, (25) 

where ,  and 

. Put 

, 

. The MSE of the NSBLUP is then 

, (26) 

(27) 

 to 

where 

and 

. 

Similarly, we can express the prediction error of the NSEBLUP  (19) as 

, 

with . Following Opsomer et al. (2008), and again using 

denote the variance components, define S to be the matrix with rows ( s = 1,2) 
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where ,  and 
1

1

s

s

−
1 −∂

= −
V

V
−

L V  with
s

sϕ

∂
=

∂

V
 L . 

Here 

∂ϕ

and  L2 = I . Note also that the 2×2 Fisher information matrix  with 

respect to  contains elements φrs = 0.5× tr(PLrPLs ) . Replacing the unknown variance 

components in S and  by their restricted maximum likelihood estimates then leads to the 
following estimator of the Prediction MSE (PMSE) of the NSEBLUP 

� ( )

{ } ( )

( ) ( )

1 2 3

1

V̂
−1

b̂ X
T
V̂

−1

1

PMSE Ŷ (ϕϕ̂ϕϕ) (ϕϕ̂ϕϕ) + 2 (ϕϕ̂ϕϕ)

b̂

ŜT − Ŝ ˆ+2 ββββ .

i

T T T

i H pm+m H i i i

T

M M M

−

= +

= − +

−

h I H H h X

y X y − X

ΣΣ̂ΣΣ ΣΣ̂ΣΣ

ββ̂ββ ΦΦ̂ΦΦ

(28) 

The asymptotic behaviour of (28) can be developed along the same lines as set out in Opsomer et 

al. (2008). In particular, we then have 

provided that regularity conditions described in  Chandra et al. (2015) are met. The mean cross 

 of values of the NSSYN product error (MCPE) matrix defined by the vector 

predictor (20) is estimated in a similar fashion. Noting that 

where , this estimator is given by 

 (29) 

 and  is the out outm × m  matrix of distances between the non-Here 

sampled areas. 

3.2 Bootstrap procedure for mean squared error estimation 
This Section describes an alternative procedure for estimating the MSE of the NSEBLUP 

based on the parametric bootstrap procedure of Gonzalez-Manteiga et al. (2008). Note that the MSE 

estimator defined by this procedure is consistent provided the model parameter estimators are 

consistent. The steps of this parametric bootstrap procedure are as follows. 

1) Given y, maximise the restricted log-likelihood (21) using the method described in Section 2.1.

Let  and  denote the resulting estimates.

2) Given the estimates obtained in step 1, generate a vector 1

∗
 t  of length pm corresponding to a 

realisation from the  distribution. Construct the bootstrap vector . 

3) Generate a vector 2

∗
 t  whose elements are m independent realisations of a N(0,1) variable, 

independently of the generation of 1

∗t . Construct the bootstrap vector 2

∗u = σ̂ut
∗
.
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4) Calculate the bootstrap realisation  of the population 

quantities of interest.

5) *Generate a vector t3
 whose elements are m independent realisations of a N(0,1) variable,

*independently of the generation of t1

*  and t2
, and construct the vector of random prediction

errors e*
 where 

*

i ei 3i
e = σ t

*
. 

6) Construct the bootstrap vector  of direct estimates. 

7) Using these bootstrap values y* , as well as the values of X  and loc, calculate the bootstrap

estimators  and  using the method described in Section 2.1. 

8) Combining the formula (19) with these values of  and , calculate the bootstrap value iŶ
∗

of the NSEBLUP.

9) Repeat steps 2 - 8 B times. In the b-th bootstrap replication, let Ŷ
∗(b)

 be the bootstrap

, see (19), 

i

NSEBLUP in area i. The bootstrap estimator for the MSE of the actual NSEBLUP Ŷi

for area i is then

( ) { }
B 2

−1 ∗(b)

1

Ŷ ˆ Ŷboot i i i

b

MSE B Y
=

= −∑ . (30) 

3.3. A diagnostic for spatial nonstationarity 
Following Opsomer et al. (2008), we describe a bootstrap procedure to test the hypothesis 

0H η :η = 0  versus the one-sided alternative 1H η : 0 η > . This involves first calculating the value 

( )1 02ηℓ = ℓ − ℓ , where 
 
ℓ 0

 denotes the restricted log-likelihood under the null H η  and 
 
ℓ 1

 denotes

the corresponding value under the alternative 1H η . The level of significance of η

0

 ℓ  is then calculated 

2
via a parametric bootstrap. That is, if we put σ̂u  and  equal to the estimates of 

2

u
σ and

obtained under the null, then we generate bootstrap realisations of y as , 
∗(b) ∗(b)where u  and e  are generated as in Section 3.2. For each bootstrap replication, the null and the 

(b)

ηalternative models are then fitted and ℓ
∗

 is calculated. The significance of the calculated value of 

ηℓ  is evaluated by comparing it with the bootstrap distribution of
(b)

η ℓ
∗

. A word of caution is 

appropriate at this point. A significant result from the above bootstrap-based test does not mean that 

the model (10) with p C =ηI  provides a good representation of the data, i.e. the set of direct 

estimates y . It only means that this particular spatially non-homogeneous model provides a 

significant improvement in fit compared with the usual Fay-Herriot approach that ignores spatial 

heterogeneity.  

4. Application
In Section we illustrate an application of NSEBLUP method of SAE to real agriculture 

survey data collected by the National Sample Survey Office (NSSO), India under the scheme titled 

‘Improvement of Crop Statistics (ICS)’. In particular, aim is to estimate average yield for paddy 

(green) crop at small area (or district) levels in the State of Uttar Pradesh in India by linking data 

generated under ICS scheme by NSSO (data collected with much reduced sample size, however, the 

quality of data is very high) and the Census information.  In this application we adopt an area level 

small area model (2) as well as nonstationary version of area level model (10) for SAE. We applied 

the EBLUP and the NSEBLUP estimator for SAE described in Table 1.  
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Table 1. Definition of various estimators. 

Acronym Description MSE Estimator 

EBLUP 

NSEBLUP 

SYN 

NSSYN 

Predictor (6) under model (2) 

Predictor (19) under model (10) 

Predictor (7) under model (2) 

Predictor (20) under model (10) 

Prasad & Rao (1990) 

Expression (28) 

Prasad & Rao (1990) 

Expression (29) 

Here we are working under aggregated or area level version of small area models. As a 

consequence, this approach of SAE requires area-specific information on direct survey estimates 

and covariates. In particular, two types of variables are required for this analysis.  

(i) The variable of interest for which small area estimates are required is yield for paddy (green)

crop. We use data pertaining to supervised CCE on paddy (green) crop under ICS scheme for

kharif season for the State of Uttar Pradesh in India collected during the year 2009-10. We are

interested in estimating the average yield for paddy (green) crop at the district level. In the State

of Uttar Pradesh CCE is carried out in the plots of form equilateral triangle of side 10 meter

each and with total area of 43.30 meter2. Therefore, yield rate for paddy (green) crop is recorded

as gram per 43.12 meter2.

(ii) The covariates (auxiliary variables) known for the population are drawn from the Population

Census 2001. Note that use of covariates from the 2001 Population Census to model yield data

of paddy crop from the 2009-10 ICS scheme data may raise issues of comparability. However,

the covariates used in this study are not expected to change significantly over a short period of

time.

Figure 1. Map of districts in the State of Uttar Pradesh in India. 

In the State of Uttar Pradesh there are 70 districts however supervision, on a sub-sample, of 

CCEs work under ICS scheme is carried out in 58 districts only and there is no sample data for the 

remaining 12 districts. We refer these 12 districts as the out of sample districts. These 70 (58 in 

sample and 12 out of sample) districts are the small areas for which we are interested in producing 

the estimates. Figure 1 shows the map of these 70 districts in the State of Uttar Pradesh. In this map 

the districts in sample are shown in yellow color while out of sample districts are shown in blue 

color. The area specific sample sizes for 58 sample districts range from minimum of 4 to maximum 

of 28 CCE with average of 11 (see Figure 2). A total of 655 CCE were supervised for recording 
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yield data in the State of Uttar Pradesh for paddy crop for the year 2009-10. We see that in few 

districts the sample size is small so the traditional sample survey estimation approaches lead to 

unstable estimate. In addition, in 12 districts due to non availability of sample under ICS, we cannot 

estimate paddy yield. Indeed, there is no design based solution to provide estimates for these 12 out 

of sample districts. The SAE is an obvious choice for such cases. 

There were 121 covariates available from the Population Census to consider for modeling 

and choosing appropriate covariates for this analysis. For this purpose, we used data of 58 sampled 

districts and did some exploratory data analysis, for example, first we segregated group of 

covariates with significant correlation with target variable and subsequently we implemented step 

wise regression analysis for identification of such covariates. Finally we identified two significant 

variables, average household size (HH_SIZE) and female population of marginal household 

(MARG_HH_F) with 26 per cent R2 for the SAE. Although, the value of R2 for this data is very 

good but this is best possible model we obtained from the available information. Note that for SAE 

of 12 out of sampled districts we used the same two covariates since we assume that the underlying 

model for sample areas also holds for out of sample districts.  

For fitting the geographically weighted linear mixed model, i.e. spatial nonstationarity 

version of Fay Herriot model (1) we also require coordinates of different small areas. The 

developed SAE method is suitable for the data exhibiting the spatial nonstationarity. That is, if 

spatial nonstationarity is present in the data then the developed method of SAE accounts for 

nonstationarity while generating small area estimates. 

1H η : 0

Figure 2. Distribution of district-specific sample sizes in sample districts. 

We did some exploratory data analysis to examine whether the ICS data used in this small 

area analysis (particularly, from sampled districts) have spatial nonstationarity. For this purpose, we 

computed the district-specific regression coefficients by fitting the spatial nonstationarity version of 

Fay Herriot model (10). We also obtained the global regression coefficients by fitting the Fay 

Herriot model (2). In the fitted model we have two covariates, average household size (HH_SIZE) 

and female population of marginal household (MARG_HH_F), therefore we have three regression 

coefficients (i.e., intercepts + two slope parameters with respect to HH_SIZE and MARG_HH_F). 

Table 2 reports the district wise estimates of regression coefficients for ICS data by fitting the 

spatial nonstationarity version of Fay Herriot model (10). Estimates of regression coefficients for 

ICS data by fitting the Fay Herriot model (2) are reported in Table 3. Surface plot of regression 

coefficients for ICS data by fitting the spatial nonstationarity version of Fay Herriot model (10) are 

shown in Figure 3. The diagnostic procedure to test the spatial nonstationarity described in Section 

3.3, that is, the hypothesis H0η :η = 0  versus the one-sided alternative η >  is applied to

NSSO data. Nonstationarity test is significant (p value 0.01), that is, rejected the null hypothesis of 

spatial stationarity of the model parameters of nonstationarity Fay Herriot model (10). Hence, there 

is evidence of nonstationarity in the data.  In addition, the values of regression coefficients shown in 

Table 2 and in Figure 3 clearly indicate that the ICS data is not stationary. There is a marginal 

nonstationarity in the model parameters. Looking at the minimum, maximum, average and median 



F35

12PROCEEDINGS  ICAS VII  Seventh International Conference on Agricultural Statistics I Rome 24-26 October 2016

values of model parameters of geographically weighted linear mixed model in Table 2 and the 

values of model parameters (i.e. global parameters) of linear mixed model in Table 3, we observe 

that  there is evidence spatial nonstationarity in the model parameters. The surface plots of model 

parameters in Figure 3 and the conclusion from test result also confirm this. It is therefore 

interesting to apply the developed SAE method with ICS data. As there is evidence of spatial 

nonstationarity in the data, we expect a slightly better performance of small area estimates with the 

newly developed method of SAE.  

Table 2. District wise estimates of regression coefficients for ICS data by fitting the spatial 

nonstationarity version of Fay Herriot model (10). 
Districts Intercept HH_F HH_SIZE Districts Intercept HH_F HH_SIZE 

1 43336.5 0.25 -4653.6 32 44836.4 0.25 -4891.6

2 43620.5 0.25 -4697.1 33 44973.7 0.25 -4914.3

3 44046.5 0.25 -4760.6 34 44542.2 0.25 -4838.9

4 44022.4 0.25 -4757.2 35 44803.7 0.25 -4882.5

5 44076.7 0.25 -4765.2 36 44441.1 0.24 -4803.8

6 43951.9 0.25 -4746.9 37 44856.9 0.25 -4892.7

7 43687.2 0.25 -4707.8 38 44553.1 0.24 -4839

8 43863.3 0.25 -4734.4 39 44658.1 0.25 -4855.7

9 44243.8 0.24 -4790.8 40 44710.7 0.25 -4865.5

10 43934.3 0.25 -4746.7 41 44664.9 0.25 -4857.8

11 44111.6 0.25 -4772 42 44991.5 0.25 -4911.5

12 44192.6 0.25 -4784.4 43 44959.6 0.25 -4908.1

13 44148.4 0.24 -4776.3 44 45062.2 0.25 -4925

14 44165.9 0.24 -4778.3 45 45171.1 0.25 -4941.6

15 44208.8 0.24 -4784.3 46 45164.5 0.25 -4941.6

16 44253.6 0.24 -4791.4 47 45507 0.25 -4995.2

17 44349 0.24 -4805.2 48 45323.3 0.25 -4968.2

18 44811.6 0.25 -4888.8 49 45220.7 0.25 -4952.6

19 44302.4 0.24 -4799.3 50 45364.8 0.25 -4976.1

20 44451 0.24 -4824.3 51 45616.1 0.25 -5016.5

21 44489.4 0.24 -4830.2 52 45127.9 0.25 -4938.4

22 44670.7 0.25 -4862.2 53 45435.6 0.25 -4988.4

23 44244.6 0.24 -4791.2 54 45418.9 0.25 -4986.1

24 44302.1 0.24 -4800.1 55 45305.1 0.25 -4968.3

25 44245.9 0.25 -4793.9 56 45453.1 0.25 -4991.9

26 44680.3 0.25 -4870.5 57 45233.6 0.25 -4957.3

27 44439 0.25 -4823.3 58 45771.4 0.25 -5043.9

28 44085.3 0.25 -4767.8 Min 43336.5 0.24 -5043.9

29 44671.9 0.25 -4865.5 Max 45771.4 0.25 -4653.6

30 44644.3 0.25 -4858.8 Mean 44627.4 0.25 -4855.1

31 44970.8 0.25 -4913.5 Median 44651.2 0.25 -4856.7

Table 3. Estimates of regression coefficients for ICS data by fitting the Fay Herriot model (2). 

Intercept 44415.191 

HH_F 0.24 

HH_SIZE -4800
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Figure 3. Surface plot of regression coefficients for ICS data by fitting the spatial nonstationarity 

version of Fay Herriot model (10). 

The coefficient of variation (CV) is used to assess the comparative precision of different 

small area estimates. The CVs show the sampling variability as a percentage of the estimate. 

Estimates with large CVs are considered unreliable (i.e. smaller is better). In general, there are no 

internationally accepted tables available that allow us to judge what is "too large". Different 

organization used different cut off for CV to release their estimate for the public use. For example, 

Office for National Statistics, United Kingdom has cut off CV value of 20% for acceptable 

estimates. We computed the percentage CV of direct estimates and two different model based 

estimates (i.e. EBLUP and NSEBLUP). Besides, comparison of model-based estimates versus 

direct estimates, we also want to compare the precision of two model-based estimates (i.e. EBLUP 

and NSEBLUP). Table 4 shows the district-wise distribution of the percentage CVs for the direct 

estimates and two different model-based estimates defined in Table 1. Figure 4 presents the 

percentage CV of direct estimates and two different model based estimates for sample districts.  
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Figure 4. District-wise plot of percent coefficient of variation for the Direct   (dash line,× ), 

EBLUP (thin line, ο) and NSEBLUP (solid line, •) estimators. 

Two things stand out from Table 4 and Figure 4. First, the estimated CVs of two model-

based estimators (i.e., EBLUP and NSEBLUP) are smaller than the traditional design-based direct 

estimator. Second, between two model based estimators, the NSEBLUP is better than the EBLUP. 

That is, the estimated CVs for the model-based estimates have a higher degree of reliability when 

compared to the direct estimates. In general, relative performance of model based estimates are 

better as sample size decreases. This result reveals that if spatial nonstationarity is incorporated in 

SAE it leads to significant gains in efficiency of small area estimates. It is interesting to note that 
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out of 70 districts there are 12 districts with no sample data. For these 12 districts we cannot 

produce the direct estimates, however, model based estimates generated for these districts have 

reasonably good CV values and that to within the acceptable limit. In Table 4 If we look at the 

percent CV it is apparent that the standard errors of the direct estimates are large and therefore the 

estimates are unreliable. Further, for 12 out of sample districts we observed a significant gain in 

application of NSEBLUP as compared to the EBLUP method. That is, the NSEBLUP method leads 

to a drastic gain in precision when estimates were produced for out of sample districts.  

Table 4. District wise estimates and percent coefficient of variation for the direct, EBLUP and NSEBLUP 

estimators from NSSO data.  

Districts Direct EBLUP NSEBLUP 

Yield CV,% Yield CV,% Yield CV,% 

Saharanpur 19575 13.04 17737 11.64 17269 8.51 

Muzaffarnagar 23483 20.53 17168 16.20 18194 16.26 

Bijnor 19442 7.28 18918 6.95 19323 7.00 

Moradabad 17700 16.67 16770 13.42 16830 13.18 

Rampur 17250 3.01 17173 2.99 17110 2.97 

Jyotiba Phule Nagar 10850 13.68 11635 11.78 12009 11.53 

Ghaziabad 16800 31.03 16726 17.10 17420 12.70 

Bulandshahar 17418 11.64 18126 9.89 17314 11.44 

Aligarh 12419 19.77 14302 14.11 12365 16.43 

Mathura 10483 27.27 12712 17.35 12146 19.38 

Etah 12125 9.73 12514 8.95 12249 9.01 

Mainpuri 14019 22.58 13707 17.14 13641 6.20 

Budaun 12721 15.05 13315 12.64 13248 11.07 

Bareilly 13511 13.18 14150 11.24 14114 11.60 

Pilibhit 14938 19.94 14684 15.42 15277 8.96 

Shahjahanpur 18863 6.23 18403 6.07 17307 6.47 

Kheri 14975 11.37 15081 10.19 15392 8.28 

Sitapur 15986 13.11 16428 10.99 16344 10.96 

Hardoi 19286 7.39 19315 6.89 19468 7.05 

Unnao 12843 11.92 14024 10.09 14144 10.24 

Lucknow 17331 21.08 18251 14.00 17573 9.66 

Rae Bareli 19506 9.03 19284 8.24 18858 7.61 

Farrukhabad 8880 18.95 10470 14.52 10505 14.42 

Kannauj * 34050 5.45 30396 5.51 33034 5.64 

Etawah 15463 5.07 15431 4.97 15496 3.97 

Auraiya 23717 9.96 20987 9.37 19081 8.69 

Kanpur Dehat 21200 10.82 19526 9.89 17331 7.88 

Kanpur Nagar 15375 17.27 16326 13.06 16434 8.70 

Banda 8888 49.15 13406 20.20 15905 8.82 

Fatehpur 14612 20.11 15895 14.23 16793 9.59 

Pratapgarh 16304 14.52 16439 11.94 16749 9.06 

Kaushambi 15450 26.93 16633 16.04 17038 10.50 

Allahabad 19465 11.72 20227 10.10 19415 11.50 

Barabanki 18668 11.12 18757 9.61 18044 9.87 

Faizabad 16379 14.26 16559 11.77 16745 9.86 

Ambedkar Nagar 17692 9.44 16650 9.10 16900 9.00 

Sultanpur 16609 9.57 16796 8.66 16653 9.07 

Bahraich 14714 3.89 14736 3.84 15197 5.63 

Shrawasti 15075 18.90 15169 14.60 15947 5.36 

Balrampur 11975 14.63 12343 12.76 14200 9.42 

Gonda 16981 6.47 16704 6.29 15442 10.67 
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Siddharthnagar 12829 13.55 12922 12.11 13970 7.26 

Basti 14268 16.21 14163 13.65 14327 9.25 

Sant Kabir Nagar 13319 6.35 13272 6.21 13169 5.27 

Mahrajganj 21690 12.15 18603 11.33 15745 9.78 

Gorakhpur 12164 12.73 12441 11.42 12793 10.04 

Kushinagar 19343 14.88 16669 13.33 16006 12.39 

Deoria 8364 17.58 8873 15.41 9858 12.01 

Azamgarh 11957 8.52 12034 8.16 11924 8.26 

Mau 9820 19.64 10498 16.29 9578 18.14 

Ballia 7029 20.78 7775 17.48 7988 16.53 

Jaunpur 16990 10.27 16408 9.60 16745 9.93 

Ghazipur 10858 13.29 11286 11.89 10933 12.15 

Chandauli 12000 19.63 12231 16.06 12196 10.94 

Varanasi 17665 15.38 17055 13.04 17594 14.69 

Sant Ravidas Nagar 6693 36.21 7136 29.63 6522 32.04 

Mirzapur 15625 11.71 15043 10.83 15162 10.19 

Sonbhadra 15283 26.49 16337 16.29 17605 7.41 

Meerut 14897 21.60 16167 19.97 

Baghpat 11947 27.57 13030 11.03 

Gautam Buddha Nr 16677 19.83 17756 6.82 

Hatharas 15162 21.27 14326 16.86 

Agra 14731 21.84 12789 30.74 

Firozabad 14223 22.67 12954 22.99 

Jalaun 15028 21.58 15927 10.82 

Jhansi 17582 18.54 19186 22.03 

Lalitpur 16959 19.43 18698 9.96 

Hamirpur 16476 20.01 17280 7.19 

Mahoba 16196 20.38 17123 6.01 

Chitrakoot 14723 22.14 15202 5.79 

5. Concluding Remarks
This paper illustrates that the SAE technique can be satisfactorily applied to produce reliable 

district level estimates of crop yield using CCE supervised under ICS scheme. Although the ICS 

supervised CCEs number only 30,000 in the entire country i.e. the sample size is very low, the 

collected data is of very high quality. The estimates generated using this data are expected to be 

relatively free from various sources of non-sampling errors. Further SAE provides estimates for 

those districts where there is no sample information under ICS and so direct estimates cannot be 

computed. It is, therefore, recommended that wherever it is not possible to conduct adequate 

number of CCEs due to constraints of cost or infrastructure or both, SAE technique can be gainfully 

used to generate reliable estimates of crop yield based on a smaller sample. In addition, when there 

is spatial nonstationarity in the data developed method should be used to improve these 

disaggregate level estimates. We noticed that the ICS data have evidence of spatial nonstationarity. 

As a consequence the developed NSEBLUP method when applied to ICS data enhanced the 

efficiency of small area estimates. 
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