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Spatial monitoring of soil quality especially in terms of soil organic carbon (SOC) content for the 
purpose of evaluating the effects of C-stocking practices at different spatial scales, is critical 
for both stakeholders and public authorities. Various studies have recently demonstrated the 
usefulness of hyperspectral satellite images for faster and cheaper prediction of SOC compared 
to standard soil chemical analyses. In this study we combine both sources of information by 
means of hierarchical modelling accounting for different spatial scales to provide an accurate 
map of SOC over a broad regional scale in a peri-urban region.
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1. Introduction
The overall decrease of soil organic matter in peri-urban croplands has become a threat for 
soil sustainability in Europe (Ciais et al., 2010). The COP21 conference recently held in November 
2015 in Paris resulted in adopting a “4p1000” initiative aiming at favouring C storage practices 
to mitigate greenhouse gas emissions. Among possible storage practices, the recycling of 
exogenous organic matter (EOM) issued from organic waste treatments originating from urban, 
industrial and agricultural activities provides a promising source of C stocking amendments 
which may also substitute synthetic fertilizers (Houot et al., 2014; Noirot-Cosson et al., 2015). 
This study, as a part of the French TOSCA-”PLEIADES-CO” project, basically aims at spatially 
simulating the effects of such practice at the regional scale of a 221 km² peri-urban area close 
to Paris, where animal breeding has declined. The spatial simulation of such effects of EOM 
use practice (Noirot-Cosson, 2016) requires spatially explicit and updated information about 
initial soil organic carbon (SOC) stocks. SOC stock, defined as the carbon mass per unit area 
for a given depth, is the product of SOC content by considered depth (for a given horizon), soil 
bulk density, and the percent volume of soil out of rock fragments. Goidts et al. (2009) identified 
SOC content variability as one of the main sources of predictions uncertainty of SOC stocks and 
whatever scale, from global to local (Minasny et al., 2013), most studies considered SOC content 
as the main target variable, and this mainly for the topsoil layer comprised between 8 and 30 cm, 
being most often the ploughed layer for cropland, i.e. the layer directly modifiable by C-stocking 
practices such as EOM use. At such detailed scale such as our study area, accurate predictors 
of SOC content are required: error uncertainties shall be specified to each potential end-user 
so that, jointly to the map of SOC contents, a map of prediction uncertainty should be provided.

Whatever scale, environmental covariates are the most commonly used to predict SOC 
content. Depending on the context, either terrain attributes derived from a DEM (Orton et al., 
2012a, 2012b; Lacoste et al., 2014), land use/land cover (Lacoste et al., 2014), satellite images 
(Normalized Difference Vegetation Index (NDVI) derived from remotely sensed images, (Wu et 
al., 2009)), remotely and proximally sensed visible to near infrared (NIR) reflectance (Peng et 
al., 2015), geological data (Lacoste et al., 2013), or gamma radiometrics (Malone et al., 2009), 
may be considered in the modelling.

Numerous methods have been developed for mapping soil properties generally using one 
or a combination of environmental covariates. They mostly rely on statistical modelling and 
can be classified into three categories: (i) remote-sensing methods, predicting SOC content 
by means of a regression from hyper/multi-spectral image reflectance spectra (Selige et al., 
2006; Stevens et al., 2010, 2012; Gomez et al., 2012; Vaudour et al., 2013, 2016); (ii) geostatistical 
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B13 methods, based on a network of soil sampled sites and a set of environmental covariate data 
being mostly terrain attributes derived from a DEM (Marchetti et al., 2010; Hamiache et al., 
2012; Conforti et al., 2015) and/or soil types (Kempen et al., 2011) and/or an airborne gamma 
radiometric image (Malone et al., 2009); a spectral or vegetation index band of a multispectral 
satellite image (Wu et al., 2009); (iii) machine learning methods, such as random forest (Grimm 
and Behrens, 2010), regression trees (Lacoste et al., 2014; Peng et al., 2015; Somarathna et al., 
2015) or support vector regression (Somarathna et al., 2015).
In this study, we aimed at mapping SOC contents of agricultural topsoil over a 221 km² peri-
urban area, the EOM sources of which need to be spatially managed across the 106 km² 
cropland area (Noirot-Cosson et al., 2014). The further use of this map into a soil plant model 
and for practical decision for end-users dictates the need for uncertainty assessment, as well 
globally as locally, at the scale of each cultivated field.

A previous study (Hamiache, 2012) provided maps of SOC content by means of multivariate 
geostatistical methods, from soil measurements and DEM variables. Here we aim at integrating 
all kind of available information, at different scales and from various sources : hyper/multi-
spectral image reflectance spectra, remotely and proximally sensed visible to near infrared 
(NIR) reflectance, terrain attributes derived from a DEM and soil measurements, in a single 
hierarchical model to provide an as precise as possible map of SOC content together with its 
uncertainty assessment. 
The core of the hierarchical model is a latent spatial random field representing the SOC content, 
which is linked to the available data through several relationships that take into account the 
scale change, and the measurement and modelling uncertainty.

2. Hierarchical modelling

Figure 1 - Plaine de Versailles: locations of the soil measurement by year and 2.5 m-SPOT5 image of 27 April 
2010. SPOT/ISIS programme. Copyright CNES.
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Figure 2 - Posterior distribution for 0 = (a,b,c,d,o0, o1, o2)
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B13 Figure 2 displays the posterior distribution for parameters 0. For all the parameters except 0o the 
convergence toward the real value is reached quite rapdly. The lack of convergence of 0o may be due 
to an identifiability issue, common for spatial fields although the scale is not inferred, and must be 
investigated.

Figure 3 - Latent field and averaged posterior fields

Figure 3 displays the simulated latent field C , together with some draws of the posterior distribution and 
the averaged posterior fields showing that the main features of the latent field are recovered in average.

3. Real data

The simulation study shows encouraging results, but it is driven for a small dataset size. The dataset 
we are faced with in an operational framework is an image on a grid of 243x407 cells, n1 10192 cells 
representing bare soils and n2 253 top soil measurements.

This leads to severe computational issues, as the conditional simulation step of the Bayesian algorithm 
needs the inversion of a matrix of size n1xn1 . Using specific packages for very big matrices and storage 
utilities could help to carry out the inference, still it remains very time consuming. Making recourse to 
approximation methods seems unavoidable.

Figure 3 shows a map for the SOC content and the map of its standard deviation obtained with the 
same dataset except the image, but using geostatistical methods. This map will serve as a reference, to 
investigate to what extent data from satellite images may improve the mapping of SOC content and what 
would be the degraded performance using images instead of soil measurements.

Figure 4 - Mapping for the SOC content and its standard deviation by geostatistical methods
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