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Abstract 

Authors: Kevin Roche, Lance Taylor, Roobina Keshishbanoosy 

As part of the efforts to continuously improve the quality of the Consumer Price Index (CPI) at 
Statistics Canada, new methodologies and data sources are being researched for measuring price 
change in multipurpose digital devices. Web-scraped data is increasingly being used in CPI’s 
because it has the benefit of increasing the monthly sample size and reducing manual price 
collection. The research demonstrated here integrates web-scraped data with supervised 
modelling approaches to produce different experimental quality adjusted price indices.  

The results of using different algorithms in modelling prices for quality adjustment are compared, 
as well as different methods for constructing the corresponding quality adjusted price indices. 
Different specifications of ordinary least squares, random forest, and extreme gradient boosting 
(XGBoost) modelling algorithms are tested, with the XGBoost models delivering the best out-of-
sample performance. Comparisons of the corresponding hedonic imputation and hedonic time 
dummy indices are made, including experimentation with the use of double machine learning 
(DML). DML is a recently developed technique that allows for causal inference when using non-
parametric methods (i.e. XGBoost), which in this case is used in an attempt to create a time 
dummy index. Additionally, the effects of using different approaches to the indices are compared. 

JEL Classification System: E31, C59, D12, L63  
Keywords: Consumer Price Index, hedonics, web-scraped data, consumer electronics 



1 - Introduction  

The Consumer Price Index (CPI) measures the change in prices of consumer goods and services over 

time. In an effort to ensure that trends in consumer behaviour and the market are accurately captured, 

Statistics Canada continuously works to develop and test new methods of measuring price change in the 

various components of the CPI. 

The Multipurpose Digital Devices Index (MDDI) represents 0.20% of the 2020 basket, and 2.1% of the 

Recreation, Education, and Reading Index, a major component of the CPI. The MDDI is made up of two 

elementary aggregates (EAs), the Smartphones EA and the Tablet Personal Computers EA – the latter of 

which is the aggregation of the price movements for smartwatches and tablets, where tablets make up 

roughly 80% of the EA. This paper summarises the research that’s been undertaken on the price 

movements of these products, including: 

 The incorporation of web-scraped data sources covering more brands and retailers; 

 Construction of weights to ensure representativeness of brands and retailers; 

 The development and comparison of different statistical models used to measure monthly price 

change by imputing missing prices; 

 The comparison of different methods used in constructing the corresponding quality adjusted 

price indices. 

This paper will largely focus on the latter two points, and proceeds as follows: the nature of the data is 

discussed in Section 2. The way the brand and retailer weights were constructed is discussed in Section 

3. The variety of modelling techniques tested are discussed in Section 4. A comparison of the different 

methods used to construct price indices is discussed in Section 5. A discussion of the results of the 

research takes place in Section 6, with a brief conclusion in Section 7. 

2 - Data  

Web-scraping, the process of automatically extracting data from websites using bots, is a data source 

increasingly being used at Statistics Canada and other NSO’s. Web-scraping is attractive because it 

greatly reduces the need for the manual collection of data and significantly increases the number of 

observations collected, often in the form of massive files with vast amounts of data in them for each 

retailer. Typically, we are only interested in a very small subset of that data – that which pertains to the 

“in-scope” products in the MDDI. In order to identify that subset, hard boundaries were set to 

determine whether a product was “in scope”. These boundaries are defined as follows: 

 Smartphones: New, unused, and unlocked. 

 Tablets: A portable personal computer where the primary input is touch. May or may not have a 

physical keyboard, mouse, touchpad or stylus, and only adult models and size were considered. 

 Smartwatches: Functionality that exceeds that of a basic fitness tracker, where connectivity 

features, activity monitoring, and phone control features are a must. Only adult models and size 

were considered. 

In addition to the boundaries implemented to ensure a given product was “in scope”, a few other 

boundaries were implemented to ensure the data was of acceptable quality: 



 Upper and lower price bounds were established for major product type-brand combinations by 

subject matter experts. This serves to prune outliers and remove erroneous pricing in lieu of 

manual intervention. 

 For retailers that have a marketplace, observations from marketplace sellers were filtered out. 

 In the case that there were multiple identical products within a retailer in a period, the mean of 

their prices was taken. This is done to avoid potential composition effects that may arise from 

over-representing observations from a given retailer or brand. 

After the identification of in-scope items took place, the data cleaning process involved using regular 

expressions and a rules-based approach, resulting in monthly, tabular, cleaned data. 

3 – Weight Construction 

This section details the methodology used to construct the retailer and brand expenditure weights, 

which are then used in the data modelling process detailed in Section 4 and the index aggregation 

process detailed in Section 5. 

3.1 – Retailer Weight Construction 

Where possible, retailer weights were constructed from Statistics Canada’s official Retail Commodity 

Survey (RCS). For some retailers (say, Retailer 1 and Retailer 2), it was not possible to construct retailer 

weights from the RCS data. This was due to the business practices of these retailers not completely 

fitting into the structure of the survey (ie. weak brick-and-mortar presence). In this scenario, creative 

approaches were required to construct the weights.  

According to an external source, Retailer 1 has some multiple of the market share for consumer 

electronics that another retailer in the sample (say, Retailer 3) had. So, Retailer 1's aggregate sales were 

simply calculated as that multiple of Retailer 3’s aggregate sales. 

It was a more involved process to construct weights for Retailer 2. Using a source, it was possible to 

determine Retailer 2's global consumer revenue for the hardware sub-segment of its business (SS 

Revenue).  

To determine Retailer 2's aggregate sales for each product, the typical share of tablets, smartwatches 

and phones in the North American Industry Classification System (NAICS) data were calculated (Relevant 

Share). These proportions were then applied to Retailer 2's revenue (SS Revenue), giving an 

approximation of Retailer 2’s aggregate sales from the three products. That result was then multiplied 

by the amount of Retailer 2’s revenue that comes from Canada (Canadian Share).  

Lastly, Retailer 2’s aggregate sales were multiplied by the revenue proportion of Retailer 2's hardware 

sub-segment revenue (SS Proportion), so as not to include sales from other aspects of their business (ie. 

B2B sales).  

Formally, Retailer 2’s aggregate sales in year y are computed as: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑆𝑎𝑙𝑒𝑠𝑦 =  𝑆𝑆 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑦 ∗ 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑆ℎ𝑎𝑟𝑒𝑦 ∗ 𝐶𝑎𝑛𝑎𝑑𝑖𝑎𝑛 𝑆ℎ𝑎𝑟𝑒𝑦 ∗  𝑆𝑆 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑦 

3.2 – Brand Weight Construction 



The construction of brand weights required data on both the annual quantities and the annual prices for 

each product brand. An external data source was used to determine annual quantities of the number of 

units sold by each brand for each product, and average annual prices were constructed from the prices 

in the web-scraped data. To start, the average monthly price by brand and product was calculated: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑟𝑖𝑐𝑒𝑡
𝑝,𝑏

=  
∑ 𝑃𝑟𝑖𝑐𝑒𝑖

𝑝,𝑏𝑛
𝑖=1

𝑛
 

From there, the average yearly price by brand and product was calculated as the mean price of all of the 

months within a given year: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑦
𝑝,𝑏

=  
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑟𝑖𝑐𝑒𝑡

𝑝,𝑏12
𝑡=1

𝑛
 

Some months may have had varying level of data procurement, so having all observations in a year 

averaged without first taking the monthly average could result  in some months being implicitly 

weighted more than others. Taking the monthly average for each product-brand combination and then 

averaging those across the year served to combat this effect.  

Lastly, brand weights were calculated as follows: 

𝐵𝑟𝑎𝑛𝑑 𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑦
𝑝,𝑏

= 𝑈𝑛𝑖𝑡𝑠 𝑆𝑜𝑙𝑑 (𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐷𝑎𝑡𝑎)𝑦
𝑝.𝑏

∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑦
𝑝.𝑏

  

4 - Data Modelling 

This section details the variety of modelling techniques used in building the indices. Most of the models 

attempt to model monthly price change by imputing missing prices, with an attempt to model the 

period of the observation within a DML framework being made in Section 4.4.2.1. OLS, Random Forest, 

and XGBoost models were all considered. 

4.1 – Data Preparation 

The dataset contains information on a vast number of characteristics for each product from the 

beginning of 2019 onwards, but the degree of how well represented those qualities are for each product 

varies. For example, nearly every collected observation has a value for operating system, but less than 

50% of them have a reported a value for ram size. In turn, this would mean that if ram size was used as a 

characteristic in the index calculation process, we would lose over half of the sample size.  

In order to include as many observations in the modelling process as possible, subject matter experts 

were consulted to determine which characteristics were most important in determining the price of 

each product. Of these characteristics, the ones used were the characteristics that had at least 50% 

representation in the dataset1. The end result was that the covariates in the table below were used to 

model prices, where an asterisk denotes that a covariate is continuous. Note that observations that 

contain information on all the covariates within a product type are referred to as “complete” or “fully 

represented” throughout the paper. 

                                                           
1 Low representation of a characteristic suggests that it may not be as relevant as the product’s other 
characteristics in its relationship to price. 



Product Type Covariates 

Phone Brand, Display Size*, Horizontal Screen Resolution*, Operating System, Camera 
Resolution*, Storage*, Vertical Screen Resolution* 

Watch Accelerometer, Brand, Case Size*, Calorie Tracking, Connectivity, GPS, Heart Rate, 
Incoming Calls, Microphone, Operating System, Sleep Tracking, Steps Tracking, SMS, 
Touchscreen, Voice Control, Waterproof 

Tablet Brand, Connectivity, Display Size*, Horizontal Screen Resolution*, Operating System, 
Rear Camera Resolution*, Storage*, Vertical Screen Resolution* 

 

On a monthly basis, the number of complete (ie. fully represented) observations can fluctuate2.  As more 

retailers have been added to the sample, the number of complete observations have grown. Since the 

most recent retailer was added, there has been an average of around 125 complete phone observations, 

500 complete tablet observations, and 4000+ complete watch observations.  

Once the relevant covariates were determined, the natural logarithm of the price and all  the continuous 

(ie. non-dummy) variables were taken. This transformation has a variety of desirable properties, 

including: 

 In the case that the residuals are not normally distributed, taking the natural logarithm may 

improve the fit by making the variables more closely approximate a normal distribution. 

 In the case of an OLS regression, taking the log allows a 1% increase in a given covariate to be 

interpreted as a β% increase or decrease in price. 

Once this covariate selection and transformation process was complete, model testing began. In this 

process, the relevant monthly data was randomly partitioned into a 70% training, 30% testing split. 

Randomly partitioning within each month ensures that there are a proportionate number of 

observations in each period of each window, which in turn helps ensure representativeness in both the 

training and evaluation of the algorithms. 

4.2 – Hedonic Imputation Methodology 

In machine learning, a hyper-parameter is a value external to the model that is used to control the 

learning process. In order to optimize the way that prices are hedonically imputed for each of the three 

product types, a variety of different model and hyper-parameter combinations were tested. The 

strategy here was to first grid search across a broad set of window lengths and hyper-parameters and 

then run a second, narrower grid search on the model that performed the best. 

4.2.1 – High-level Grid Search 

For the broad, initial grid search, three models were tested, each with a variety of hyper-parameter 

combinations. The OLS model used in hedonic modelling was set up as follows, where ln(𝑋) refers to 

the matrix of continuous covariates that have been log-transformed and 𝐷 refers to the matrix of 

dummy covariates: 

                                                           
2 For example, data can be missing, new retailers can be added to the sample, and the number of observations can 
vary in any given month. These fluctuations are due to the data collection process (ie. they are out of our control). 
This is precisely why retailer weights are used to weight for representativeness. 



ln (𝑃𝑟𝑖𝑐𝑒)𝑖
𝑝

=  𝛼 + 𝛽 ln(𝑋𝑖) + 𝜃𝐷𝑖 +  𝜀𝑖  

Random Forest and XGBoost models were also constructed using the same sets of covariates. Due to the 

non-parametric nature of these models, they cannot be generalized into an exact closed-form equation 

as seen above. Instead, they are generalized as follows: 

ln (𝑃𝑟𝑖𝑐𝑒)𝑖
𝑝

=  𝑓(ln(𝑋𝑖), 𝐷𝑖) +  𝜀𝑖   

Random Forest is an ensemble technique that uses bagging and feature randomness to combine the 

output of multiple decision trees into a single result. It reduces the risk of overfitting the data, but is 

time-consuming to calculate and computationally expensive. 

XGBoost3, which stands for extreme gradient boosting, is an optimized implementation of gradient 

boosting trees. Boosting is an ensemble technique where new statistical models are added iteratively to 

correct the errors of the existing statistical models. Its desirable properties4 include: 

 Auto Pruning: ensures trees do not grow beyond particular limit, making the statistical model 

more robust and decreasing computation time 

 Regularization: prevents overfitting by shrinking estimates 

 Iteration: each iteration of the statistical model uses the error residuals of the previous 

statistical model to fit the next model, which minimizes loss 

At this point, it would be useful to define the hyper-parameters5 the model grid searches over. Note that 

if a hyper-parameter is not defined below, the default value for that hyper-parameter is used in the 

model. 

 Max Depth is the maximum depth of a tree. A lower Max Depth is less likely to over-fit, but 

does not model complex relationships as well. 

 Number of Rounds defines the maximum number of boosting iterations. If model performance 

does not improve for 25 rounds, the model will stop iterating before it reaches the maximum 

number of iterations in order to combat overfitting. The lower this number, the less 

computationally expensive – but it is also important to ensure that as much information as 

possible is extracted. 

 ETA controls the learning rate, scaling the contribution of each tree by a factor of 0 < 𝐸𝑇𝐴 < 1 

when it is added to the current approximation. A lower ETA makes the model more robust to 

overfitting, but is more computationally expensive. Note that ETA is only tuned in the intensive 

grid search. 

 Node Size is the minimum size of terminal nodes. Allowing for a larger node size leads to less 

complex trees, which makes the model less computationally expensive. 

 mtry is the number of predictors that are randomly sampled at each split when creating the tree 

models. It helps to balance low tree correlation with reasonable predictive strength. 

                                                           
3 A more nuanced description of how XGBoost works is available here. 
4 Other benefits include computational efficiencies such as Parallelization (uses all CPU cores in training), and 
Cache Optimization (stores intermediate calculations in cache), both of which enhance the speed of the algorithm. 
5 A more in-depth discussion of hyper-parameters is available here. 



Some may ask why different window lengths (ie. the number of time periods used in a given model) are 

experimented with. By extending window length, and thus gaining more observations, the model is 

potentially better able to model the complex relationship between the observed characteristics and 

prices, which should aid in predicting price. If a model is effective at predicting the price on a window, 

the hope is to also establish that the model is effective at predicting the price on the period at the end 

of the window. 

Notably, using window lengths involves some trade-off – some observations in the past may be less 

representative in the current period, but it is assumed that the level of bias this trade-off presents is 

acceptable given the improved prediction performance. 

There is also a practical reason to experiment with window lengths – when working with messy web-

scraped data, it is often the case that an observation exists in a previous period, exists in some future 

period, and does not appear in the current period. In this case, including the past observation due to a 

longer window length could aid modelling. 

Models were constructed for each month in our sample, and a grid search was run over the following 

hyper-parameters for each model: 

Model Window Length Use of weight Max Depth Node Size mtry 

OLS 1, 3, 6, 8, 12 Weighted, Unweighted N/A N/A N/A 

Random 
Forest 

1, 3, 6, 8, 12 Weighted, Unweighted N/A 3, 6 4, 6 

XGBoost 1, 3, 6, 8, 12 Unweighted 6, 8 N/A N/A 

 

For each model resulting from each possible grid search combination, the Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and 𝑅2 were calculated, as well as their corresponding 

weighted equivalents. This is done to ensure that the models perform well on representative data. 

These metrics were chosen mainly for their interpretability. Note that in both the high-level grid search 

and the intensive grid search detailed in Section 4.2.2, metrics were calculated based on the models out-

of-sample performance on the test set. Applying cross-validation techniques is likely a superior way to 

obtain these metrics, but given the extent of the grid search, it was simply too computationally 

expensive to use it at this stage. Once optimal models were determined, cross-validation was 

implemented to ensure that the fit using cross-validation resembled the out-of-sample fit of the model 

on the test set. The aforementioned metrics are defined below: 

 The Mean Absolute Error takes the average absolute magnitude of the errors in a set of 

predictions. In words, an MAE of $50 means that the average prediction was within $50 of the 

actual price. MAE and Weighted MAE (WMAE) are calculated as follows: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

 

𝑊𝑀𝐴𝐸 =  
1

∑ 𝑤𝑖
∑ 𝑤𝑖|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 



 

 The Mean Absolute Percentage Error is the percent equivalent of the MAE. In words, a MAPE of 

10% means that the average prediction was within 10% of the actual price. MAPE and Weighted 

MAPE (WMAPE) are calculated as follows: 

 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑛

𝑖=1

 

 

𝑊𝑀𝐴𝑃𝐸 =  
100%

∑ 𝑤𝑖
∑

|𝑦𝑖 − �̂�𝑖| ∗  𝑤𝑖

𝑦𝑖

𝑛

𝑖=1

 

 

 𝑹𝟐 is a widely used measure for goodness of fit. Values range from zero to one, with values 

closer to one indicating a better fit. 𝑅2 and Weighted 𝑅2 (W𝑅2) are calculated as follows: 

 

𝑅2 =  1 − 
∑ (𝑦𝑖 −  �̂�𝑖)𝑛

=1
2

∑ (𝑦𝑖 − 𝑦�̅�)
𝑛
=1

2  

 

𝑊𝑅2 =  1 −  
∑ 𝑤𝑖(𝑦𝑖 −  �̂�𝑖)𝑛

=1
2

∑ 𝑤𝑖(𝑦𝑖 − 𝑦�̅�)
𝑛
=1

2  

 

To be explicit, using a weighted or unweighted metric doesn’t change the prediction of a model, just 

how it is evaluated. Weighting the metrics shows how much better or worse the model performs on 

observations with higher weight. Also of note is the way these metrics are presented – because both the 

dependent variable and the continuous covariates were log-transformed, e was raised to the power of 

the inputs in the MAE and MAPE calculations to more closely approximate a dollar value when the 

metrics are reported. This methodology doesn’t change the manner in which the models are evaluated, 

but allows less technical audiences to better understand the implications that these metrics have. 

Note that XGBoost does not use weights in the same manner as other algorithms6. In the context of 

XGBoost, weighting means increasing the contribution of an observation to the loss function. So, instead 

of multiplying the target values by the weights, it instead multiplies the gradient and the hessian. This 

does not “weight” the values in the classical sense of the word (ie. for representativeness), so 

unweighted models are used throughout. 

To evaluate the models, the aforementioned metrics for each product type and model grouping were 

averaged over all of the months in the sample to give us a very high level idea of which models were 

performing best. There weren’t substantial differences between the weighted and unweighted OLS and 

random forest models, so only the unweighted models are reported for the simplicity of the table 

below. This does not have an effect on the conclusions drawn. The results were as follows: 

                                                           
6 XGBoost Documentation — xgboost 1.6.0 documentation 



Product 
Type 

Model Average MAE Average 
WMAE 

Average 
MAPE 

Average 
WMAPE 

Average 

𝑹𝟐 

Average 

W𝑹𝟐 

 
Phone 

OLS $167.65 $164.51 21.70% 24.44% 0.83 0.82 

Random 
Forest 

$100.07 $96.01 13.61% 14.30% 0.92 0.92 

XGBoost $62.96 $62.05 9.18% 9.89% 0.94 0.94 

 
Watch 

OLS $110.29 $91.81 21.09% 19.46% 0.60 0.57 

Random 
Forest 

$93.21 $70.96 17.16% 15.35% 0.70 0.72 

XGBoost $58.05 $43.15 10.77% 9.32% 0.79 0.80 

 
Tablet 

OLS $116.96 $134.43 12.83% 15.21% 0.94 0.93 

Random 
Forest 

$103.65 $106.69 10.01% 10.73% 0.96 0.96 

XGBoost $37.28 $48.10 4.46% 5.54% 0.98 0.98 

 

And below the standard deviation of each of the monthly metrics is reported: 

Product 
Type 

Model MAE SD WMAE 
SD 

MAPE SD WMAPE 
SD 

𝑹𝟐 SD W𝑹𝟐 SD 

 
Phone 

OLS $47.90 $47.48 8.25% 11.49% 0.110 0.108 

Random 
Forest 

$32.48 $35.07 7.10% 7.65% 0.077 0.084 

XGBoost $23.89 $26.59 6.54% 7.08% 0.082 0.088 

 
Watch 

OLS $25.99 $24.97 4.33% 4.86% 0.143 0.248 

Random 
Forest 

$21.10 $18.77 2.84% 3.56% 0.134 0.143 

XGBoost $24.21 $24.76 3.95% 4.69% 0.131 0.223 

 
Tablet 

OLS $19.74 $21.87 1.85% 1.47% 0.021 0.021 

Random 
Forest 

$28.11 $31.06 2.82% 2.96% 0.024 0.026 

XGBoost $19.89 $22.96 2.35% 2.36% 0.020 0.021 

 

For all three product types, the XGBoost models outperformed the Random Forest and OLS models, and 

the models performed equally well using both weighted and unweighted metrics. Looking into the lower 

level groupings showed that medium-sized window lengths (ie. those in the 3-8 range) performed better 

than their extreme counterparts (ie. window lengths of 1 or 12). Furthermore, a Max Depth of 6 

performed better on average than 8 did. With this information, XGBoost was selected as the model of 

choice, and a more intensive grid search was implemented. 

4.2.2 – Intensive Grid Search 

Now that XGBoost has been selected to model the data, a more intensive grid search was run over its 

hyper-parameters using what we had learned from the high-level grid search to optimize the model.  

The grid search was run over the following combinations of hyper-parameters to create monthly models 

for each combination and product type: 



Model Window Length Max Depth No. Rounds Eta 

XGBoost 3, 4, 5, 6, 7, 8 2, 4, 5, 6, 7 300, 600 0.15, 0.2, 0.3 

 

To evaluate the models, the aforementioned metrics for each product type and model grouping were 

again averaged over all of the months in the sample in order to determine which models were 

performing best.  

Phone and watch models performed better with shorter window lengths7, and a window length of four 

months was selected in both cases. The tablet models, on the other hand, performed better with longer 

window lengths – although the difference between short and long windows was somewhat negligible 

(difference in MAE of $0.25). Shorter window lengths are more desirable from a theoretical perspective 

because constant relationship between characteristics and price is assumed for a product within a 

window, and this assumption holds more easily under a shorter window. Thus tablets were modeled 

with a window length of five months, at the (nearly negligible) sacrifice of optimal performance. 

Hyper-parameters were selected based on which combination was most optimal for each product in the 

window length of choice. In all cases, the metrics were the same for the optimal models whether the 

number of rounds completed was 300 or 600, indicating that 300 iterations was sufficient. The optimal 

XGBoost model8 for each product type was as follows: 

Product 
Type 

Window 
Length 

Max Depth No. Rounds Eta 

Phone 4 6 300 0.15 

Watch 4 6 300 0.3 

Tablet 5 6 300 0.3 

 

The corresponding average weighted and unweighted out of sample (test set) metrics for the optimal 

models were as follows: 

Product 
Type 

Average  
MAE 

Average 
WMAE 

Average 
MAPE 

Average 
WMAPE 

Average 

𝑹𝟐 

Average 

W𝑹𝟐 

Phone $54.89 $54.91 6.21% 6.46% 0.955 0.957 

Watch $56.37 $41.95 10.3% 9.42% 0.795 0.838 

Tablet $34.46 $43.62 3.88% 4.91% 0.985 0.98 

 

 

 

                                                           
7 This could be due to the higher relevance of annual flagship model releases for phones and watches compared to 
tablets. 
8 The code for this section was run multiple times, with each iteration producing ever-so-slightly different results. 
Listed here are the hyper-parameters that tended to perform the best, but that does not guarantee that they 
would be the best performing hyper-parameters on any given iteration. In all iterations, the difference between 
the hyper-parameters listed and the next best set of hyper-parameters was negligible. 



 

And below the standard deviation of the monthly metrics are reported: 

Product 
Type 

MAE SD WMAE SD MAPE SD WMAPE SD 𝑹𝟐 SD W𝑹𝟐 SD 

Phone $14.30 $14.84 1.34% 1.65% 0.065 0.063 

Watch $18.78 $17.50 3.28% 5.28% 0.230 0.180 

Tablet $13.47 $11.78 1.48% 1.33% 0.010 0.008 

 

The main takeaway here is that the models still perform similarly with both unweighted and weighted 

metrics, which indicates the algorithm is able to handle relevant observations as effectively as less 

relevant observations. 

It is also valuable to provide some intuition as to why each model performs as it does. The tablet and 

phone models both perform extremely well, while the watch model’s performance is relatively 

lacklustre. There are two potential reasons why this is so: 

 The technical characteristics of tablets and phones are better represented than they are for 

watches, so the actual functionality of the product is better described in the data. 

 The available characteristics of tablets and phones have greater relevance, so the provided 

characteristics are the set of characteristics that are relevant to the consumer (more so for 

tablets). In other words, there is less of a difficult-to-define form and fashion component 

compared to watches. 

Also of interest is how these models perform on observations in the current period (ie. most recent 

period) of their window only, given their intended use in hedonic imputation. Below the metrics 

obtained from using the models to make predictions only on observations from the current period in the 

test set are reported: 

Product 
Type 

Average  
MAE 

Average 
WMAE 

Average 
MAPE 

Average 
WMAPE 

Average 

𝑹𝟐 

Average 

W𝑹𝟐 

Phone $58.40 $53.91 6.20% 6.51% 0.960 0.950 

Watch $67.76 $44.60 11.80% 11.69% 0.634 0.671 

Tablet $41.51 $52.73 4.66% 5.82% 0.983 0.980 

 

And below the standard deviation of the monthly metrics are reported: 

Product 
Type 

MAE SD WMAE 
SD 

MAPE SD WMAPE SD 𝑹𝟐 SD W𝑹𝟐 SD 

Phone $20.59 $24.57 2.19% 3.22% 0.047 0.089 

Watch $21.77 $21.43 3.56% 7.44% 0.359 0.354 

Tablet $16.14 $28.64 1.90% 2.28% 0.012 0.018 

 



Some noise is to be expected due to the significantly smaller sample size for which the metrics are being 

calculated, but overall these results indicate that the phone and tablet models are roughly as good at 

predicting observations in the current period as they are across the sample as a whole. 

Lastly, the cross-validation results are compared to the out-of-sample results on the test set. Due to the 

nature of the program used in this comparison, both MAE and MAPE results are reported below without 

raising e to the power of both the prediction and the test set. However, the important result here is that 

the cross-validation model’s performance is similar to the out-of-sample test sets performance.  

Product 
Type 

Average OOS CV 
MAE 

Average OOS Test 
MAE 

Average OOS CV 
MAPE 

Average OOS Test  
MAPE 

Phone 0.0721 0.0675 1.13% 1.05% 

Watch 0.122 0.118 1.97% 1.91% 

Tablet 0.0460 0.0448 0.716% 0.695% 

 

For each product type, monthly statistical models were calculated and stored using the optimal hyper-

parameters. During the aggregation process detailed in Section 5.1, the corresponding monthly models 

were used to impute missing prices where appropriate. 

4.3 – Hedonic Time Dummy  

The hedonic time dummy modelling process followed the same data preparation process outlined in 

Section 3.1. Paramaterization is a necessity when employing a time dummy approach to price 

measurement because the measure of price change relies on an interpretable coefficient, which means 

that historically, only Generalized Linear Models (GLMs) such as OLS and Weighted Least Square (WLS) 

have been appropriate. In a time dummy hedonic model, the time dummy parameter 𝛿 measures the 

effect of “time” on the log of price after controlling for the relevant quality-determining characteristics.  

4.3.1 – GLM Testing 

Two approaches to modelling hedonic time dummies were tested, an (unweighted) OLS model and a 

WLS model. The OLS model for a given period and product is set up as follows, where ln(𝑋) refers to the 

aforementioned continuous covariates that have been log-transformed, 𝐷 refers to the dummy 

covariates, and Z refers to the matrix of time dummy variables: 

ln (𝑃𝑟𝑖𝑐𝑒)𝑖 =  𝛼 + 𝛽 ln(𝑋𝑖) + 𝜃𝐷𝑖 + ∑ 𝛿𝑡𝑍𝑖(𝑡)
𝑡=1

 + 𝜀𝑖  

The Weighted Least Squares (WLS) approach follows a similar methodology, except that the 

observations are weighted to be representative based on their corresponding brand and retailer weights 

– as detailed in Section 3.  

In all cases, the WLS model outperformed the OLS model from a goodness of fit (𝑅2) perspective, but 

the performance of both models was still far inferior to the XGBoost models. As a result, the output 

from the WLS models was used when aggregating the indices in this comparative study.  

4.4 – Double Machine Learning Time Dummy  



The previous section notes that, historically, only GLMs have been used to calculate time dummies 

thanks to the interpretability of their time dummy coefficients. This is largely because parameterized 

machine learning techniques yield biased parameters – in other words, the effect of individual 

covariates cannot be interpreted. 

In 2018, Chernozhukov et al pioneered a new framework referred to as Double Machine Learning (DML) 

that has the potential to address this limitation. DML allows us to control for covariates using machine 

learning techniques while still producing an interpretable coefficient on a variable of interest. 

4.4.1 – A Brief Overview of DML 

Say there is a dataset with a response variable, price, a treatment variable, time, and a host of other 

control variables whose interpretability is irrelevant. Double ML works as follows: 

1. The data is split into two sets. (Typically 50/50, so not akin to a training/test split)  

2. The response variable, price, is modeled as a function of the control variables in both datasets. 

The treatment variable, time, is not included in this model.  

3. The treatment variable, time, is modeled as a function of the control variables in both datasets.  

4. The response residuals are determined.  

5. The treatment residuals are determined.  

6. The response residuals are regressed (OLS) on the treatment residuals for both datasets, and 

the treatment effect is then defined as the average of the coefficients on the treatment 

residuals from each of the respective regressions. In each of the periods in the sample, the 

treatment effect for the corresponding period serves as the time dummy. 

The framework is called “double” machine learning because two machine learning models are built, one 

for the response variable and one for the treatment variable. There is no specific machine learning 

model that needs to be used to model the response and treatment variables – for example, random 

forest, XGBoost and support vector machines models could all be appropriate. Given that the data has 

to be split into two, having a large number of observations is a luxury. 

DML allows an interpretable coefficient to be produced because it addresses two sources of bias: 

regularization bias and overfitting bias. For a more nuanced discussion on these biases, see the footnote 

here9. 

4.4.2 – DML Model Construction 

Following the outline laid out above, the data for each optimal product type – window length 

combination detailed in Section 4.2 was randomly partitioned into two separate sets, each making up 

50% of the overall observations.  From there, the response variable, price, was modeled as a function of 

                                                           
9 The goal of DML is to get a root-N consistent estimator and the confidence intervals of a parameter of interest (in this case, time). There are 

two sources of bias that DML addresses, which is what allows for an interpretable coefficient to be produced. 

1. Regularization bias is addressed by imposing the Neyman Orthogonality Condition on the score function – which yields an 

unbiased, root-n consistent estimator. 

2. Overfitting bias is addressed by sample-splitting and cross-fitting. By splitting the data into two, obtaining a time dummy for both 

sets, and taking the average of the two results, the risk of overfitting is reduced. 

For a more in-depth discussion on these biases and how they’re addressed, see this presentation from Chernozhukov et al. where they discuss 
their aforementioned original paper. 



the control variables in both datasets. Time was not included as a control. The results of this modelling 

were similar to those in Section 4.2.2. 

Next, the treatment variable, time, was modeled as a function of the control variables in both datasets. 

A number of different methodologies were employed in an effort to give a reliable estimate – none of 

which led to reliable results. 

4.4.2.1 – DML Time Model Experimentation 

In an effort to successfully predict which window in the sample an observation came from (ie. to satisfy 

step 3 of the DML procedure), the classification problem was structured in a variety of different ways: 

1. Binary structure: In this structure, the data was read in two periods at a time, with the current 

time period being coded as 1 and the previous time period being coded as 0. This is the most 

theoretically sound way to approach the problem, and the one used to create the experimental 

indices. 

2. W-class structure: In this structure, the time period was coded from 0…W, where 0 was the 

oldest window in the sample and W was the most recent window.  

3. Three-class structure: In this structure, time was coded as either 0, 1, or 2, where 2 was a 

dummy for the most recent period, 1 was a dummy for the second-most recent period, and 0 

was a dummy for all other periods in the window. 

In classification problems, there are four possible outcomes10 for each predicted class, and metric scores 

are calculated for each individual class. The four possible outcomes of a prediction in a given class (in 

this example, class one in a W-class structure) are as follows: 

 True Positive: the model correctly predicts class one as class one. 

 True Negative: the model correctly predicts class two, three, or four as class two, three, or four. 

 False Positive: the model incorrectly predicts class two, three, or four as class one. 

 False Negative: the model incorrectly predicts class one as class two, three, or four. 

The process is then repeated for classes two, three, and four. The same logic applies to the simplified 

cases of the binary class structure and the three-class structure.  

The above metric scores were calculated for each class, and the models were then evaluated on two 

commonly used metrics, precision and recall, which are detailed below: 

 Precision is a measure of what proportion of predicted positives are truly positive. Optimizing 

for precision ensures that the number of false positives will be minimized. Precision is calculated 

as:  

 
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

 Recall is a measure of what proportion of actual positives are correctly classified. Optimizing for 

recall ensures that the number of false negatives will be minimized. Recall is calculated as: 

                                                           
10 A short write-up further explaining confusion matrix, precision, and recall is available here. 



 
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The score of each metric averaged across all classes in the binary structure is reported below. The binary 

structure is the most theoretically sound way to approach the problem because when there are only 

two periods, the coefficient on the treatment effect can be interpreted as the price movement between 

the two periods – which is the classical interpretation of the adjacent period time dummy approach. 

Product Type Average Precision Average Recall 

Phone 0.389 0.388 

Watch 0.441 0.437 

Tablet 0.384 0.389 

 

The average precision value for phones in these results can be interpreted to mean that when the model 

predicts which period the observation is from, the predicted class is the correct class only 38.9% of the 

time. The average recall value for phones can be interpreted to mean that only 38.8% of the true 

positives in a given class are correctly classified. Given there are only two classes in this structure, these 

results effectively mean that you’d be better off predicting which period an observation is from via 

random draw. 

There was also an attempt to structure the problem in the aforementioned W-class and three-class 

structures. These structures produce less interpretable treatment effects due to the way the raw 

residuals are calculated, but they were tested in an effort to exhaust all avenues of modelling. 

Below, the score of each metric averaged across all classes in the W-class structure are reported, as well 

as the score of each metric in period W, the most recent period in the window. 

Product Type Average Precision Average Recall Average Period W 
Precision 

Average Period W 
Recall 

Phone 0.181 0.184 0.222 0.219 

Watch 0.236 0.235 0.323 0.314 

Tablet 0.125 0.131 0.167 0.171 

 

Context is important when interpreting the results of models with different numbers of classes. At a 

quick glance, it might appear that the binary structure outperformed the W-class structure. However, 

the results need to be interpreted keeping in mind the number of classes. A precision score of 25% in a 

four-class model is akin to a precision score of 50% in a binary model, because in both cases, the 

predicted class is the correct class 1/W of the time. In other words, the results of the W-class structure 

are effectively the same as the binary structure – the model cannot predict which period in the window 

the observation is from with any accuracy at all. 

Lastly, the scores of each metric averaged across all classes in the three-class structure are reported 

below. Given that the only movement of interest is the movement between the previous period and the 

current period, there was some theoretical backing to break the problem into only three classes.  



Product Type Average Precision Average Recall Average Period W 
Precision 

Average Period W 
Recall 

Phone 0.304 0.319 0.265 0.175 

Watch 0.361 0.367 0.362 0.238 

Tablet 0.309 0.329 0.221 0.099 

 

The conclusion here is the same – based on the above approach, the time period that an observation 

falls in cannot be predicted with any certainty.  

4.4.3 – Discussion Regarding Results 

For all three of phones, watches, and tablets, a given item has constant characteristics for its time on 

market. Furthermore, churn rates are not high enough and the characteristics of entering products are 

not significantly different enough to affect the composition of product characteristics in the sample in a 

relevant manner. As a result, it is extremely challenging to accurately predict which period the product 

was sold in in the MDDI based on its characteristics. 

Given the weakness of the time component of the DML models and the excellent performance of the 

price models11, there would be no justification to implement the DML approach in the MDDI. 

Nonetheless, this research is an important contribution to the research and development of CPI’s for 

two main reasons: 

 Elementary aggregates that experience large amounts of product churn or seasonality, such as 

the price indices for clothing, are potentially well suited for a DML framework. 

 More generally, any price indices that are calculated on longer intervals – such as quarterly12, 

semi-annually, or annually – and experience notable product churn over that interval have the 

potential to benefit from a DML framework. 

While the DML approach could not be used in the estimation of the MDDI, the indices were still 

calculated using the results of the binary-class structure in an effort to: 

 See how they compare to the results from the hedonic imputation and hedonic time dummy 

approaches. 

 Lay the ground work for future research on the implementation of DML for price measurement. 

The result of these index calculations was that the price movements of the DML indices were seemingly 

random, likely due to the inability of the model to accurately predict time. The indices were not very 

comparable to the indices constructed using other methodologies, and as a result they are not shown in 

Section 6.13 

 

                                                           
11 This result is actually implied by the fact that the phone and watch models performed just as well in the most-
recent period of the window. If there were any discernible characteristics across periods, it likely would’ve led to 
differences in performance across periods. 
12 For example, Australia reports their CPI on a quarterly basis. 
13 If you’d like to see the DML indices or chat further about DML, please contact the authors. 



5 – Aggregation Structures 

This section details the aggregation structures tested in determining the best way to construct the 

indices. 

5.1 – Hedonic Imputation Aggregation Structures 

The following process describes the general framework used to aggregate the hedonic imputation 

indices. First, within each brand b of each product p, price relatives for each observation i in a time 

period t were calculated by dividing P1 by P0: 

𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑖,𝑡
𝑝,𝑏

=
𝑃1𝑖,𝑡

𝑃0𝑖,𝑡
 

Next, within each product, the retailer weights were divvied up by the number of observations within 

each retailer. For example, if Retailer 1 had a retailer weight of $10, and there were ten phone 

observations from that retailer, each observation would be assigned a retailer weight of $1. This is done 

so that the retailer weights in each period are constant for each retailer. This is desirable because it 

avoids the potential pitfall of implicitly weighting one retailer more than another in scenarios where the 

amounts of observations collected by retailer vary across periods, which is common with this type of 

data. 

From here, the price relatives are aggregated up to the product-brand level by calculating the geometric 

mean of price relatives for each group. Each observation in this calculation is weighted by its 

corresponding divvied up retailer weight value: 

𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡
𝑝,𝑏

= ∏ 𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑖,𝑡
𝑝,𝑏

𝑁

𝑖=1

𝑤𝑖,𝑡,𝑟
𝑝

/ ∑ 𝑤𝑖,𝑡,𝑟
𝑝

 𝑁
𝑖=1

 

In the case that a brand appears in the current period but did not appear in the previous period, it is 

imputed using overall mean imputation.  

In each period, weights are price-updated by multiplying the previous period’s weight by the current 

period’s price movement. In other words, price-updating involves the initial set of expenditures being 

multiplied by the estimated pure price change: 

𝑤𝑡
𝑝,𝑏

= 𝑤𝑡−1
𝑝,𝑏

 × 𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡
𝑝,𝑏

 

These price-updated weights are then used to aggregate up to the product level: 

𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡
𝑝

=
∑ 𝑤𝑡

𝑝,𝑏

∑ 𝑤𝑡−1
𝑝,𝑏  

This produces a single number – the relative (weighted) price change for product p from P0 to P1. 

Note that the arithmetic mean is taken instead of the geomean at this stage. Taking the geomean tends 

to yield a smaller price movement, and because the price movements at the brand level are mostly 



independent (ie. people do not substitute between brands14), a weighted arithmetic mean is used when 

aggregating to the product level to better capture the effects of each of the brands individual price 

movements.  

Some of the products in the sample fall under the same EP. When this is the case, one further 

aggregation is required. To do this, the weights are once again price-updated – this time at the EA level. 

𝑤𝑡
𝑝

= 𝑤𝑡−1
𝑝

 × 𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡
𝑝

 

There is not much substitution at the product level (ie. consumers do not substitute a tablet for a 

smartwatch), so a weighted arithmetic mean is again used to aggregate up. 

𝑝𝑟𝑖𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡
𝐸𝐴 =

∑ 𝑤𝑡
𝑝

∑ 𝑤𝑡−1
𝑝  

The general framework used in the MDDI’s hedonic index construction described above is summarized 

in the following diagram:  

 

In the next section, a number of variants are tested in an effort to determine the robustness of the 

methodology. 

                                                           
14 There is some argument to be made that people are more likely to substitute between brands within an 
operating system. This could potentially be an interesting aggregation structure to look at in the future, but it is 
not pursued in this paper. 



5.1.1 – Robustness Testing 

This section details the different approaches taken in using the XGBoost model to quality adjust price 

movements in the indices, namely: 

 Capped vs uncapped predictions 

 Single imputation (imputing missing prices of entries and exits) vs full imputation (imputing 

prices of all observations) 

 Limits on the number of missing covariates used in prediction 

From an operations standpoint, XGBoost potentially has an extremely desirable property – its ability to 

handle missing values. The algorithm uses a technique called sparsity-aware split finding when making 

its predictions – in easy to digest terms, once a model is trained it simply attaches a default direction15 

to each decision node. In the context of hedonic imputation, this means that predictions can still be 

made with XGBoost, even when some characteristics in the data are missing. 

To test how effective XGBoost was at making predictions when characteristics were missing, a variety of 

single hedonic imputation indices were constructed – capped and uncapped, with varying numbers of 

missing covariates allowed – to see if there were drastic changes across indices when the maximum 

number of missing characteristics allowed was changed.  

                                                           
15 For a more in-depth discussion of sparsity-aware split finding, see section 3.4 of Chen and Guestrin’s 2016 paper 
on XGBoost. 



 

Recall that the covariates used in the watch models are all binary except for the case size, which is why 

the maximum number of missing covariates stops at one. 

For the uncapped indices of each product, there were noticeable differences between the series 

involving only observations without missing characteristics compared to those using any amount of 

sparsity-aware split finding. This suggests that while XGBoost has the potentially desirable feature to still 

make predictions in the presence of missing covariates, its use would require further investigation into 

how to optimize it such that indices are not arbitrarily affected by its use. Additionally, it doesn’t make 

much in the way of sense to model with missing covariates just for the sake of more observations. To 

justify using observations with missing covariates, it should be the case that sparsity-aware split finding 

increases sample size in areas that need better representation. For instance, if sparsity-aware split 

finding led to more observations for retailers or brands that had very high weight per observation but a 

low number of observations, the trade-off could potentially be justified. However, until a metric is 

defined to determine if segments of the data would benefit from this, there is no justification to use it in 

the indices. 



The difference in capped and uncapped single hedonic imputation indices also helped inform the 

argument on capping predictions. In practice, NSO’s often flag observations with large imputed price 

changes or set a cap on imputed values at +/- some multiple of the observed value’s price. This paper 

experiments with a cap of 10%. The logic behind this is that there’s a better chance that the direction of 

a prediction is right than the exact magnitude of a prediction, so capping could be used to reduce the 

impact of noisy predictions in an effort to reduce the volatility of an index while still maintaining the 

trend. 

To further test the effect of capping, full hedonic imputation indices using only observations with no 

missing covariates were constructed and contrasted with their single hedonic imputation counterparts. 

It is of note that full imputation indices require vastly more predictions, and as a result could be subject 

to larger amounts of noise. The full and single hedonic imputation indices are contrasted below: 

 

Particularly of interest is the capped vs uncapped results for phones. At the beginning of 2021, a major 

upwards price movement is observed. This coincides with the introduction of several new large-scale 

retailers that make up over half the sample, and lasts for approximately the length of the window. This 

means that the model was making predictions on observations that potentially had both different 



relationships between characteristics and price than the incumbent sample, as well as a different 

composition of characteristics in general. Before and after the introduction of these retailers, the price 

movements reflect the general trend seen in the capped models – particularly in the single imputation 

case, which is potentially less prone to noise than full imputation is. This effect underscores the need for 

further research on how best to accommodate changes in the data when introducing new sources to the 

web-scraped data. In the case of watches, there were issues with the data generation process of the 

new retailers, resulting in those retailers being introduced a few months later, at which time a similar 

magnitude large price movement is observed. Two potential solutions to this issue could be: 

 Conditional caps being implemented in scenarios where new characteristics or data sources are 

introduced. 

 A subject matter expert making manual changes to determine price movements when price 

movements stray across some threshold. 

Also surprising is that the uncapped full imputation index for tablets experience such volatility. With a 

cap of 10%, and an average MAPE of only ~5%, one would expect the cap to have little effect on the 

results. Conversely, with a cap of 10% and an average MAPE of over 10%, one would expect the cap to 

have had a larger effect on watches. Further investigation on the relationship between MAPE and the 

effects that capping predictions has on the indices is warranted.  

To summarise the results of this robustness testing: 

 Uncapped indices are preferred to 10% capped indices because the introduction of the cap led 

to alterations in the trend without appearing to lower volatility. Further research will look at 

scenarios where capping could be beneficial, such as when new data sources are introduced. 

 Indices constructed with no missing covariates are preferred to indices that make use of 

XGBoost’s sparsity-aware split finding feature because no research has yet been undertaken to 

determine the extent to which segments of the data would benefit from it. 

 Single imputation is preferred to full imputation as the majority of the prices it uses are 

observed instead of imputed, and as a result it is less prone to volatile predictions. 

 

5.2 – Time Dummy Aggregation Structures 

Using the results of the calculations described in Section 4.3.1, the time dummy is then calculated as the 

coefficient on the current period less the coefficient on the previous period, raised to the power of e. 

This is referred to as a movement splice structure. 

Time Dummy Relative𝑡 =  𝑒𝛿𝑡 −𝛿𝑡−1  

Note that in a two-period window, the time dummy movement simplifies to 𝑒𝛿𝑡 ., as there is no 𝛿𝑡−1.  

The hedonic time dummy models were generally not able to model the data nearly as well as the 

XGBoost models. For products where the goodness of fit was comparable to XGBoost (ie. tablets), the 

time dummy methodologies produced somewhat comparable indices, and for products where the 

goodness of fit was far inferior (ie. watches), the time dummy methodologies produced drastically 

different indices. This result suggests that the time dummy indices produced inferior results to the 

hedonic imputation indices. It was also for this reason that window splice and mean splice structures 



were not tested – given the superior modelling power of XGBoost, it was difficult to justify spending 

time developing robustness checks for the OLS-dependent methodologies. 

The same formula applies to constructing the DML time dummies. As expected, the DML methodology 

produced different and more volatile indices than the other methodologies. 

6 - Discussion of Indices 

The plot below compares the aforementioned indices, as well as matched model indices16 for each of 

the products and monthly average prices, which act solely as a reference point. Also of note is that in all 

cases, the weighted hedonic time dummy indices do not resemble either the matched model or the 

hedonic imputation indices, which potentially speaks to fact that the OLS models were outperformed by 

the XGBoost models. 

 

                                                           
16 It is assumed that the reader is familiar with matched models. Note that the matched models constructed below 
use only observations that had no missing characteristics. This was done in an effort to make them more 
comparable with the hedonic imputation indices. 



The comparison of indices by methodology across products highlights different results for each product. 

In the case of the single imputation index for phones, removing the window featuring the introduction 

of new retailers yields an index with little price change over the two year window, though it is quite 

volatile. This does not well approximate any of the other methodologies. The results for tablets are the 

most consistent, and the hedonic imputation index well approximates the matched model with no 

specifically volatile months. Lastly, in the case of watches, similar price movements across the matched 

model and hedonic imputation indices are observed until the new retailers are introduced, at which 

time the two indices diverge. In all cases, the hedonic imputation indices were less volatile than average 

prices – which is what one would expect given the goal of hedonic imputation, like all quality adjustment 

methods, is to remove the effect of quality changes on measured price changes. 

These results highlight potential areas for further research. It is encouraging that the hedonic 

imputation indices for tablets appear to be largely unaffected by the structural break caused by the 

introduction of the new retailers, and research will be undertaken to determine how best to account for 

structural breaks of this nature moving forward. In the case of the watch indices, which experience 

higher volatility and worse modelling fits than the other products, work could be undertaken to either 

investigate whether an alternative item has similar price movements or to further refine the data and 

methods used. 

Lastly, it is of value to discuss how these results will evolve as time passes. Due to the technical nature of 

the products in question, as time passes it is likely that: 

 New technical characteristics that the model does not currently capture will become an 

important input. 

 Current technical characteristics will lose relevance and become a less important input. 

 Interactions between different characteristics and how those interactions relate to the price of a 

given product may change. 

The first two points underscore the need for a regular and systematic review of the product landscape 

to ensure that the models are able to operate in periods where the composition of products and data 

are rapidly changing. The last point is addressed by the un-parameterized nature of XGBoost – which 

allows for the model to capture the changing effects of these interactions over time. 

7 – Conclusion 

This research is part of Statistics Canada’s overarching goal of modernizing the methods and data used 
in the Canadian CPI.  

This preliminary research suggests that DML is not applicable to the MDDI. However, by allowing for 
causal inference in an otherwise non-parametric framework, DML has the potential for increased 
flexibility of the application for machine learning in quality adjustment processes. For this potential to 
be realized, it must be possible to establish a useable relationship between characteristics and period, 
which was not found in the case of the MDDI. 

Furthermore, our work on hedonic imputation underscores both the predictive power of XGBoost for 
NSO’s performing hedonic imputation and makes note of both the potential and risks for the algorithm 
to be used in reducing the operational burden in a production environment with its ability to make 
predictions when characteristics are missing. 


