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1 Introduction

The use of scanner data in a Consumer Price Index (CPI) gives rise to an aggregation problem

that can be subdivided into three stages.

1. In the first stage, individual transactions are combined into an individual product for

which an average price and a total quantity sold can be calculated.

2. In the second stage, the previously specified individual products are further aggregated

using, for example, a multilateral method, in order to obtain an elementary price index.

3. In the third stage, the previously calculated elementary price indices are further combined

with other price indices in order to obtain price indices for the higher-level aggregates in

the CPI.

The second stage has received a lot of attention from a theoretical and practical point of

view. There are many studies on the properties, results and implementation issues of different

bilateral and multilateral index formulas. Very often these studies rely on the assumption that

the individual products together with their prices and quantities are given. However, any in-

dex compilation method applied in the second stage is conditional on the product specification

applied in the first stage. This will be the focus of this paper.

Product specification has been recognized as a critical step that could jeopardize any gains

in bias reduction that we would typically expect from using scanner data. While scanner data

∗Eurostat, Unit C4 (Price statistics. Purchasing Power Parities. Housing statistics). The views expressed

in this paper are those of the author and do not necessarily reflect the views of the European Commission

(Eurostat). The data set included in Annex C was used by A. Chessa in a training session on the MARS

method that was conducted during the 2018 Eurostat Workshop on Scanner Data organized by Statistics

Norway in Oslo. We are thankful for the permission to reproduce this example in this paper.
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helps reducing lower-level substitution bias, other biases can appear because products are spec-

ified too tightly or too broadly (see section 3.1.2 in European Central Bank, 2021 [9]). Under

certain pricing strategies, products may enter or exit with unusually high or low prices. It

is known that this creates biases in traditional matched model methods (see Eurostat, 2021

[10]), and these biases propagate to scanner data and multilateral methods (see Melser and

Webster, 2021 [15]). Konny et al., 2019 [14] stresses that multilateral index methods do solve

the problem of chain drift but they are not fully satisfactory to cope with life-cycle pricing. For

example, the multilateral methods do not solve the downward drift in the price index for new ve-

hicles caused by the downward price trends of a given model year (see Williams et al., 2019 [19]).

Technically, tightly specified products may cause a bias as new and disappearing products

in the two comparison periods are not taken into account in a matched price index. Broadly

specified products may cause a bias as the underlying transactions that make up the product

may not be of the same quality. This trade-off has been referred to as assignment bias versus

assortment bias (Von Auer, 2017 [16]). This trade-off between homogeneity and stability over

time has also been highlighted by Chessa, 2019 [3] who developed the MARS method as an

operational tool for finding a compromise between these two objectives. In this paper, we ex-

amine this trade-off in the framework of a Fisher price index and extend the analysis defined

in the bilateral context to the multilateral context.

This paper is organized as follows. In section 2, we first discuss the dimensions of product

specification. In section 3, we formalize the problem from an index number point of view by

considering matched, hybrid and imputation price indices. In section 4, we compare these three

types of indices in order to assess the matched-model bias and the unit value bias. The analysis

is illustrated on three data sets in section 5. Finally, we draw some conclusions in section 6.

2 Individual product specification

In order to calculate a price index with scanner data, it is necessary to specify beforehand the

individual product (see chapter 3 in Eurostat, 2022 [11]). Conceptually, a single transaction

specified by the product characteristics, the timing and place of purchase and the terms of

supply is the most granular unit for which a price can be observed. In practice, we do not

work with single transactions, but with individual products. The individual product is the

statistical unit which is tracked over time and which corresponds to the input of, for example,

a multilateral method. When specifying individual products, one needs to consider the time,

outlet and product dimensions, as shown in figure 1. An average price (unit value) is calculated

over days or weeks of the reference period, over outlets and possibly over item codes. An earlier

discussion on this topic can be found in Dalèn, 2017 [4].

The individual product can be defined at any level of these successive aggregations. It may

2



Figure 1: From a transacted product to homogeneous product

be defined in very narrow terms, referring for example to an item code in an outlet for a given

time period. Alternatively, it can be defined in broader terms, for example comprising several

item codes sold in several outlets for a given time period. The specification of the individual

product is a critical step which can have a significant impact on the final index.

The main idea of creating broader individual products is to increase the matching over time.

The number of individual products that will be taken into account in the index compilation

will decrease when more of the data are grouped together. At the same time, there is a limit

to this strategy. In principle, transacted products can only be combined as long as there are no

significant quality differences between them. Quality differences must be evaluated with respect

to the already mentioned time, outlet and product dimensions. This is the main trade-off which

is examined in this paper.

Technically the order of aggregation (first over time, then over outlets and finally over item

codes) does not matter. However, we discuss the three dimensions in this order as the decision

to combine could be increasingly challenged.

The treatment of the time dimension is the least controversial. In general it is appropri-

ate to calculate a unit value when an item is sold at different prices at different times within

the same month1. Ideally the average price should cover as much as possible of the reference

month. Diewert, Fox and de Haan, 2016 [8] showed that aggregation over only one week of

the month can be upward biased compared to aggregation over the full month. Production

calendar constraints explain that in practice, very often only the first two or three weeks of the

reference month are used in a CPI.

The treatment of the outlet dimension depends on circumstances. The individual product

could be specified at the most detailed outlet level available in the data. Quality differences

between outlets can be associated with different opening hours, different assortments, etc. Ag-

gregation across outlets can be envisaged if data is only supplied at a more aggregated level or

1For some products, such as accommodation or transport services, the timing is an important quality di-
mension. Traveling on a Friday evening may be considered as a different product (i.e. a different quality) from
traveling on a Wednesday afternoon. The price may also depend on the moment of purchase. In such a context,
one could argue to treat differences in the time of supply of the service, and possibly differences in the time of
booking of the service, as differences in quality.
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if for example price levels are similar in the outlets (for example of the same type and chain).

The impact of the outlet dimension can be empirically assessed (see Ivancic and Fox, 2013[13]).

The outlet dimension is also examined in Azaircabe, 2022 [1]. This paper looks at unit value

aggregation over different providers that offer on the one hand ride sharing services, and on the

other hand taxi ride services.

The treatment of the product dimension is the most controversial one. The scanner

data usually includes an item code such as a Global Trade Identification Number (GTIN) or

a slightly broader Stock-Keeping Unit (SKU) code. In general, there is some product churn,

meaning that the set of item codes is not stable over time. There are different strategies that

can be used to cope with a dynamic product universe. In this paper, we consider the following

three strategies.

1. Matching. In many cases, it could be satisfactory to define the individual product at the

GTIN or SKU level. With such a strategy, item codes are taken into account if they are

available in two comparison periods.

2. Grouping The item codes are combined into broader products, thereby reducing the lack

of matching across time. However, this may create other problems as item codes may be

grouped together which are not of the same quality.

3. Imputation In order to take into account the item codes that are not available in the

two comparison periods, a price is explicitly imputed for these products in the periods

in which they are not available. This allows then to estimate a price change for these

unmatched item codes.

In principle, the matching approach is the easiest approach to apply. It only requires an

appropriate product identifier whereas some kind of product characteristics are usually needed

in order to group items together or to estimate a price of a missing item.

The grouping approach is relatively easy to explain. Sometimes the supplied data is already

grouped and a more disaggregated approach is not possible. However, often, the supplied data

can be grouped in various ways. This will make it possible to compare the index obtained from

the item codes with the index obtained after grouping some of the item codes. It leads to the

practical question of which one of the two approaches is most suitable. Grouping has been

proposed by Chessa as a basis for processing scanner data in the Dutch CPI ([2]).

Finally, the imputation approach can be considered as valid from an index number per-

spective. The practical challenge with this approach is that we need a method to estimate

the missing prices. In this paper, we will use the imputation approach as a benchmark and

compare it to the other two approaches.
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pt−1 pt Price change
Item A 25 -
Item B - 58
Item C 40 42 +5.0%
Item D 30 33 +10.0%
Item E 20 23 +15.0%
Geo. avg. price 28.8 31.7 +9.9%

Table 1: Matching

Special attention should be given to situations where the pricing strategy depends on the

life-cycle of a product. For example, it may happen that the last available price of the an

item is a reduced price. This situation can be encountered at the end of a sales period and is

especially common in clothing and footwear. Reduced prices can also be observed in situations

of inventory clearing or closure of an outlet.

The impact of a reduced last price is best explained by an example2. Suppose that an item

A is available up to period t− 1, while its successor item B is available from period t onwards.

We suppose that the two items are of similar quality. The other items C, D and E are available

in the two comparison periods. There are different outcomes:

• Under the matching strategy (see Table 1), the price change between items A and B is

not taken account, but only the price changes of items C, D and E will be used in the

calculations.

• Under the grouping strategy (see Table 2), we would combine item codes A and B into

a single homogenous product and thereby capturing the price change between these two

item codes.

• Under the imputation strategy (see Table 3), we would impute a price for item A in period

t, or alternatively impute a price for item B in period t− 1. The imputations are based

on linking the two items A and B. This means that the imputed price for item A is equal

to the observed price of item B in that period. Similarly, the imputed price for item B in

period t− 1 is equal to the observed price of item A in that period.

This example shows that with clearance prices, the matching strategy will lead to an index

that is downward biased compared to an index calculated with a grouping or imputing strategy.

Note that the direction of the bias depends on the pricing strategy3.

2This example is taken from Eurostat, 2021 [10] which includes recommendations for the Bridged Overlap
method.

3For example, if the first observed price of a new item is unusually high, the index obtained with a matching
strategy will have an upward bias. This may happen at the beginning of the life cycle of a product under a price
skimming strategy (setting a high initial price that a subset of customers is willing to pay in order to maximise
profit (see Eurostat, 2021 [10]).
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pt−1 pt Price change
Hom. prod. (Items A and B) 25 58 +132.0 %
Item C 40 42 +5.0%
Item D 30 33 +10.0%
Item E 20 23 +15.0%
Geo. avg. price 27.7 36.9 +32.5%

Table 2: Grouping

pt−1 pt Price change
Item A 25 58 (imp.) +132.0 %
Item C 40 42 +5.0%
Item D 30 33 +10.0%
Item E 20 23 +15.0%
Geo. avg. price 27.7 36.9 +32.5%

pt−1 pt Price change
Item B 25 (imp.) 58 +132.0 %
Item C 40 42 +5.0%
Item D 30 33 +10.0%
Item E 20 23 +15.0%
Geo. avg. price 27.7 36.9 +32.5%

Table 3: Imputation
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The strategies discussed in this paper can also be related to product descriptions that are

commonly used in a CPI in order to make sampling, replacement and quality adjustment deci-

sions. Some exploratory work has been recently conducted on defining product characteristics

for mobile phones in the Harmonised Index of Consumer Prices (HICP). Instead of simply

matching mobile phone models across time (matching strategy), the main price-determining

product characteristics such as operating system, processor speed, memory, and screen size

could be used for imputing the missing prices (imputation strategy). Another option would

be to group together mobile phone models that have the same values for these main price-

determining product characteristics (grouping strategy).

In the next section we are going to formalize the three strategies in the context of a Fisher

index which is based on both prices and quantities and investigate how much the three strategies

can differ from each other.

3 Matched, imputation and hybrid indices

3.1 Definitions

If both prices and quantities are available, a price index formula should be used that relies on

the weights in the two comparison periods. In this study we will focus on a Fisher index. A

Fisher index has good axiomatic properties and is consistent with a basket approach. In fact,

it is defined as an average of two basket indices that rely on either base or current period quan-

tities. Finally, from an analytical point of view, the Fisher index can be more easily related to

and combined with unit values, which will be a key element in the analysis. The Fisher index

is also the basis for some of the multilateral methods, such as GEKS.

As a starting point, we calculate a Fisher index on the matched item codes. This means

that the aggregate price change is only derived from the set of items that are available in the

two comparison periods. Let Nt be set of items available in period t (t = 0, 1). The set of items

in the two comparison periods 0 and 1 is denoted by M01 = N0∩N1. Moreover, we denote by pti

and qti the price, and the quantity of the item i in period t (t = 0, 1). The matched Laspeyres,

Paasche and Fisher indices between periods 0 and 1 are defined as follows:

P 01
ML =

∑
i∈M01

p1i q
0
i∑

i∈M01
p0i q

0
i

(1)

P 01
MP =

∑
i∈M01

p1i q
1
i∑

i∈M01
p0i q

1
i

(2)

P 01
MF =

√
P 01
MLP

01
MP (3)

One issue with the matched Fisher index is that items that are available in only one of two
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comparison periods are ignored. In order to overcome this limitation, we could estimate a price

for an item in the period in which it is not available. Formally, let N01 = N1 \N0 be the set of

items available in period 1 but not in period 0. Moreover, let D01 = N0 \N1 be the set of items

available in period 0 but not in period 1. We denote by p̂ti an estimated (i.e. not observed)

price of an item in period t (t = 0, 1). The imputation Laspeyres, Paasche and Fisher indices

between periods 0 and 1 are defined as follows (see de Haan, 2001 [5]):

P 01
IL =

∑
i∈M01

p1i q
0
i +

∑
i∈D01

p̂1i q
0
i∑

i∈M01
p0i q

0
i +

∑
i∈D01

p0i q
0
i

(4)

P 01
IP =

∑
i∈M01

p1i q
1
i +

∑
i∈N01

p1i q
1
i∑

i∈M01
p0i q

1
i +

∑
i∈N01

p̂0i q
1
i

(5)

P 01
IF =

√
P 01
ILP

01
IP (6)

The imputation indices solve the lack of matching from which matched indices may suffer

but it requires an estimation of the prices. An alternative strategy to increase the matching

would be to first combine the initial items. The idea is to group similar items together and

create broader individual products.

Formally, let Hk be set of items that belong to the broader product group k. The average

price and total quantity of the product Hk in period t (t = 0, 1) can be derived from the initial

data of items as follows:

p̄tk =

∑
i∈Hk

ptiq
t
i∑

i∈Hk
qti

(7)

Qt
k =

∑
i∈Hk

qti (8)

The index formula is then applied to these broader individual products, instead of applying

it to the initial, tighter, individual products. Following the terminology used in Diewert, 2010

[7], we will refer to this as hybrid indices. The hybrid Laspeyres, Paasche and Fisher indices

are defined as follows4:

P 01
HL =

∑
k p̄

1
kQ

0
k∑

k p̄
0
kQ

0
k

(9)

P 01
HP =

∑
k p̄

1
kQ

1
k∑

k p̄
0
kQ

1
k

(10)

P 01
HF =

√
P 01
HLP

01
HP (11)

4Technically, these hybrid indices are defined for ’matched’ product groups that are available in the two
comparison periods.
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3.2 Imputation method

In order to calculate an imputation index, a price must be estimated for the items that are

only available in one of the two comparison periods. Recall that the missing item i could be

grouped together with other, similar, items. Let κ(i) be the group to which item i belongs

(i ∈ Hκ(i)).The price of the missing item i is then set equal to the average price of Hκ(i) in that

period.

p̂ti = p̄tκ(i) (12)

The quantity for the missing item is zero as no purchase took place for item i in that period.

This imputation method makes use of the information that some items can be grouped to-

gether and can therefore be assumed to be relatively ’similar’. From a practical point of view,

no additional information is needed apart from the assignment of the items into groups5.

This imputation method can also be formalized with a regression in which the dependent

variable is the price and the independent variables are dummy variables for the groups. For-

mally, let Gki be a dummy variable that is set to 1 if the item i belongs to group k, and that

is set to 0 otherwise. Consider the following model to be estimated in period t.

pti = α +
∑
k 6=1

βkGki + εit ∀i ∈ Nt (13)

If each item i in this regression is weighted by its quantity qi, it can be shown that the

estimated price p̂ti for an item obtained from model 13 corresponds to the average price defined

in equation 12.

We can also relate the hybrid index to this model. Recall that in the imputation index, only

missing prices are imputed. This is sometimes referred to as a single imputation approach. We

now consider a full imputation index in which prices for all items are estimated.

P 01
FIL =

∑
i∈M01∪D01

p̂1i q
0
i∑

i∈M01∪D01
p̂0i q

0
i

(14)

P 01
FIP =

∑
i∈M01∪N01

p̂1i q
1
i∑

i∈M01∪N01
p̂0i q

1
i

(15)

P 01
FIF =

√
P 01
FILP

01
FIP (16)

If prices are estimated with model 13, it is straightforward to check that P 01
FIL = P 01

HL and

5If Hκ(i) is empty in period t, then no price can be imputed with this method for the missing item i in
that period. In fact, in such circumstances, the item i will not be included in the matched index (because it is
missing in one period), nor in the imputation index (because a price cannot be estimated in the missing period),
nor in the hybrid index (because the group κ(i) is missing in one period).
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that P 01
FIP = P 01

HP , and that P 01
FIF = P 01

HF . In other words, the hybrid Fisher index can be

seen as a full imputation index whereas the imputation Fisher index can be seen as a single

imputation index, assuming that the prices are estimated with model 13.

3.3 Decompositions

In order to compare the matched, imputation and hybrid indices, we introduce additional

notations. We denote by sti the quantity share in period t of item i within its grouping κ(i)

(t = 0, 1).

sti =
qti
Qt
κ(i)

(17)

Moreover, we denote by σti the quantity share in period t of grouping κ(i) to which the item

i belongs (t = 0, 1). Note that σti is the same for all items that belong to the same grouping.

σti =
Qt
κ(i)∑
kQ

t
k

∀i ∈ Nt (18)

Following the result presented in de Haan, 2001 [5], the difference between an imputation

Fisher index and a matched Fisher index can be decomposed according to the impact of new

and disappearing items (see Annex A):

P 01
IF

P 01
MF

=
ν111
ν011
· δ

1
00

δ000
(19)

The terms ν111 and ν011 refer to the impact of new items and are defined as follows:

ν111 =

(
1 +

∑
i∈N01

p1i s
1
iσ

1
i∑

i∈M01
p1i s

1
iσ

1
i

)0.5

(20)

ν011 =

(
1 +

∑
i∈N01

p̂0i s
1
iσ

1
i∑

i∈M01
p0i s

1
iσ

1
i

)0.5

(21)

The terms δ100 and δ000 refer to the impact of disappearing items and are defined as follows:

δ100 =

(
1 +

∑
i∈D01

p̂1i s
0
iσ

0
i∑

i∈M01
p1i s

0
iσ

0
i

)0.5

(22)

δ000 =

(
1 +

∑
i∈D01

p0i s
0
iσ

0
i∑

i∈M01
p0i s

0
iσ

0
i

)0.5

(23)

If the set of new and disappearing items is small, then all of these terms would be close to

1. As a consequence, there would be no big difference between the matched and the imputation

Fisher index. More interestingly, the equation can also be examined from the perspective of

the life-cycle of a product. Suppose that there are no new items but only disappearing items.

10



For the disappearing items, it can be shown that:

δ100
δ000

> 1 ⇐⇒
∑

i∈D01
p̂1i s

0
iσ

0
i∑

i∈D01
p0i s

0
iσ

0
i

>

∑
i∈M01

p1i s
0
iσ

0
i∑

i∈M01
p0i s

0
iσ

0
i

(24)

Suppose now that an item is sold at a low (exit) price in period 0 and disappears in period

1. It is therefore likely that p̂1i >> p0i ,and as a consequence, the right-hand inequality in 24 is

likely to hold and therefore
δ100
δ000

> 1. This implies that P 01
IF will be larger than P 01

MF (i.e. the

matched index has a downward bias).

Similarly, the difference between an hybrid Fisher index and an imputation Fisher index

can be decomposed according to the impact of the matched, new and disappearing items (see

Annex B).

P 01
HF

P 01
IF

= µ · ν110ν011 ·
1

δ100δ
0
01

(25)

The term ν011 is defined in equation 21. The term δ100 is defined in equation 22. The remaining

terms are defined as follows:

µ =

(∑
i∈M01

p1i s
1
iσ

0
i∑

i∈M01
p1i s

0
iσ

0
i

)0.5

×
(∑

i∈M01
p0i s

1
iσ

1
i∑

i∈M01
p0i s

0
iσ

1
i

)0.5

(26)

ν110 =

(
1 +

∑
i∈N01

p1i s
1
iσ

0
i∑

i∈M01
p1i s

1
iσ

0
i

)0.5

(27)

δ001 =

(
1 +

∑
i∈D01

p0i s
0
iσ

1
i∑

i∈M01
p0i s

0
iσ

1
i

)0.5

(28)

Suppose that there are no new or disappearing items, so that all factors except µ are equal

to one. As a consequence, the matched and imputation Fisher indices are the same. More-

over, suppose that the items that make up a grouping have the same price in each period,

which is therefore identical to the average price for that group. Under such circumstances, it

can be shown that µ = 1, and hence the hybrid index will be identical to the matched index.

This could be a theoretical justification for grouping together items based on similar price levels.

We now consider the following decomposition that brings together the matched, imputation

and hybrid Fisher index:

P 01
HF

P 01
MF

=
P 01
IF

P 01
MF

· P
01
HF

P 01
IF

(29)

We first decomposed the difference between the matched and imputation Fisher index ac-

cording to the impact of new and disappearing items (equation 19). We then decomposed the

he difference between the imputation and hybrid Fisher index into the impact, of matched,

new and disappearing items (equation 25). It is now possible to combine both decompositions

11



P 01
HF

P 01
MF

=
P 01
IF

P 01
MF

× P 01
HF

P 01
IF

= = =

µ
ν111ν

1
10

δ000δ
0
01

=
ν111δ

1
00

ν011δ
0
00
× µ

ν110ν
0
11

δ100δ
0
01

= = =

Matched µ = 1 × µ
× × ×

New ν111ν
1
10 =

ν111
ν011

× ν110ν
0
11

× × ×
Disappearing 1

δ000δ
0
01

=
δ100
δ000

× 1
δ100δ

0
01

Table 4: Decomposition according to matched, new and disappearing items.

with equation 29, as shown in table 4. The price change between an hybrid and matched index

is decomposed into a price change between an imputation and a matched index and a price

change between an hybrid and an imputation index. Each of these components can be further

decomposed into an impact stemming from the matched, from the new and from the disap-

pearing items. This decomposition depends on the imputed prices. In other words, a different

imputation method for the missing prices leads to a different result for this decomposition.

3.4 Quality adjusted unit value indices

A quality adjusted unit value index is defined as follows.

P 01
QU =

∑
i∈N1

p1i q
1
i∑

i∈N1
viq1i

/

∑
i∈N0

p0i q
0
i∑

i∈N0
viq0i

(30)

The vi factors are quality adjustment factors. There are different ways to obtain these

factors (see for example Von Auer, 2014 [18]). In the Geary-Khamis method, these factors are

defined as the average deflated price over a set of periods.

Note that the QU index is based on the tight product specification. The QU index cannot

accommodate imputed prices as items with no quantities are zeroed out. However, a ’hybrid’

variant of the QU index can be defined. This index is based on the average price and aggregated

quantities as defined in 7 and 8.

P 01
QU−H =

∑
k p̄

1
kQ

1
k∑

k v̄kQ
1
k

/

∑
k p̄

0
kQ

0
k∑

k v̄kQ
0
k

(31)

Note that the hybrid variant must have some quality adjustment factors v̄k for each product

grouping k. It can be shown that the hybrid variant compares to the initial variant as follows:
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P 01
QU−H

P 01
QU

=

∑
k v̄kQ

1
k∑

i∈N1
viq1i

/

∑
k v̄kQ

0
k∑

i∈N0
viq0i

(32)

Suppose that the adjustment factors vi for all the items that belong to the group k are the

same and are identical to the adjustment factor v̄k of that group. In fact, a group should be

composed of items of the same quality and therefore it could make sense to assume that these

items have the same quality adjustment factors. In that case, it follows from equation 32 that

P 01
QU−H and P 01

QU are equivalent.

There is no imputation variant for the QU index. It can be shown that QU index compares

to the imputation Fisher index as follows.

P 01
QU

P 01
IF

=

((∑
i∈M01

p1i q
1
i +

∑
i∈N01

p1i q
1
i

)0.5 (∑
i∈M01

p0i q
1
i +

∑
i∈N01

p̂0i q
1
i

)0.5∑
i∈M01∪N01

viq1i

)

/

((∑
i∈M01

p1i q
0
i +

∑
i∈D01

p̂1i q
0
i

)0.5 (∑
i∈M01

p0i q
0
i +

∑
i∈D01

p0i q
0
i

)0.5∑
i∈M01∪D01

viq0i

) (33)

Let us suppose that the quality-adjustment factors are defined as the average of the observed

or estimated price in the two comparison periods.

vi = 0.5 ∗ (p0i + p1i ) ∀i ∈M01 (34)

vi = 0.5 ∗ (p0i + p̂1i ) ∀i ∈ D01 (35)

vi = 0.5 ∗ (p̂0i + p1i ) ∀i ∈ N01 (36)

It has been noted by Von Auer [18] that a QU index with such factors is equivalent to the

Banerjee index. With such quality adjustment factors, the two terms on the right-hand side

of equation 33 may approximate unity: in each fraction, the nominator is a geometric average

and the denominator is an arithmetic average of the same two terms.

Equation 33 can be rearranged in the following way by separating the impact of matched,

new and disappearing items:
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1
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1
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1
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(
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∑
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viq
0
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)
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∑
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(37)

Note that in equation 37, the nominator of the third term is equal to ν111ν
0
11, whereas the

denominator of the fourth term is equal to δ000δ
1
00. We now combine equation 37 with equation

19 in order to derive a relationship between the QU index and the matched Fisher.

P 01
QU

P 01
MF

=
P 01
QU

P 01
IF

P 01
IF

P 01
MF

=
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i∈N01

viq
1
i∑
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/
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0
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)
(38)

In the end, the difference between the QU index and the matched and imputation Fisher

indices depend on the way that the quality adjustment factors compare to the observed or

estimated prices.

4 Matched-model bias and unit value bias

We consider two nested options for specifying the individual product. On the one hand we

have a tight product specification. On the other hand, we have a broad product specification

which is obtained by grouping together the initial items. Tightly specified products may cause

a bias as new and disappearing items in the two comparison periods are not taken into account

in a matched price index. Broadly specified products may cause a bias as the underlying items

that are grouped together may not be of the same quality. Our objective is to evaluate the two

product specifications and find out which one works best. To do so, we will estimate matched-
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model bias and unit value bias.

We quantify the matched-model bias by comparing the matched index with an imputation

index.

b01MM = ln(
P 01
MF

P 01
IF

) ≈ P 01
MF

P 01
IF

− 1 (39)

We quantify the unit value bias by comparing the hybrid index with an imputation index.

b01UV = ln(
P 01
HF

P 01
IF

) ≈ P 01
HF

P 01
IF

− 1 (40)

It follows from the decomposition 29 that the difference between the matched and hybrid

index can be explained by these two biases:

ln(
P 01
HF

P 01
MF

) = b01UV − b01MM (41)

These biases have the following practical implications on the specification of the individual

product.

• Suppose that the matched model-bias is close to 0 but the unit value bias is very different

from 0. In that case, we would prefer the initial (tight) product specification over the

grouped (broad) product specification. This is because the matching of the PMF seems

to be sufficient while PHF is subject to some unit value bias.

• Suppose that the matched-model bias is very different from 0 but the unit value bias is

close to 0, we would prefer the the grouped (broad) product specification over the initial

(tight) product specification. This is because the matching in the PMF seems not to be

sufficient. The matching problem is solved by the PHF , without creating unit value bias.

• Suppose that both matched model-bias and unit value bias are different from 0. Neither

PMF nor PHF is fully satisfactory. In such a case, PIF might be the best solution.

One could argue to use by default the imputation index as it acts as a benchmark index.

However, both the matched and hybrid indices do not rely on imputations. From this point of

view, we may prefer to apply these approaches if results remain satisfactory. The imputation

index is subject to an additional uncertainty as it depends on a specific imputation method.

In our framework, the imputation is based on the groups used in the hybrid index. This im-

putation method should help the compiler to identify any biases with either the tight or the

brought product specification.

A bilateral Fisher index can be applied as a fixed base index or as a chained index. None

of these two strategies is satisfactory in the context of scanner data. A fixed base Fisher index

compares prices in a fixed base period with prices in the current period. The choice of the

base period may have too much influence on the resulting index. Moreover, by moving away
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from the base period, the overlap of products declines, which makes the calculation of price

comparisons more difficult. One way of increasing the overlap of products is to update the base

period each month and chain link the resulting month-on-month Fisher indices. However, it

has been found that a chained Fisher index can be subject to chain drift because the Fisher

index is not transitive.

In order to overcome these limitations, transitive index formulas can be used. Transitivity is

an index number property in which an index that compares periods a and b indirectly through

period c is required to be identical to one that compares periods a and b directly. Several tran-

sitive index formulas have been proposed as a solution when using scanner data (see Chapter

10 in [12], and [11]). These index formulas are part of the family of multilateral methods. In

a multilateral method, the aggregate price change between two comparison periods is obtained

from prices and quantities observed in multiple periods, not only in the two comparison meth-

ods.

One specific example of a multilateral method is the Gini–Eltetö–Köves–Szulc (GEKS)

method. This method is based on the bilateral Fisher indices calculated between any two pe-

riods of a given time window. These bilateral price comparisons are then averaged in order to

obtain the GEKS price index. It can be shown that the GEKS index is the transitive index

that is closest to its underlying bilateral indices.

In our context, we define the following GEKS indices based on the matched, imputation

and hybrid Fisher indices. Let us consider a time window consisting of periods 0, 1, . . . , T over

which the GEKS index is applied. The different GEKS indices are then defined as follows:

P 0,t
GEKS−M =

∏
k∈0..T

(
P 0k
MF · P kt

MF

) 1
T+1 ∀t ∈ 0, 1, . . . , T (42)

P 0,t
GEKS−I =

∏
k∈0..T

(
P 0k
IF · P kt

IF

) 1
T+1 ∀t ∈ 0, 1, . . . , T (43)

P 0,t
GEKS−H =

∏
k∈0..T

(
P 0k
HF · P kt

HF

) 1
T+1 ∀t ∈ 0, 1, . . . , T (44)

Note that all three GEKS indices are transitive. As a consequence, these indices do solve

the problem of ’chain drift’ caused by the bouncing of prices and quantities. This type of chain

drift has been examined in Von Auer, 2019 [17]. However, the GEKS indices are not necessarily

exempted from the matched-model bias and unit value bias. As in the bilateral case, we can

now distinguish, on the one hand, the matched-model bias for a GEKS index based on the

tight product specification from, on the other hand, the unit value bias for a GEKS index

based on the broad product specification. Note that these ’multilateral’ biases can be defined

as a GEKS-type average of the biases observed in the bilateral case.
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b0,tGEKS−MM = ln(
P 0t
GEKS−M

P 0t
GEKS−I

) = ln

( ∏
k∈0..T

((
P 0k
MF

P 0k
IF

)
·
(
P kt
MF

P kt
IF

)) 1
T+1

)
=

1

T + 1

∑
k=0..T

(
b0,kMM + bk,tMM

)
(45)

b0,tGEKS−UV = ln(
P 0t
GEKS−H

P 0t
GEKS−I

) = ln

( ∏
k∈0..T

((
P 0k
HF

P 0k
IF

)
·
(
P kt
HF

P kt
IF

)) 1
T+1

)
=

1

T + 1

∑
k=0..T

(
b0,kUV + bk,tUV

)
(46)

We can naturally extend the decomposition 29 defined in a bilateral context to a multilateral

context as follows:

P 0t
GEKS−H

P 0t
GEKS−M

=
P 0t
GEKS−I

P 0t
GEKS−M

·
P 0t
GEKS−H

P 0t
GEKS−I

(47)

It follows from the decomposition 47 that the difference between the matched and hybrid

GEKS indices can be explained by these two biases:

ln(
P 0t
GEKS−H

P 0t
GEKS−M

) = b0tGEKS−UV − b0tGEKS−MM (48)

The decomposition applied to the GEKS cannot easily be extended to other multilateral

methods such as the Weighted Time Product Dummy or the Geary-Khamis (see Chapter 10 in

[12] for the formal definitions of these methods). This is because these two multilateral methods

are not sensitive to imputed prices 6. It is possible to use either the tight or the broad product

specification with these methods, but there is not a third option based on imputation. At

the same time, the Weighted Time Product Dummy or the Geary-Khamis are not necessarily

subject to the same type of matched-model bias and unit value bias. Compared to the GEKS,

product churn is treated differently in these two methods. Moreover, these methods are by

definition more closely related to unit value calculations. For example, the Geary-Khamis

method can be seen as a special case of a quality adjusted unit value index.

5 Examples

We illustrate the analysis on three data sets. The first data set (milk) is included in the

IndexNumR package 7. The second data set (T-shirts) is included in Annex C. The third data

set is included in Annex D. The first example is used to show either matched-model bias or

unit value bias. The second example is about a situation with both matched-model and unit

value bias occurring together. The third example illustrates life-cycle pricing.

6Technically these two methods do not pass the responsiveness test (see for example section 4.4.2 in Eurostat,
2022 [11]).

7See hiips://CRAN.R-project.org/package=PriceIndices
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5.1 Example 1

The data set covers 21 periods. There are 75 item codes that are sold in 5 outlets. According

to the tight specification, the individual product is specified as an item code in a specific outlet.

There are 275 such tightly defined products. According to the broad specification, the individ-

ual product is simply defined as an item code. In order to derive the broad specification, the

same item code sold in different outlets is combined in order to obtain an average price and a

total quantity for the item code.

In this example, the two product specifications give very similar results, and both matched-

model bias (of the tight product specification) and and unit value bias (of the broad product

specification) is very small. This is because the prices of an item in the different outlets are

relatively similar. In the end, we could be indifferent between both product specifications.

In order to illustrate matched-model bias, we will create some missingness in the data set

by randomly removing tightly defined individual products. Four scenarios are considered. We

randomly remove 10%, 20%, 30% or 40% of the individual products. The price indices and bias

decomposition are then calculated for each adjusted data set. The results included in figure 2

show that a larger share of missing products logically increases matched-model bias. Note that

the direction of the matched-model bias is undefined, and may even cancel out on average over

the 21 time periods. As expected, unit value bias remains small in all scenarios as prices. Still,

in order to treat the missingness in this case, we would prefer the broad product specification

over the tight product specification.

Instead of randomly removing products, we now conduct another modification on the initial

milk data set. In 2 out of the 5 outlets8, we will increase the prices by respectively 10%,

20%, 30 % and 40 %. We assume that these outlets charge a premium for additional benefits

(for example larger opening hours, convenient location, etc.) while selling the same products.

The results included in figure 3 show that a higher price level in 2 out of 5 outlets increases

unit value bias. The matched-model bias remains small in all four scenarios. The matched,

imputation and hybrid GEKS indices under the fourth scenario (prices increased by 40% in

2 out of 5 outlets) are shown in figure 4. In such a circumstance, we would prefer the tight

product specification over the broad product specification9.

5.2 Example 2

In this data set, there are 13 periods and 30 item codes, which can be grouped together into 6

homogeneous products. The grouping is derived from the following attributes of the T-shirts:

Fabric (cotton or organic), Sleeves (long or short), Number of items (1, 2 or 3). The data set is

8We augment the prices of the outlets coded as 2210 and 1311 in the data set.
9Another, intermediate, solution would be to group together the 2 outlets that have a higher price level, and

the 3 outlets that have a lower price level.
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10% of products deleted 20% of products deleted

30% of products deleted 40% of products deleted

Figure 2: Bias decomposition for the milk data set after randomly deleting tightly defined
products.
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Prices increased by 10% Prices increased by 20%

Prices increased by 30% Prices increased by 40%

Figure 3: Bias decomposition for the milk data set after increasing the price level in 2 out of 5
outlets.

Figure 4: Matched, imputation and hybrid GEKS indices for the milk data set (Prices increased
by 40% in 2 out of 5 outlets).
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Figure 5: Matched, imputation and hybrid indices for the T-shirt data set.

characterized by an overall downward trend in prices and significant item churn. All the data

are included in Annex C 10.

In this example, there are significant differences between the matched, imputation and hy-

brid indices (see Figures 5). In fact, the matched GEKS index sits below the GEKS imputation

index, which means that there is some negative matched-model bias. The hybrid GEKS index

sits above the imputation GEKS index, which means that there is some positive unit value

bias. As a consequence, an imputation index could be the preferred solution.

The matched-model and unit value biases become larger starting with period 3 (see figure

6). This is because there are several items that are not available in periods 0 and 1, but avail-

able thereafter. These items lead to both matched-model bias because of their non-inclusion

in the matched approach and to unit value bias once they are grouped with other items. This

example is also useful to illustrate the impact of using a multilateral approach instead of a

bilateral approach. The biases in the bilateral case are increasing in magnitude from period 3

onwards, while in the multilateral case they are approximately stable at an average level.

The Geary-Khamis is also applied to this data set. There are two variants. The first variant

is based on the individual products defined at the GTIN level (GK-Matched). The second vari-

ant is based on the homogeneous products (GK-Hybrid). There is no variant based on imputed

prices. On this example, the GK-Matched index is in fact very similar to the imputation GEKS

index, wheres the GK-Hybrid index is very similar to the hybrid GEKS index.

10A related data set has also been used in De Haan, 2021 [6] to show the impact of new and disappearing
items on Time-Product Dummy and Time Dummy Hedonic Indexes.
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Figure 6: Bias decomposition for the T-shirt data set.

5.3 Example 3

This data set illustrates products that are subject to life-cycle pricing. The data set is composed

of the following models:

• Model 1a is available in periods 1-7, its successor model 1b is available in periods 6-11,

and its successor model 3c is available in periods 11-12.

• Model 2a is available in periods 2-9, its successor model 2b is available in periods 8-12,

and its successor model 3c is available in periods 11-12.

• Model 3a is available in periods 1-12 and its successor model 3b is available in periods

11-12.

For each model, prices continuously decrease during its life-cycle. The successor model has

a slightly higher initial price than the initial price of the previous model. The matched indices

are calculated by treating each model as a different individual product. In the hybrid indices,

the different variants of a model are grouped together.

This example shows (see figure 7) that the matched GEKS index is downward biased com-

pared to the imputation GEKS index. In other words, the matched GEKS index has some

negative matched-model bias. The matched GEKS index does not capture well the rebound

caused by high initial prices of the successor models. The imputation GEKS index slightly sits
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Figure 7: Matched, imputation and hybrid indices with life-cycle pricing data.

below the hybrid GEKS index, pointing to some small unit value bias of the hybrid GEKS index.

The matched and hybrid variants of the GK are also applied to this data set. In this case,

the matched GK has a downward trend that is even more pronounced than the one observed

for the matched GEKS, whereas the hybrid variant of the GK is similar to the hybrid GEKS.
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6 Conclusions

The individual product that enters the price index can often be specified in different ways. In

order to provide some guidance on which product specification to use, we compare a matched

price index based on a tight product specification to a hybrid index based on a broad speci-

fication. We assess both unit value bias and matched-model bias by comparing the resulting

matched and hybrid indices to an imputation index. One contribution of this paper is to clarify

the relationship between these three indices.

Our practical conclusion is to prefer the broad product specification over the tight product

specification if the matched-model bias of the tight product specification outweighs the unit

value bias of the broad product specification, and vice-versa. Imputation should best be con-

sidered if both matched-model bias and unit value bias are large.

While the analysis in this paper is an attempt to formalize the problem of product specifi-

cation, there are several limitations that should be further investigated.

• In the imputation index, a price is estimated for the unmatched individual products based

on the average price of similar individual products in the same period. This may not be

the best imputation method. Other imputation methods could lead to other conclusions.

More work is needed on imputation methods.

• While we focus on unit value bias, the real objective is to measure the degree of quality

differences of products that are grouped together. Unit value bias is a only proxy measure

and other, more targeted, measures should be developed.

• In practice, there can be different ways how items can be grouped together. As a conse-

quence, there may be more than two different product specification to chose from. The

model in this paper needs to be made more operational in order to help compilers select

one out of many product specifications.

• The hybrid index is based on two stages. A Fisher index is calculated from previously

calculated unit values. This could be generalized by calculating a Fisher index from

quality adjusted unit values. It should be investigated how such an index would compare

to the imputation Fisher index.

• The framework is derived in the context of a GEKS index. It may also be applicable to

other multilateral methods that are related to the Fisher index. It should be examined

how the concepts of matched-model bias and unit value bias can be extended to other

multilateral methods such as the Weighted Time Product Dummy or the Geary-Khamis.
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Annex A: Comparison between the imputation index and

the matched index

Following the definitions of a matched Laspeyres index (see equation 1) and an imputation

Laspeyres index (see equation 4), we have the following:
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(49)

We also know from equations 17 and 18 that:

s0i × σ0
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×
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(50)

Combining equations 49 and50, we finally obtain that:
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(51)

With a similar reasoning, we obtain the following relationship between a matched Paasche

index (see equation 2) and an imputation Paasche index (see equation 5)
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(52)

The decomposition in 19 is based on a Fisher index and can be obtained by taking the

square root of the equations 51 and 52.

Annex B: Comparison between the hybrid index and the

imputation index

Following the definition of a hybrid Laspeyres index (see equation 9), we get the following:

P 01
HL =

∑
k p̄

1
kQ

0
k∑

k p̄
0
kQ

0
k

=

∑
k

(∑
i∈Hk

p1i q
1
i∑

i∈Hk
q1i

)
Q0
k∑

k

(∑
i∈Hk

p0i q
0
i∑

i∈Hk
q0i

)
Q0
k

(53)

Taking into account the definitions for quantity shares as given in equations 17 and 18, the

previous equation 53 can be rewritten as follows:
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(54)

The set of items will now be separated into matched, new and disappearing products.
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Note that for a new item, the period 0 quantity share s0i must be zero, whereas for a

disappearing item he period 1 quantity share s1i must be zero. Hence, the previous equation

can be further simplified:
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Using again the quantity shares defined equations 17 and 18, the imputation Laspeyres

index (equation 4)can be rewritten as follows:
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Dividing the hybrid Laspeyres index as defined in equation 56 with an imputation Laspeyres

index as defined in equation 57, we obtain the following:
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With a similar reasoning, we can obtain the following for the Paasche indices.
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The decomposition in 25 is based on a Fisher index and can be obtained by taking the

square root of the equations 58 and 59.
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Annex C: Data example 2

ProdID p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

GTIN-01 6.92 6.33 6.16 6.37 5.67 5.67 4.00 3.33 4.00 2.00 2.00 4.00 2.00

GTIN-02 8.88 7.34 8.65 8.33 8.31 8.84 8.21 6.05 5.01 4.92 5.04

GTIN-03 14.29 13.93 14.38 14.00 12.60 12.33 12.56 13.33 14.52 14.74 15.11

GTIN-04 6.97 5.93 4.50 3.00 2.00 2.00 3.00 2.00 1.00 2.00

GTIN-05 4.90 4.88 4.79 4.97 5.22 5.02 5.00 5.02 4.94 4.90 5.10

GTIN-06 7.24 8.39 8.04 8.05 8.67 7.96 5.88 5.01 4.92 4.99

GTIN-07 12.39 11.05 11.87 12.65 12.57 12.06 10.43 10.94 12.32 12.03 12.52

GTIN-08 9.00 6.25 4.00 2.00 1.00 1.00 2.00 1.00 1.00

GTIN-09 7.93 7.89 7.59 7.98 7.91 8.00 7.84 7.25 7.85 7.74 8.00

GTIN-10 9.92 9.85 8.75 8.33 6.80 8.50 7.50 5.50 8.00 4.00 6.00 5.00 4.00

GTIN-11 7.91 7.88 7.61 7.89 8.00 7.72 7.81 7.34 7.87 7.73 7.89

GTIN-12 4.95 4.92 4.81 4.96 5.05 5.08 5.04 5.03 5.00 4.88 4.98

GTIN-13 8.40 7.67 5.00 4.00 4.00 4.00 2.00 2.00 1.00 1.00 1.00 1.00

GTIN-14 10.04 10.06 8.00 5.00 4.00 4.00 1.00 1.00 1.00 1.00 2.00 1.00

GTIN-15 6.91 6.11 5.25 5.50 5.33 4.00 3.00 1.33 3.00 2.00 2.00 1.00 1.00

GTIN-16 5.00 3.50 3.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 3.00 1.00

GTIN-17 14.00 12.40 8.00 9.33 7.33 11.00 5.25 5.67 3.00 8.00 3.00 2.00 1.00

GTIN-18 4.91 4.92 4.81 4.96 4.92 4.92 4.93 5.03 4.92 4.91 4.91

GTIN-19 7.95 6.60 4.00 6.00 3.00 2.00 2.00 2.00 2.00 1.00

GTIN-20 1.00 1.00

GTIN-21 9.89 9.50 8.00 8.00 8.00 4.50 4.00 4.00 2.00 2.00 2.00 2.00 2.00

GTIN-22 6.85 6.00 4.67 5.00 4.00 3.50 3.50 3.00 3.00 2.00 1.00 1.00 1.00

GTIN-23 13.43 11.20 10.67 9.50 9.00 5.00 3.50 3.50 3.00 2.00 1.00

GTIN-24 7.90 6.79 5.75 5.33 4.50 4.50 4.00 4.00 4.00 3.00 2.00 1.00 1.00

GTIN-25 6.85 6.21 5.00 5.33 6.00 5.00 5.00 4.00 2.00 1.00 1.00 1.00

GTIN-26 9.80 9.68 8.33 9.25 8.50 6.75 5.40 5.33 6.50 7.00 7.00 8.00 4.00

GTIN-27 14.20 11.00 7.67 9.33 7.50 7.00 5.33 5.50 6.00 4.00 5.00 2.00 1.00

GTIN-28 9.81 9.76 7.33 8.00 5.25 5.67 3.50 5.00 8.00 5.00 5.00 3.00 2.00

GTIN-29 5.84 4.83 5.30 5.55 5.38 4.17 3.17 2.50 2.00 1.00 1.00

GTIN-30 8.84 8.09 6.90 6.40 7.33 4.75 5.50 2.67 2.50 4.00 2.00 5.00 3.00
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ProdID q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

GTIN-01 103 120 37 19 9 6 6 3 2 1 1 1 1

GTIN-02 81 221 137 163 116 90 141 251 405 487 337

GTIN-03 17 14 8 9 5 3 9 18 27 43 18

GTIN-04 108 15 2 1 1 1 1 1 1 1

GTIN-05 42 75 99 93 23 141 79 51 67 82 50

GTIN-06 34 23 26 20 18 28 73 134 153 97

GTIN-07 23 43 30 31 23 17 30 36 31 37 23

GTIN-08 5 4 1 1 1 1 1 1 1

GTIN-09 41 62 58 57 45 28 45 64 55 66 39

GTIN-10 74 41 8 6 5 2 2 2 1 1 1 1 1

GTIN-11 64 65 62 53 37 25 31 50 52 73 37

GTIN-12 39 66 91 81 20 130 68 40 64 73 46

GTIN-13 5 3 1 1 1 1 1 1 1 1 1 1

GTIN-14 49 16 2 2 1 1 1 1 1 1 1 1

GTIN-15 99 66 8 4 3 5 3 3 1 1 1 1 1

GTIN-16 2 2 2 1 1 1 1 1 1 1 1 1 1

GTIN-17 7 5 5 3 3 1 4 3 1 1 1 1 1

GTIN-18 32 53 67 96 38 73 43 32 48 54 34

GTIN-19 22 10 2 1 1 1 1 1 1 1

GTIN-20 1 1

GTIN-21 27 14 6 2 1 2 1 1 1 1 1 1 1

GTIN-22 61 26 3 3 2 2 2 1 1 1 1 1 1

GTIN-23 7 5 3 2 2 2 4 2 1 1 1

GTIN-24 39 19 4 3 2 2 2 1 1 1 1 1 1

GTIN-25 47 47 5 3 1 1 1 1 1 1 1 1

GTIN-26 30 34 18 8 4 4 5 3 2 1 1 1 1

GTIN-27 5 5 3 3 2 2 3 2 1 1 1 1 1

GTIN-28 47 33 6 4 4 3 2 1 1 1 1 1 1

GTIN-29 50 42 30 22 8 6 6 2 1 1 1

GTIN-30 82 56 10 5 3 4 2 3 2 1 1 1 1

HP code Attributes ProdID

HP1 Cotton; Long; 2 GTIN-30

HP2 Cotton; Long; 2 GTIN-03

HP3 Cotton; Short; 1 GTIN-01

HP3 Cotton; Short; 1 GTIN-04

HP3 Cotton; Short; 1 GTIN-05

HP3 Cotton; Short; 1 GTIN-09

HP3 Cotton; Short; 1 GTIN-11

HP3 Cotton; Short; 1 GTIN-12

HP3 Cotton; Short; 1 GTIN-15

HP3 Cotton; Short; 1 GTIN-16

HP3 Cotton; Short; 1 GTIN-17

HP3 Cotton; Short; 1 GTIN-18

HP3 Cotton; Short; 1 GTIN-19

HP3 Cotton; Short; 1 GTIN-20

HP3 Cotton; Short; 1 GTIN-22

HP3 Cotton; Short; 1 GTIN-23

HP3 Cotton; Short; 1 GTIN-24

HP3 Cotton; Short; 1 GTIN-25

HP3 Cotton; Short; 1 GTIN-29

HP4 Cotton; Short; 2 GTIN-07

HP4 Cotton; Short; 2 GTIN-10

HP4 Cotton; Short; 2 GTIN-14

HP4 Cotton; Short; 2 GTIN-21

HP4 Cotton; Short; 2 GTIN-26

HP4 Cotton; Short; 2 GTIN-28

HP5 Cotton; Short; 3 GTIN-27

HP6 Organic; Short; 1 GTIN-02

HP6 Organic; Short; 1 GTIN-06

HP6 Organic; Short; 1 GTIN-08

HP6 Organic; Short; 1 GTIN-13
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Annex D: Data example 3

ProdID p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Model 1a 100.00 98.00 96.04 94.12 92.24 90.39 88.58

Model 1b 102.00 99.96 97.96 96.00 94.08 92.20

Model 1c 104.00 102.00

Model 2a 100.00 98.00 96.04 94.12 92.24 90.39 88.58 86.81

Model 2b 102.00 99.96 97.96 96.00 94.08

Model 3c 104.00 102.00

Model 3a 100.00 99.00 98.01 97.03 96.06 95.10 94.15 93.21 92.27 91.35 90.44 89.53

Model 3b 104.00 102.00

ProdID q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Model 1a 53 60 65 70 75 50 40

Model 1b 20 40 60 80 85 75

Model 1c 20 40

Model 2a 30 35 40 45 45 45 40 25

Model 2b 20 30 40 40 40

Model 3c 30 30

Model 3a 10 10 10 10 10 10 10 10 10 10 10 10

Model 3b 20 20
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