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Abstract 

 

 

Scanner data are being increasingly integrated by national statistical offices into the compilation of the consumer price 

index. An appealing feature of scanner data is the availability of quantity data along with price quotations recorded at 

the point of sale which makes it possible to consider the full range of index number methods at the elementary level. 

Chain drift is a serious problem encountered in the application of superlative indexes like the Fisher and Tornqvist 

which is often resolved through the use of the Gini-Elteto-Koves-Szulc and the Geary-Khamis methods. These 

somewhat ad hoc solutions lack theoretical foundations and interpretation as cost of living indexes. In this paper we 

establish credentials of the exact CES common varieties (CCV) price index proposed in Redding and Weinstein (2020) 

by proving that the index is transitive and therefore eliminates chain drift when using high frequency data. We 

demonstrate the effectiveness of the index by applying the CCV index along with a raft of other indexes to Japanese 

scanner data. Empirical results suggest a bias associated with the use of Chained Sato-Vartia index is 5.89 percent at 

annual rate. The paper offers additional insights. First, we show that, unlike the Sato-Vartia index, the CCV index is 

monotonic with respect to current prices. Second, the implicit quantity index based on the CCV price index is a 

measure of welfare change. Finally, the paper resolves the problem of specification of normalization condition in 

Redding and Weinstein (2020) by providing a necessary and sufficient condition for the index to satisfy the 

commensurability property which ensures that the index is independent of units of measurement. The CCV index with 

these demonstrated properties may be considered superior to the Fisher ideal index. The paper also discusses some of 

the practical issues surrounding the presence of stocking behaviour, similar to that observed during the COVID-19 

pandemic, and the application of the CCV price indexes. 
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1. Introduction 
 

 

Recently, more and more researchers and statistical offices in various countries are incorporating high 

frequency point of sale scanner data into compilation of aggregate measures of price change. Often they 

encounter the problem of chain drift when chained price index numbers are used. Diewert (2020, p.3) 

describes: “…Chain drift occurs when an index does not return to unity when prices in the current period 

return to their levels in the base period”. The seriousness of chain drift problem is well documented in 

Diewert (2018, 2020)1. The spike in purchases and then return to the original levels is a major driver of the 

chain drift problem. Feenstra and Shapiro (2003) considered the chain drift problem caused by sales and 

stocking behaviour and suggested the use of fixed base indices as a solution. However fixed base index 

numbers have problem including sensitivity of price change measures to the choice of the base period.  

 

The cost-of-living indexes (COLIs) like the Fisher, Tornqvist and S-V indices exhibit significant chain drift 

when using scanner data (de Haan and van der Grient, 2011). To date, solutions to this problem rely heavily 

on multilateral index number formulae which satisfy transitivity. The use of Gini-Elteto-Koves-Szulc 

(GEKS) (Gini, 1931; Elteto and Koves, 1964; Szulc, 1964) index and the rolling-window GEKS methods 

(Ivancic, Diewert and Fox, 2009 and 2011; de Haan, 2008; de Haan and Krsinich, 2014; van Auer, 2019) 

and variants of the Geary (1958) and Khamis (1972) method have been proposed and being explored 

(Chessa, 2016; Lamboray, 2017). For example, the GEKS method builds on the Fisher binary index 

(Diewert, 1976) but has limited economic theoretic interpretation (Neary, 2004). The GEKS method at best 

can be considered as a technique that generates transitive comparisons which deviate the least from a set of 

non-transitive bilateral comparisons. These methods offer viable solutions to the problem lack but solid 

economic theoretic foundations and remain essentially heuristic.  

 

One main reason for the observed chain drift is that while the Fisher, Tornqvist and SV indices are known 

to be exact (Diewert, 1976, Sato, 1976 and Feenstra, 1994) for Konus (1924) based COLI measure of price 

change from the base to a comparison period is defined as the ratio of minimum expenditures required to 

attain a given utility level at prices prevailing in respective periods2, these indices do not satisfy transitivity.   

 

Our research reported here began when we observed the following puzzle with logarithmic price index 

numbers currently in use as deflators. By definition, Konus-based COLI must be monotonically increasing 

in prices in comparison period3 and transitive, i.e.,  price change from period s to t multiplied by price 

change from period t to u must equal price change from s to u.4  But two of the well-known logarithmic 

indices, the Tornqvist (1931) and the Sato (1976)-Vartia (1976) (S-V from here on) indices, which are the 

COLI, respectively for homothetic translog and constant elasticity of substitution (CES) utility functions 

(Diewert, 1976; Sato, 1976; and Feenstra, 1994), fail to satisfy monotonicity (Reinsdorf and 

Dorfman ;1999) and transitivity (can be seen from the numerical example presented in Section 3.2).5 The 

Fisher index, while it satisfies montonicity fails to satisfy transitivity.  

 

                                                      
1  Diewert (2020) will be included as Chapter 7 in the latest version of the CPI Manual 

(ILO/IMF/OECD/UNECE/Eurostat/The World Bank, 2020). 
2 If the minimum expenditure necessary to attain utility level U at prices, p, is denoted by ( , )E p U , then the Konus 

COLI for measuring price changes is given by ( , ) ( , )t sE p U E p U . See section 2 for more details.    
3 This follows from properties of expenditure function from duality theory of consumer behavior. 
4 Since COLI is the ratio ( , ) ( , )t sE p U E p U ,  it should be automatically transitive.  
5 Non-transitivity of S-V index and the process of generating transitive indices from S-V framework are reported in 

Abe and Rao (2019). 
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Before we get further on the puzzle, we note that monotonicity of an aggregate price change measure is 

intuitive whereas importance of transitivity is less obvious. We refer to the classic Samuelson and Swamy 

(1974) (S-S) work where role of transitivity is discussed in several parts of the paper. S-S conclude that if 

the price index for deflating nominal expenditures does not possess transitivity, the implied real 

consumption violates transitivity in consumer preferences, which is reinforced in the quote:  

 

 “Conclusion: So long as we stick to the economic theory of index numbers, the circular test is as required 

as is the property of transitivity itself. And this regardless of homotheticity or nonhomotheticity.” 

(Samuelson and Swamy, 1974, page, 576). 

 

 We note in passing that commonly used formulae6 such as the Laspeyres, Paasche, Fisher, Tornqvist, S-V 

indices, and their chained counterparts fail transitivity. The observation by Samuelson-Swamy is further 

reinforced by the fact that transitivity helps mitigate the chain-drift effect often observed in applications 

involving scanner data.  

 

In this paper, we offer an explanation of the puzzle by drawing on the path breaking and influential research7 

reported in Redding and Weinstein (2020) where R-W propose a class of aggregate price indices with taste 

shocks.  We focus in particular on the insightful observation of R-W that the observed price and expenditure 

data do not usually match the implied levels from an assumed preference structure resulting in demand 

residuals. One of the main contributions of R-W is that the S-V index, which relies on observed prices and 

expenditure shares, fails to properly deal with demand residuals and therefore is prone to bias.  

 

We find demand residuals discussed in R-W to be the key that resolves our puzzle as to why COLI such as 

Tornqvist and S-V indices fail monotonicity and transitivity. Our contribution here is that we are able to 

prove that the introduction of taste shocks (in R-W, 2020) into the utility function leads to a COLI that not 

only eliminates bias in aggregate price change measure (which was the main concern of R-W) but also 

results in an index that satisfies both monotonicity and transitivity. We employ the same R-W normalization 

that the geometric mean of taste shocks is a constant. Apart from the intuitive justification that this 

normalization ensures that logarithm of demand shocks has a mean equal to zero, we establish, in this paper, 

that this normalization belongs to the class of normalizations that ensure that the resulting measure of price 

change is independent of units of measurement. In this process we characterize the class of normalizations 

that ensure commensurability. 

 

In this paper we take a broader view of the “taste” shocks in R-W (2020). There can be several sources of 

shocks that may ultimately result in demand function residuals, such as taste shocks, quality changes (R-

W, 2020)8; stocking behavior (Hendel and Nev, 2006); habit formation (Dynan, 2000) seasonal effects 

(Osbone;1988); and also pure random shocks. In this paper we consider the all-inclusive label, demand 

shocks.  

 

An equally important contribution of this paper is to demonstrate that the general class of logarithmic price 

aggregators proposed by R-W (2020) has the potential to bridge the existing gap between consumer theory 

and practical measurement of price changes using index number formulae. We primarily focus on the 

common goods version of the R-W CES Unified Price Index (CUPI) ignoring the variety effects though the 

                                                      
6 See Diewert (1983) for an account of history of index numbers and for algebraic expressions of these indices. 
7 See Crawford and Neary (2019); Ehrilch et al., (2019); Demuynck and Parenti (2018); Feenstra, Xu and Antonaides  

(2018); and  Martin (2019a and 2019b). These studies refer to the NBER Working Paper Series, Redding and 

Weinstein (2018). 
8 R-W (2020) at various places acknowledge that taste shocks may represent quality changes and also referred to these 

shocks as demand shocks. 
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results we establish here hold for the case with variety effects9. Like R-W, given its tractability and 

importance of CES in consumer and producer behavior theory; macroeconomics; industrial organization; 

and international trade, we   focus on CES preferences. Consequently, we consider CUPI as a prime example 

of generalized logarithmic index with demand shocks. 

 

The paper makes several important contributions. First, we establish two important theoretical properties, 

monotonicity and transitivity, of CUPI thus satisfying an important requirement of Samuelson and Swamy 

(1974) for a price index number to result in welfare comparisons. Second, we prove that the indirect quantity 

index derived using CUPI gives a measure of welfare change. Third, on the practical side, we argue that 

CUPI, due to its transitivity property, is well suited for measuring aggregate price changes with high 

frequency scanner data as it eliminates chain drift10, a problem frequently encountered with other price 

indices (see Diewert, 2018, 2020). Fourth, a distinct practical advantage of CUPI over other transitive 

methods used to reduce chain drift (Diewert, 2020) is that there is no need to revise estimates of price 

changes when data for a new period is introduced. Finally, in a significant finding we offer a closure to an 

open question in R-W (2020, Section II), choice of normalization condition on taste parameters. Invoking 

a fundamental property expected of any measure of aggregate price change, independence of units of 

measurement (commensurability), we are able to prove that the geometric mean normalization of taste 

parameters that underpins CUPI, belong to the class of normalizations that ensure y commensurability.  

 

The paper is organized as follows. Section 2 presents notation and basic demand theoretic results for CES 

with time varying demand shocks. The CUPI is also described.  Section 3 forms the core of the paper with 

results on transitivity and monotonicity, Section 4 focuses on normalization of demand shock parameters. 

Section 5 reports empirical results from the analysis of Japanese scanner data. Section 6 concludes 

demonstrating CUPI provides a bridge between theory and practice of measuring aggregate price changes 

over time. 

 

2. Notation, the Sato-Vartia Index and the CES Unified Price Index (CUPI) 
 

2.1 Notation 
 

Let prices, quantities, and time-varying demand shock parameters for N ( > 1) commodities at time t  be, 

respectively, denoted by the vectors  

  1 2= , ,..., ,t t t Ntp p p p   1 2= , ,..., ,t t t Ntq q q q and  1 2= , ,..., .t t t Nt     

 

While most resutls discussed in this paper can be obtained with the case with variable variety11, to keep the 

discussion simple, we assume that the number of commodities, N, is the same for all time periods. 

 

The demand shock parameters, it , are essentially the taste shock parameters discussed in R-W (2020). 

Demand shock parameters here can represent taste shocks, quality change, stocking behaviour in purchases 

as well as random shocks. We make use of R-W (2020) specification of the following homothetic CES with 

time varying shock parameters.  

 

                                                      
9 R-W refer to the index with common varieties as the CES Common Varieties index. We prefer to use the term CES 

Unified Price Index as it captures the essence of the R-W contribution.   
10 We elaborate further on chain drift in Section 4.  
11 The R-W framework includes variety effects with different number of commodities in each period. Our results can 

be extended to include variety effects easily. 
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    
1 1

=1

; , = , 1
N

t t t it it

i

U q q


 
   
  

 
 
   (1) 

where   is the elasticity of substitution. 

 

2.2 CES Utility function and key results 
 

 

We consider a representative consumer who solves the following utilty maximization problem:  

 Max  
=1

; , = .
N

t t t it it t

i

U q such that p q Y     (2) 

where 
tY  exogeneous income at time t.   

  

Unit expenditure function: The expenditure function, ( , )t tE p U , minimum expenditure necessary to attain 

utility level tU  at prices tp ,  is the product of the unit expenditure function,  ; , ,t tC p    and the utility 

as follows,  

    

1
1 1

=1

, ; , = .
N

it
t t t t t t

i it

p
E p U C p U U

 

 


   
    
   
   (3) 

 

Normalization of taste parameters: The CES utility function in (1) represents the same preference relation 

and relative utilities when all the demand shock parameters are multiplied by a positive constant. In order 

to determine the demand shocks uniquely, R-W impose the following normalization on i ’s:  

 

  
1

.
N

it

i

 


   (4) 

Although the above condition looks natural and determines these parameters uniquely, other normalizations 

based on arithmetic means, or any type of conditions that help uniquely determine the demand shock 

parameters are possible. There arises a problem of choice between normalizations. R-W prefer 

normalization in (4) but discuss robustness of their findings when alternative specifications (R-W, 2020, p. 

518) are used. We return to this problem in Section 4 where we prove that the geometric normalization in 

(4) is the only meaningful normalization if aggregate measures of price change are to be independent of 

units of measurement. 

 

Marshallian demand functions: First order conditions for utility maximization in (2) lead to demand 

functions: 

 
1= for = 1,2,..., ,

t

it t
it it

t t

p Y
q i N

P P







  
 
 

  (5) 

where  , ;t t tP C p    is the unit expenditure function in (3). 

 

Expenditure share function: Let 
1

N

it it it nt ntn
w p q p q


   represent the budget share of i-th commodity in 

period t. Simple algebraic manipulation of (5) along with definition of expenditure share leads to: 

 



6 

 

 

1

1= .it
it it

t

p
w

P







  
 
 

  (6) 

 

Equation (6) is a crucial relationship which allows us to back out values of demand shocks from observed 

price and quantity data, up to a factor of proportionality. Taking log of (6) and rewriting we have 

 

 
 

 
ln

ln = ln ln .
1

it
it it t

w
p P


 


 (7) 

 

Equation (6) leads to  

 

1

1

1 1 1

= .it it it

t i t

p w

p w





 
 
 

 (8) 

 

Once elasticity of subsitution parameter,  , is estimated, ratios of demand shocxks can be determined 

directly from observed prices and expenditur shares using (8) without further estimation. Normalization in 

(4) leads to full set of demand shocks. 

 

 

 

2.3 The Sato-Vartia Index 
 

The Sato (1976) and Vartia (1976) logarithmic price index is the first log-change index number that satisfied 

the factor reversal test12. Further Sato (1976) and Feenstra (1994) have shown that the S-V index is COLI 

for CES preferences. The S-V13 index in its logarithmic form is given by 

 

 
* *

1 1

ln ln
ln ln ln lnist ist

N N
it it is it is

st

i iit is it isis

p w w w w
SV where

w w w wp
 

 

   
  

  
    (9a) 

 

The S-V index being a COLI for CES preferences, it is expected to be monotonically increasing in period 

t prices and also transitive. However Reinsdorf and Dorfman (1999) have shown that the S-V index fails 

monotonicity property and its lack of transitivity is shown in the numerical example in Section 3. We return 

to a discussion of these issues in Section 3.  

 

Three other log-change index numbers are the Jevons (1863), geometric Young (1921) and the Tornqvist 

(1931) indices. These are respectively given by: 

 

     
1 1 1

1
ln ln ln ; ln ln ln ; ln ln ln

2

N N N
it is

st it is st i it is st it is

i i i

w w
JI p p GYI w p p TI p p

N   

 
      

 
    (9b) 

where  : 1,2,...,iw i N  are a set of pre-specified weights which are constant for comparisons between all 

time periods.   

                                                      
12 This means the product of price index numbers computed using S-V index number formula by just interchanging 

prices and quantities equals the change in expenditures. Abe and Rao (2019) have shown that the Sato-Vartia index is 

not unique. 
13 The Sato-Vartia index is COLI for CES preferences under constant taste parameters (Sato, 1976, Feenstra, 1994). 
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2.4 The Redding-Weinstein CES Unified Price Index 
 

The R-W CES Unified Price Index (CUPI) is the center piece of this study. It is derived under the 

assumption of cardinal utility and heterogeneous CES preferences. Applying Konus (1924) concept of 

COLI for price comparisons from base period s to comparison period t 14, respectively, the  R-W COLI is 

given by: 
1

1 1

1

1
1 1

1

( , ) ( , , )

( , ) ( , , )

N
it

i it
t t t t

st

s s s s
N

is

i is

p

E p U C p
R W COLI

E p U C p
p

 

 

 

 



 



 



  
  
   

   

  
  
   





   (10) 

 

The last equality follows from the unit expenditure function in (3). 

 

We note in passing that COLI allowing for time-varying demand shocks can be derived for other utility and 

demand systems like the translog and AIDS and other invertible systems (see R-W, 2020, Section III) but 

we focus on CES preferences. 

The main contribution of R-W (2020, p. 516) is to show that the COLI index in (10) can be written as the 

following logarithmic function of prices and quantities, labelled the CES Unified Price Index (CUPI),15: 

 

 

   * *

1 1

ln , , , ln ln
ist

N N
it it

st t s t s ist

i iis is

p
CUPI p p q q

p


 

 

    
      

     
    (11) 

where 

 
*

1ln ln ln lnist

N
it is it is

iit is it is

w w w w

w w w w




 


 
   (12) 

and  : 1,2,..., ; ,i i N s t    are determined using observed price and quantity data and equations (4) and 

(8). 

 

The CUPI is linked to S-V index as (11) can be written as: 

 

 *

1

ln ln ln .
N

it
st st ist

i is

CUPI SV





  
    

   
   (13) 

 

We refer to the CUPI as generalized logarithmic index since it differs from other logarithmic indices shown 

in (9a) and (9b) due to the additional term in (11) measuring shifts in demand shock parameters in the two 

periods.  

 

 

                                                      
14 This switch from two adjacent periods to any two periods allows us to introduce the notion of transitivity at a later 

stage. 

15 Here we deviate in notation from R-W and use stCUPI  instead of 
CUPI

st . 
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3. Transitivity of Consumer Preferences, Duality and CUPI 
 

In addition to the main R-W result that CUPI is COLI for CES with taste shocks, we establish additional 

economic theoretic properties including: transitivity which is required for transitivity of consumer 

preferences; and monotonicity of CUPI, a result consistent with COLI and duality theory. 

 

3.1 Transitivity of CUPI and Preferences 
 

Transitivity of consumer preferences is an important axiom in microeconomic theory which is critical to 

the existence of a utility function that preserves preference orderings over commodity bundles. Transitivity, 

referred to as circular test in Samuelson and Swamy (1974, p. 571), ensures consistency of price 

comparisons over different pairs of time periods. S-S use economic theoretic arguments to conclude that 

transitivity of price index numbers is essential for transitivity of real income or welfare comparisons.  

 

The Konus (1924) index, ratio of expenditure functions under prices prevailing in two periods, say t and s, 

 
( , )

( , )

Konus t
st

s

E p U
COLI

E p U
   (14) 

is the theoretical basis for all cost of living index numbers. From (14) it is clear that this index satisfies 

transitivity, i.e. 

 , ,Konus Konus Konus

st tu suCOLI COLI COLI for all s t u    

 

From duality theory, it is known that the expenditure functions used in (14) are monotonically increasing 

in prices at t. Therefore, 
Konus

stCOLI  must be increasing in comparison period prices, tp .  

 

Consider three logarithmic price index numbers, the CUPI, the Tornqvist and the S-V indices. Diewert 

(1976) has shown that the Tornqvist is COLI for translog preferences;  Sato (1976) and Feenstra (1994) 

have shown that the S-V index is COLI for CES preferences; and CUPI is COLI for CES with taste shocks 

(Redding and Weinstein, 2020). Consequently, we would expect all these three indices to satisfy transitivity 

and to be monotonically increasing in comparison period prices.  

 

Reinsdorf and Dorfman (1999) have shown that the Tornqvist and S-V indices do not satisfy monotonicity 

globally. Numerical example in Table 1 below shows that both Tornqvist and S-V indices fail transitivity 

while CUPI satisfies transitivity. 

 

Table 1: Lack of Transitivity of Tornqvist and SV indices 

 

  

Time Commodiy Price Quantity Time Pair S-V Tornqvist CUPI

1 1000 2 P(1,2) 0.3476 0.3409 0.3086

2 200 20 P(2,3) 3.7971 3.6711 3.9173

3 150 30 P(1,3) 1.4322 1.4058 1.2089

1 500 3 P(1,2)×P(2,3) 1.3198 1.2515 1.2089

2 100 30

3 20 40

1 2000 10

2 100 60

3 300 70

Price Indices

1

2

3

Data
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The failure of S-V and Tornqvist indices to satisfy transitivity, illustrated through this example, is a puzzle 

– the puzzle being that as COLI both of these must satisfy transitivity but when applied to observed price 

and quantity data these are no longer transitive. However CUPI satisfies transitivity consistent with it being 

COLI. In what follows below we formally prove that CUPI satisfies transitivity. Explanation of the puzzle 

lies in the fact that although COLI in (14) does not directly depend on observed quantity vectors, the 

observed quantities are expected to be on the demand function implied by the utility function. However 

observed quantities are likely to fail this due to a variety of reasons including: time-varying taste shocks; 

quality differences; stockpiling behaviors, habit formation, and pure random shocks reflecting inherent 

stochastic behavior. 

 

For a formal explanation, consider the case of identical taste parameters in both periods, is it i    , 

assumption underlying the S-V index from CES preferences.  Equation (8) implies, for any two 

commodities i and j and for periods s and t: 

 

 
 

 

1
ln ln ln ln ln ln

1

1
ln ln ln ln

1

i j it jt jt it

is js js is

p p w w

p p w w

 




    


   


  (15) 

 

This is an exact relation between observed prices and expenditure shares. If observed quantity and price 

data do not satisfy (15), the computed S-V index differs from COLI for CES preferences, hence the failure 

of S-V index to pass transitivity test.   

 

If we allow for changes in demand shocks over time, then it is possible to find a vector of demand shocks 

that ensures consistency between observed prices and quantities and the first order conditions for 

consumer’s utility maximization. This is the reason why CUPI is transitive. We state and prove this result 

formally. 

 

Result 1: For any t, s and u, the R-W CUPI index with a given elasticity of substitution, , satisfies: 

 

 ( , , , ) ( , , , ) ( , , , )st s s t t tu t t u u su s s u uCUPI p q p q CUPI p q p q CUPI p q p q    (16) 

 

Proof: From the properties of CES function with time varying demand shocks and from equation (7), we 

have 

  
1

ln = ln ln ln ; 1,2,...,
1

t it it itP p w i N


   


 

 

Then, the following relationship between stCUPI   and sP  and tP follows. 

 

 

   

=1

=1 =1

=1 =1

ln ln = ln ln

1 1
ln ln ln ln ln ln

1 1

ln ln ln ln

N

t s ist t s

i

N N

ist it it it ist is is is

i i

N N

ist it is ist it is st

i i

P P P P

p w p w

p p CUPI



   
 

   



 

 

 

   
          

    

    



 

 

  (17) 
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From equation (17), st t sCUPI P P  satisfies transitivity condition in equation (16).  

 

This particular property of CUPI makes it analytically superior to the current gold standard, the Fisher’s 

ideal index as the Fisher index does not satisfy transitivity. In view of transitivity and additional properties 

established below, the CUPI may be considered a theoretically complete index.  

 

3.2 Monotonicity of COLI and CUPI 
 

From duality theory, COLI must be monotonically increasing in comparison period prices. Monotonicity 

states that if period t price of one of the commodities increases, with all other prices remaining the same, 

the price index must record an increase. Result 2 establishes monotonicity of CUPI. 

 

Result 2: Suppose price of commodity i at time t increases by  ( 0)    with all other prices remaining the 

same, with the new price vector tp  : 

 

  1 2 1= , ,., , ,.., 0t t t it i t Ntp p p p p p with 
     

then  

 

 ( , , , ) ( , , , )st s s t t st s s t tCUPI p q p q CUPI p q p q    

 

Proof: To prove this, consider equation (17) above 

 

 ln ln lnst t sCUPI P P   

where 
1

ln = ln ln ln
1

t it it itP p w


  


and 
1

ln = ln ln ln .
1

s is is isP p w


  


We note that sP  is 

independent of prices in period t. Because both itw  and it are differentiable functions with respect to 

.itp .To establish monotonicity, it is sufficient to show that: 

 

 

 
ln ln ln1

= 1
ln ln 1 ln

t it it

it it it

d P d d w

d p d p d p




  


 > 0.  (18) 

 

It is tedious but straightforward to find derivates in (18) to establish this result. Detailed derivations are in 

Appendix A1. 

 

In addition to these important theoretical properties of monotonicity and transitivity, CUPI also possesses 

additional properties expected of aggregate measures of price change such as linear homogeneity, identity 

and it satisfies factor reversal test. 

 

Linear homogeneity states that if prices in period t are all multiplied by a positive scalar then the measure 

of price change itself is multiplied by the same scalar. 

 

Result 3: For any 0  ,  ( , , , ) ( , , , )st s s t t st s s t tCUPI p q p q CUPI p q p q     
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Proof:  Recall that stCUPI  in logarithmic form is 

 

 
* * *

1 1 1

ln ln ln ln
ist ist

N N N
it it it it

st ist

i i iis is is is

p p
CUPI

p p

 
  

   

      
        

       
     

 

Suppose the taste parameters associated with new prices in period t, tp , are denoted by  * : 1,2,...,it i N   

which means that ( , q , , )s s t tCUPI p p q can be written as: 

 
* *

* * *

1 1 1

ln ln ln ln
ist ist

N N N
it it it it

st ist

i i iis is is is

p p
CUPI

p p

  
  

   

      
        

       
    

 

It is sufficient if we show that  * : 1,2,...,it it i N   . Using equation (8) and the geometric normalization, 

it is easy to show that it  and *

it  for 1,2,...,i N  are, respectively, given by: 

( 1/ )
1 1

1 1

=21 1 1 1

=

N

N
it it kt kt

it

kt t t t

p w p w

p w p w

 

 



 

  
       

       
       

  

    (19) 

and 

 

 

( 1/ )
1 1

1 1
*

=21 1 1 1

N

N
it it kt kt

it

kt t t t

p w p w

p w p w

  
 

 



 

  
       

        
       

  

   

which establishes equality of taste parameters it  and *

it .  

 

Now we turn to identity property which requires the aggregate measure of price change to equal 1 when 

prices and quantities are the same in both periods, i.e.,  ; : 1,2,...,it is it isp p q q i N   .  This property is 

sometimes called weak identity test16. 

 

Result 4: The stCUPI  in equations (11) satisfies identity test when prices and quantities remain unchanged 

over time. 

 

Proof: When prices and quantities are the same in both periods, from (19) we have 

 1,2,..., .it is for i N    This implies 

 

 
* *

1 1

ln ln ln 0 1,2,..., 1.
ist

N N
it it

st ist it is st

i iis is

p
CUPI when p p for i N CUPI

p


 

 

    
          

     
    

  

 

                                                      
16 Strong identity test requires the price index to equal 1 when prices in both periods are the same but allowing for 

different quantity vectors. 
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3.4   Implicit CUPI Quantity Index and Welfare Comparisons 
 

We start with a quote from Samuelson and Swamy (1974, p. 567), “Although most attention in the literature 

is devoted to price indexes, when you analyze the use to which price indexes are generally put, you realize 

that quantity indexes are actually most important. Once somehow estimated, price indexes are in fact used, 

if at all, primarily to "deflate" nominal or monetary totals in order to arrive at estimates of underlying "real 

magnitudes" (which is to say, quantity indexes!).”  

 

Implicit measures of quantity change can be obtained by invoking the fundamental decomposition of value 

change (ratio of expenditures in the two periods) into price and quantity changes. We compute indirect 

quantity comparisons using stCUPI as 

 

CUPI 1 1 1

1

N N N

it it is is it it sti i i
st N

st is isi

p q p q p q CUPI
Q

CUPI p q

  



 
  


    (20) 

 

After simple algebraic manipulation, the implicit quantity index in (20), in logs, is given by: 

  

 
* *

1 1

ln ln ln
ist

N N
CUPI it it
st ist

i iis is

q
Q

q


 

 

    
      

     
    (21) 

 

The CUPI quantity index in (21) is similar in structure to the CUPI in (5). Further, by construction, product 

of these two indices equals the ratio of expenditures in the two periods.  Rewriting the expressions for CUPI 

price and quantity indices, we can show that these indices satisfy the factor reversal test. The CUPI price 

and quantity indices (5) and (21) can be rewritten as: 

 

 

* * *

1 1 1

*
* *

*
1

ln ln ln ln

ln ,

ist ist

ist

N N N
it it it it

st ist

i i iis is is is

N
it

i i i

i is

p p
CUPI

p p

p
where p p t s

p
  

 
  

 

  

  



      
        

       

 
   

 

  



  

and 

* *

1 1

*
* * *

*
1 1

ln ln ln

ln ln ,

ist

ist ist

N N
CUPI it it
st ist

i iis is

N N
it it it

i i i

i iis is is

q
Q

q

q q
where q q s t

q q
  


 




   



 

 

    
      

     

   
      

   

 

 

 

 

From these two equations it can be seen that the CUPI quantity index can be simply obtained by replacing 

ratios of transformed prices  * : 1,2,..., ; ,ip i N s t    with ratios of transformed quantities

 * : 1,2,..., ; ,iq i N s t   . 

 

The following result provides a welfare comparison interpretation to the implicit CUPI quantity index. 

 

Result 5: Under cardinal utility framework and homothetic CES preferences with demand shocks and under 

the assumption that the observed quantities in periods t and s are cost-minimizing under the prevailing 
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prices, andt sp p , and utility levels, andt sU U , the  CUPI quantity index in (20) equals the ratio of utility 

levels in these two periods thus providing a measure of welfare change. 

 

Proof: Since preferences are CES and homothetic and under the assumption of optimality of observed 

quantities, we have 

    

1

11

1 1

( , ) ,
N N

i i i i

i i

p q E p U a p U s t
 

        


 

 
    

 
    (22) 

 

From (22) and the definition of COLI and CUPI price index, we have 

 

 
1 1

ln ln ln ln ln
N N

it it is is st t s

i i

p q p q CUPI U U
 

       (23) 

Since the CUPI price index (11) and CUPI quantity index (21) satisfy factor reversal test we have: 

 

 
1 1

ln ln ln ln
N N

CUPI

it it is is st st

i i

p q p q CUPI Q
 

      (24) 

 

Equations (23) and (24) together imply: 

 

 ln ln lnCUPI CUPI t
st t s st

s

U
Q U U Q welfare change

U
        

This result shows that the implicit quantity index derived by deflating change in expenditures by CUPI 

provides a measure of welfare change. 

 

3.5 CUPI:  A solution to the practical Chain Drift problem with Scanner Data 
 

Recently, more and more researchers and statistical offices in various countries are incorporating high 

frequency point of sale scanner data into compilation of aggregate measures of price change. Often they 

encounter the problem of chain drift when chained price index numbers are used. Diewert (2020, p.3) 

describes: “…Chain drift occurs when an index does not return to unity when prices in the current period 

return to their levels in the base period”. The seriousness of chain drift problem is well documented in 

Diewert (2018, 2020)17. The spike in purchases and then return to the original levels is a major driver of the 

chain drift problem. Feenstra and Shapiro (2003) considered the chain drift problem caused by sales and 

stocking behaviour and suggested the use of fixed base indices as a solution. However fixed base index 

numbers have problem including sensitivity of price change measures to the choice of the base period.  

 

COLI like the Fisher, Tornqvist and S-V indices exhibit significant chain drift when using scanner data (de 

Haan and van der Grient, 2011). To date, solutions to this problem rely heavily on multilateral index number 

formulae which satisfy transitivity. The use of Gini-Elteto-Koves-Szulc (GEKS) (Gini, 1931; Elteto and 

Koves, 1964; Szulc, 1964) index and the rolling-window GEKS methods (Ivancic, Diewert and Fox, 2009 

and 2011; de Haan, 2008; de Haan and Krsinich, 2014; van Auer, 2019) and variants of the Geary (1958) 

and Khamis (1972) method have been proposed and being explored (Chessa, 2016; Lamboray, 2017). For 

example, the GEKS method builds on the Fisher binary index (Diewert, 1976) but has limited economic 

theoretic interpretation (Neary, 2004). The GEKS method at best can be considered as a technique that 

generates transitive comparisons which deviate the least from a set of non-transitive bilateral comparisons. 

                                                      
17  Diewert (2020) will be included as Chapter 7 in the latest version of the CPI Manual 

(ILO/IMF/OECD/UNECE/Eurostat/The World Bank, 2020). 
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These methods offer viable solutions to the problem lack but solid economic theoretic foundations and 

remain essentially heuristic.  

 

The CUPI, in addition to being a COLI and transitive, has an additional practical advantage over the 

alternatives when it comes to transitive multilateral comparisons. The multilateral methods, listed in the 

previous paragraph, have a serious practical disadvantage that price comparisons need to be completely 

revised whenever a new time period is added. This is a major problem for economic statisticians measuring 

aggregate price changes. The CUPI (in equation 11), in contrast, not only satisfies transitivity but CUPI 

comparisons between any two periods are functions of data for only those two periods and not affected by 

data from other periods hence does not need revisions when new data are added. 

 

In light of this discussion, our result that CUPI is a transitive index assumes considerable practical 

significance. Thus CUPI meets analytical requirements outlined in Samuelson and Swamy (1974) and at 

the same time serves as a solution to the practical problem of chain drift discussed in Diewert (2020). In 

contrast, the S-V index, the Fisher and Tornqvist indices exhibit severe chain drift – a point we return to in 

our empirical results section. 

 

4. R-W Geometric Normalization and Commensurab ility 
 

We now return to the problem of choice of normalization rule to work with CES utility function with  

demand shocks. R-W (2020, Section II F) propose geometric normalization but also discuss alternative 

normalizations. In this section we prove that their geometric normalization belongs to the class of 

admissible normalizations if the resulting price change measures need to be independent of units of 

measurement or satisfy commensurability.  Price indices must be independent of measurement units of 

commodities. Otherwise, choice of a measurement unit such as litre or gallon, kilogram or pound, affects 

the index number value. The following numerical example shows that CUPI with geometric normalization 

rule in (4) satisfies this property whereas CUPI index with the additive normalization rule, 
1

N

iti
N 


  

does not. 
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Table 2: Measurement Units and the CUPI Index – An illustrative example 

 

 
 

In this example, Panels A and B represent the same price data except that in Panel B the unit of measurement 

of the first commodity is changed. The CUPI based on geometric normalization, CUPI(1), is the same in 

both panels. However, CUPI (2) with additive normalization leads to an index value of 0.3796 compared 

to 0.4753 before change in units of measurement – a difference of 20 percent! This illustrates that CUPI 

with arithmetic normalization rule is not independent of units of measurement. 

 

Result 6: The CUPI with geometric normalization of demand shock parameters is independent of units of 

measurement.  

 

Proof:  For any , , , ,R
N

t s t sp p q q   consider a positive valued vector  1 2, , . . , N

N     R . Then 

price and quantity vectors after change in units of measurement are: 

 

 1 1 2 2= , ,..., ,t t t N Ntp p p p    1 1 2 2= , ,..., ,s s s N Nsp p p p   1 2

1 2

= , ,..., ,t t Nt
t

N

q q q
q

  

  
 
 

1 2

1 2

= , ,...,s s Ns
s

N

q q q
q

  

  
 
 

and new demand shock parameters   * * *

1 2, , . . .s s Ns    and  * * *

1 2, , . . .t t Nt     

 

Expenditure shares remain unchanged after change in units of measurement. The CUPI before and after  

change in units of measurement: 

 

Time Commodiy Price Quantity Time Pair S-V CUPI (1) CUPI (2)

1 1000 2 P(1,2) 0.3476 0.3086 0.4753

2 200 20 P(2,3) 3.7971 3.9173 4.2090

3 150 30 P(1,3) 1.4322 1.2089 2.0005

1 500 3

2 100 30

3 20 40

1 2000 10

2 100 60

3 300 70

Time Commodiy Price Quantity Time Pair S-V CUPI (1) CUPI (2)

1 100 20 P(1,2) 0.3476 0.3086 0.3796

2 200 20 P(2,3) 3.7971 3.9173 3.5122

3 150 30 P(1,3) 1.4322 1.2089 1.3333

1 50 30

2 100 30

3 20 40

1 200 100

2 100 60

3 300 70

Note: σ is set to be 3.

CUPI (1) uses the unweigted geometric means as the normalization condition

CUPI (2) uses the unweighted arithmetice means as the normalization condition

P(1,2) is the price index from time 1 to 2.

3

Price Indices

Price Indices

Panel A

1

2

3

1

2

Panel B

Data

Data
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  * *

1 1

ln , , , ln ln
N N

it it
st s s t t ist ist

i iis is

p
CUPI p q p q

p


 

 

      
       
         
   

 

  
* *

* * * * * *

* *
1 1

ln , , , ln ln
N N

it it
st s s t t ist ist

i iis is

p
CUPI p q p q

p


 

 

      
       
         
    

 

Since the first expression on the right hand side is independent of units of measurement, it is sufficient if 

we show that  

 

 

    
*

* * * * * *

*
1 1 1 1

ln ln ln ln ln ln
N N N N

it it
ist ist ist it is ist it is

i i i iis is

 
       

    

          
              

            
     

 

Or equivalently, 

      * * * *

1 1

ln ln ln ln
N N

ist it it ist is is

i i

     
 

   
     

   
    (25) 

 

 

Taking logarithms equation (8) to data before and after change in units of measurement we have for period 

t and i=1,2,…,N 

 

 1 1 1

1
ln = ln ln ln ln ln ln .

1
it it t it t tp p w w  



 
     

 
  (26a) 

 

 

1 1 1

1 1 1 1

1
ln = ln ln ln ln ln ln

1

1
ln ln ln ln ln ln ln ln .

1

it it t it t t

it i t it t t

p p w w

p p w w

  


   


   



 
     

 

 
        

 

  (26b) 

 

Given (26a) and (26b), to establish (25) it is sufficient if we show that: 

 

1 1 1 1ln ln = ln ln .s s t t           (27) 

 

From the geometric normalization used for CUPI and equation (8), we have 
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
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
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

1/
1

1/
1

1 1

=2 =21 1 1 1

= =

N
N

N N
kt kt k i

t t

k kt t

p w

p w

  
   

 






 
         
         

          

    

(28) 

 

Equation (27) follows from (28) and hence the result.   

 

Commensurability and CUPI Geometric normalization 
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Here we provide a necessary and sufficient condition on the normalization on shock parameters for CUPI 

to be independent from measurement units.  Equation (8) shows that the shock parameter for commodity i 

in period ( , )s t   is related to prices and expenditure shares through:  

                                                  

1

1

1

1 1

1,2,..., ; ,i i
i

p w
i N s t

p w


 

 

 

  
  

    
  

                                         (29)  

 

Any normalization can be expressed in the following general form: 

 

  1 2 3, , . . . , ,Nf s t           (30) 

Substituting (29) into (30) leads to 

 

1

1

1 2 1 3 1 1

1 1

, , . . . , 1,2,..., ,i i
N i

p w
f x x x where x for all i N and s t

p w


 

       

 

    
  

     
  

  (31) 

 

Let solution for 1 ( , )s t    in (31) be represented as: 

 

  1 2 3, , . . . , ,Ng x x x s t        (32) 

 

where 1: Ng 

    is a positive real-valued function. 

 

 

Result 7: The CUPI index defined in (10) and (11) is independent from tmeasurement units if and only if 

the normalization condition can be expresseds in the form  

  

 1

=2

=
N

c
i

it

i

A x
 

 
 
  where > 0ic AR,  (33)    

If all the taste parameters, i , are considered equally important and treated symmetrically, the necessary 

and sufficient condition can be written in the form of a simple geometric mean, which is identical to the 

normalization condition by R-W (2020), 

  
1

N

i

i

 


        (34) 

where   is a positive constant. 

 

Proof: This result is proved using mathematical induction. We prove the result for N = 2. Assuming  that 

this is true for a general N  and we prove that the result holds for N+1. Proof for N=2 is presented here and 

rest of the proof is in Appendix 2. 

 

Eaquation (8) applied to N = 2 gives us: 

 

 

1

1
2 2

2 1

1 1

= .t t
t t

t t

p w

p w



 
  

  
  

 

 

When change in measurement units occur,  the new price, ,itp
 and quantity, ,itq

 are,  
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 = ,it it ip p 
 = /it it iq q 

   where > 0 for =1 or 2.i i  

 

Let 
1t

denote the taste parameter for commodity 1 after change in measurement units. Then from equation 

(27), the necessary and sufficient condition for commensurability is, 

  

 
1 1 1 1ln ln = ln ln .s s t t       

 

Let ln K denote the difference,  

 

 
1 1 1 1ln ln = ln ln = lns s t t K       (35) 

 

Following (31), denote  

 

1

1
2 2

1 1

= t t
t

t t

p w
x

p w

   
  
  

; 

1

1
2 2

*

1 1

= t t
t

t t

p w
x

p w

 
   

  
  

  and  2

1

= .





 
 
 

 

 

The normalization conditions before and after change in units of measurement are:  

 

  1 = ;t tg x  *

1 =t tg x 
  = .tg x  (36) 

 

Using (36), equation (35)  can be written as  

 

        ln ln = ln ln = ln .t t s sg x g x g x g x m    (37) 

 

Equation (37) must hold for all values of tx  and .sx  Therefore, m  depends on   but not on tx  or .sx  

 

Therefore, If the index passes the commensurability test, given ,  there is a constant   > 0m   that 

satisfies the following equation for all tx    

  
 

   
1

= ( ) ( )t t t tg x g x g x g x m
m

  


   

    

Letting  ( ) ( )t tf x g x  , we have 

 

 ( ) ( ) ( )t tf x g x m    (38) 

  

Equation (38) is a well-known functional equation whose general non-zero solution for > 0tx  and > 0  

is given by18 

   = c

t tf x abx ;    = ,c

t tg x ax ;    = ,cm b   , , Ra b c . 

   

Therefore, functional form for  g x  combined with equation (8) yields 

                                                      
18 The derivation of the general solution for this functional equation can be found in Aczel (1966). 
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1

1
2 2

1

1 1

= =c t t
t t t

t t

p w
ax where x

p w




  

  
  

 (39) 

 

This establishes the result for N = 2. Rest of the proof based on induction is presented in Appendix A2.  

 

Corollary: The geometric normalization used in R-W specification satisfies the condition stated in Result 

7. Additive normalization discussed in R-W (2020, p. 518) does not satisfy this condition and hence fails 

commensurability condition. 

 

Proof: Geometric mean normalization implies, for each, ( , )s t    

 

    
1/ 1/

1

1 2

,
N N

N N

i i

i i

x for s t      


 

       (40) 

This satisfies the condition in equation (39) and hence the index is independent of units of measurement. 

 

In the case of arithmetic mean normalization, we have for ,s t    

 1
1 1 1 12 2

2

1
1

N

N Nii
i i Ni i

ii

N
N N x

N x



     




    

 



        



 


  (41) 

 

The last expression on the right side in (41) cannot be written in the form (39) and hence the CUPI with 

arithmetic mean normalization fails commensurability condition. This is also true for other generalized 

specifications discussed in R-W (2020, p. 518). 

 

The main conclusion of this section is that CUPI with geometric normalization is unique in that CUPI with 

any other normalization would violate invariance with respect to units of measurement.  

 

5. Empirical Results: CUPI and Scanner Data from Japan 
 

We use scanner data from nationwide retails stores in Japan provided by the Intage Holdings Inc.19 The 

data set contains barcode level weekly sales and quantity data from retail stores all over Japan. For purposes 

of illustration, we have opted to use weekly data from April 2006 and December 2008, which gives us 143 

weeks of observations20. As our main objective is to examine the nature and extent of chain drift and the 

performance of CUPI index against superlative indices, we have decided to make use of weekly data. In 

this paper, we use scanner data on 41 different cereal items identified by Japanese Article Number (JAN) 

that were sold in 428 retail stores throughout the study period. Items sold in different stores are treated as 

separate commodities even though they have identical barcodes, resulting in 1,012 pairs of commodity and 

stores each week21, and 144,716 observations.  

 

 

 

 

                                                      
19 The Research Center for Economic and Social Risks at Hitotsubashi University houses scanner data collected and 

provided by Intage Holdings Inc. For further information on the data set available, see 

hiips://www.intage.co.jp/english/. 
20 We opted for this period since Intage has allowed us to share this data with other users and readers.  
21 Not all items are sold in all the outlets. 
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Figure 1: Measures of Price Change using the Laspeyres, Paasche, Fisher, Sato-Vartia indexes, 

Chained indices and the CES Unified Price Index 

(base period: first week, April 2009) 

 

 
Note: Numerical values of GEKS S-V, GEKS Fisher and GEKS-Tornqvist are very close and therefore only GEKS S-V is presented 

in Panel D.  

 

Price indices in these charts show price changes with first week (April, 2009) as the base period. Panels A 

and B in Figure 1 show the chain drift associated with the Laspeyres and Paasche indices, the drifts moving 

in opposite directions. Panel C shows price changes measured using fixed-base S-V index and chained 

Fisher, Tornqvist and S-V indices. Chained indices in Panel C show a decline in prices around 30 percent 

compared to a decline of only 4 percent when fixed base S-V index is used. This magnitude of large chain 

drift associated with superlative indices and the S-V index is consistent with results reported in de Haan 

and van der Grient (2011) based on weekly scanner data in Netherlands. Similar magnitudes of chain drift 

are also reported in the numerical examples presented in Diewert (2020, Appendix). 

 

Conventional approach to tackle chain drift problem is to use index number formulae that are transitive. In 

this section we consider the following methods: three variants of GEKS method using the Fisher, Tornqvist 

and S-V binary indices; the Jevons index which is an unweighted geometric average of price changes, and 

finally CUPI which is a transitive index by construction. The elasticity of substitution,  , needed for CUPI 

computation is estimated using Feenstra (1994) algorithm and found to be 7.0894. Our estimate is between 

the 50th and 75th percentile of estimates reported by R-W (2020, p. 534). A comparison of price change 

measures with and without accounting for time varying demand shocks, we find that the S-V index exhibits 

a bias of 0.2233 per cent per annum compared to CUPI. Compared with CUPI, the conventional chained 

Panel A Panel B

Panel C Panel D
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superlative indices have a negative bias of the order 4.875 per cent per annum. Further details of differences 

are in Table A1 in Appendix A3. 

 

In summary, the CUPI index performs well numerically compared to measures of aggregate price change 

computed using other methods currently in vogue.  CUPI is superior to these methods due its theoretical 

properties and the fact that CUPI based aggregate price measures need not be revised when new data points 

are added is a distinct advantage of CUPI. 

 

6. Conclusions 
 

The primary objective of the paper is to present a method of aggregating price changes that is theoretically 

sound and yet practical.  We have shown that the generalized logarithm index with demand shocks 

represented by the CES unified price index (CUPI), proposed by Redding and Weinstein (2020), is a method 

that meets both analytical and practical requirements. Our most significant finding is that the CUPI satisfies 

monotonicity and also transitivity of price comparisons, a condition Samuelson and Swamy (1974) 

considered to be essential for transitivity of consumer preferences. Thus CUPI meets an important 

theoretical requirement which is not met by traditional indices like the Fisher, Tornqvist and S-V indices. 

As a corollary, CUPI offers a practical solution for applications with scanner data as it eliminates chain 

drift. Another significant feature of CUPI is that price comparisons are not affected when new data are 

introduced – this is not the case with currently used transitive methods. We also show that CUPI with 

geometric normalization of taste parameters, which is the preferred option of R-W (2020), belongs to the 

class of normalizations that to an index that is independent of units of measurement. We are also able to 

establish additional properties of CUPI, such as linear homogeneity and the factor reversal test which 

underscore the versatility of CUPI. The CUPI with all these properties is vastly superior to Fisher, Tornqvist, 

S-V and other methods and it goes a long way in bridging the gap between index number theory and practice. 
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APPENDIX 
 

 

A1: Notation and Preliminaries 
 

Let the vector of prices, quantities, and taste parameters for N commodities at time t  be denoted by:  

  1 2= , ,..., ,t t t Ntp p p p  

  1 2= , ,..., ,t t t Ntq q q q  

  1 2= , ,..., .t t t Nt     

 

The utitlity function at time t  has the CES form as follows,  

 

    
1 1

=1

; , = ,
N

t t t it it

i

U q q


 
  
  

 
 
  (A.1) 

 

The number of commodities is constant over time and fixed at >1. >1N   is the elasticity of substitution. 

 

The unit cost function corresponding to utility function in (A.1) is  

  

1
1 1

=1

, ; = .
N

it
t t

i it

p
C p

 

 


   
  
   
  

 

The exogenous income, ,tY  is equal to the total expenditure at time ,t that is, the following budget 

constraint holds for all the time periods,  

 
=1

= .
N

it it t

i

p q Y  

 

Note that the following equation holds,  

    
=1

, ; ; , =
N

t t t t t it it

i

C p U q p q      

 = .tY  

 

The weightes used in the Sato-Vartia index, ,ist
 is defined as  

 

        1
=1

= / 1,2..., ; ,
ln ln ln ln

N
Nis is it is

ist i i i i ii
iit is it is

w w w w
where w p q p q i N s t

w w w w
     



  
      

   

 

Note that the following equations hold for all  s and ,t  

 
=1

= 1,
N

ist

i

  
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  
=1

ln ln = 0.
N

ist it is

i

w w   

 

 

 

 

Appendix A1  

 

Result 1 - Monotonicity of CUPI 
 

 

We start with the result , for any = 1,2,..., ,i N  we have  

 

 ln = ln lnst t sCUPI P P  

where 

 
1

ln = ln ln ln
1

t it it itP p w


  


 

 
1

ln = ln ln ln .
1

s is is isP p w


  


 

 

Since sP  does not depend on ,itp  to show the monotonicity, it is sufficient to show that tP  is increasing 

with .itp  

 

Because both itw  and it are differentiable functions with respect to ,itp  to establish monotonicity, it is 

sufficient to show the following inequality.  

 

 

 
ln ln ln1

= 1
ln ln 1 ln

t it it

it it it

d P d d w

d p d p d p




  


 (A.2) 

 > 0.  

 

First, consider the third term of the R.H.S. of A. The derivative of ln itw  with respect to ln itp  is as follows,  

 
  =1

ln
lnln

=
ln ln ln

N

kt kt

it it kit

it it it

d p q
d p qd w

d p d p d p

 
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 




 

 

=1

= 1
ln

it it

N

it
kt kt

k

q dp

d p
p q

 


 

 =1 .itw  

 

Note that when k i , we have 
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ln

= .
ln

kt
kt

it

d w
w

d p
  

 

Next, consider the first term of the R.H.S. of (A.2). From the definition of the taste parameter, we have,  

 

 

( 1/ )
1 1

1 1

=21 1 1 1

= .

N

N
it it kt kt

it

kt t t t

p w p w

p w p w

 

 



 

  
       

       
       

  

  

 

Taking natural logarithms leads us to  

  

 ln it
=21 1 1 1

1 1 1
= ln ln ln ln ln .

1 1

N
it it kt kt

kt t t t

w p w p

w p N w p


 

         
                        

  (A.3) 

 

The derivative of the first term of (A.3) with respect to ln itp  is  

  1

1

ln
1 1

= 1 if 1
1 ln 1

it

t

it t

it

w
d

w
w w i

d p 

 
 
    

 
 

 = 0 if = 1.i  

 

The derivative of the second term is as follows, 

 
1

ln

= 1 if 1
ln

it

t

it

p
d

p
i

d p

 
 
    

 = 0 if = 1.i  

 

The derivative of the third term when 1i   can be written as follows,  

 
=2 1 1

1 1
ln ln

1

ln

N
kt kt

k t t

it

w p
d

N w p

d p



      
               


 

 1

=2

1 1 1 1
=

1 1

N
kt t

k

w w

N N N 

      
     

     
  

 
 

  
 

 1

=2

1 1 1 1 1
= 1

1 1 1

N

t kt

k

N w w
N N N N  

   
      

     
  

 
 

  
 

 1 1

1 1 1 1 1
= 1 1

1 1 1
t tN w w

N N N N  

   
       

     
 

 
 

 1

1
= 1 .

1
tNw

N



 


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Therefore, if 1i    

 

 
ln

ln

it

it

d

d p


 

  
 

 1 1

1 1
= 1 1 1

1 1
it t tw w Nw

N


 
     

 
 

 
 

 1

1
= 2 1

1
t itN Nw Nw

N
 


   


 

 

Now, combining the derivatives of all the three terms, we can show that when 1i    

 

 
ln ln ln1

= 1
ln ln 1 ln

t it it

it it it

d P d d w

d p d p d p




  


 

 
 

   1

1 1
= 2 1 1 1

1 1
t it itN Nw Nw w

N
 

 


      

 
 

 
 

 1

1
= 2 1

1
tNw

N



 


 

 

Because > 1,  we obtain, 

 
ln

> 0.
ln

t

it

d P

d p
 

 

When = 1,i  the effects through the taste term can be obtained as follows: 

  

 

( 1/ )
1

1

1

=2 1 1

=

N

N
kt kt

t

k t t

p w

p w



 




 
   
   
   
 

  

 1

=2 =21 1

1 1
ln = ln ln

1

N N
kt kt

t

k kt t

w p

N w p




    
          

   

   1
1

=21

ln 1 1
= 1 1)

ln 1

N
t

t kt

kt

d
w w

d p N





  
   

 
  

  1

=2 =2

1 1 1
= 1 1)

1 1

N N

t kt

k k

w w
N  

  
   

  
   

  

 
 

 1

1
= 1 .

1
tN Nw

N



   


 

 

Note that we have  
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 1
1

1

ln
= 1 .

ln

t
t

t

d w
w

d p
  

Therefore,  

 1 1

1 1 1

ln ln ln1
= 1

ln ln 1 ln

t t t

t t t

d P d d w

d p d p d p




  


 

 

    1 1

1 1
= 1 1 1

1 1
t tN Nw w

N




  
     

 
 

 

  
1

= 1 > 0.N
N

  

 

This concludes the proof. 

 

Appendix A2  

 

Proof of Result 7 - Necessary and Sufficient condition for Commensurability 
 

We prove this result using indiuction. 

 

First, we prove when = 2.N  Proof of this case is included in the main text but reproduced here for 

providing continuity of proof my mathematical induction. 

 

From the definition of the taste parameter , we have.  

 

 

1

1
2 2

2 1

1 1

= .t t
t t

t t

p w

p w



 
  

  
  

 

 

Suppose a change in measurement units occurs, so that we get a new price, ,itp
 and quantity, ,tiq

 as 

follows,  

 = ,it it ip p 
 = /it it iq q  

   where > 0 for =1 or 2.i i  

 

Also denote 
1t

as the taste parameter for commodity i  after the change in the measurement units. Then 

as is shown before, the necessary and sufficient condition for the commensurability is as follows, 

  

 1 1 1 1ln ln = ln ln .s s t t       

 

Denote the difference of the taste parameter as ln K , that is,  

 

 1 1 1 1ln ln = ln ln = lns s t t K       (A.4) 

 

Also denote  
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1

1
2 2

1 1

= t t
t

t t

p w
x

p w

   
  
  

 

 

1

1
2 2

1 1

= t t
t

t t

p w
x

p w

 
   

  
  

 

 2

1

= .





 
 
 

 

 

By assumption, the normalization condition before change in units of measurement is  

 

  1 = .t tg x  

 

Then, after the change in the measurement units, we have  

  1 =t tg x 
  = .tg x  

 

Note that (A.4)  can be written as  

 

        = = ln .t t s sg x g x g x g x K    

 

The above equation must hold for any values for tx  and .sx  Therefore, while K  depends on ,  K  does 

not depend on tx  nor .sx  

 

If the index passes the commensurability test, given ,  there is a constant   > 0K   for all tx  that satisfy 

the following equations.  

  
 

 
1

= .t tg x g x
K




 

Suppose = 1,tx  then,  K   can be written as the ration between  g   and  1g  as follows,  

  
 

 
1

1 =g g
K




 

      = 1g K g   

  
 

 
= .

1

g
K

g


  

 

Therefore, we can obtain the following equation for all > 0tx  and > 0.   

 

        = 1 .t tg x g g g x   (A.5) 

 

For any > 0,y  define a function : ,R Rf    
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      = 1 ,f y g y g  

then, (A.5) can be written as  

      = .t tf x f f x   (A.6) 

 

Equation (A.6) is one of the classical Cauchy’s functional equations whose general non-zero solution for 

> 0x  and > 0  is given by22 

 

   = ,cf y y    with R.c  

 

Therefore, we have 

  
 

=
1

cx
g x

g
 

 = cax  .c a  R, R  

 

Therefore,  g x  must be of the following form,  

 

 
1 2= .c

t tax  

 

Next, we consider a general case with 3.N   Suppose we have the following normalization condition, 

  

Using the definition of the taste parameters, the normalization condition can be written as  

  1 2 3= , ,..., .t t Ntg x x x  

where 

 

1

1

1 1

= .it it
it

t t

p w
x

p w

   
  
  

 

 

After the change in the measurement units, we have 

 

  1 2 3= , ,...,t t t Ntg x x x     2 2 3 3= , ,...,t t N Ntg x x x    

 where 

 
1

= .i
i






 
 
 

 

As is shown before, the necessary and sufficient condition for the commensurability is 

  

 1 1 1 1ln ln = ln ln .s s t t       

The above condition can be written as, 

 

       2 3 2 3ln , ,..., ln , ,...,t t Nn t t Ntg x x x g x x x       2 3 2 3= ln , ,..., ln , ,..., .s s Ns s s Nsg x x x g x x x     

                                                      
22 The derivation of this general solution for this functional equation can be found in various textbook on functional equation such as Aczel (1966) 
and Efthimious (2010) 
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Define a vector,   as 

  2 3= , ,..., .N     

Then, we can rewrite the above conditions as 

 

    2 2 3 3 2 3= ln , ,..., ln , ,...,s s N Ns s s Nsg x x x g x x x     

    2 2 3 3 2 3= ln , ,..., ln , ,...,t t N Nt t t Ntg x x x g x x x     

 .K  

 

Since this condition must hold for any tix  and ,six  K  is independent from tix  and .six  That is, K  is a 

function of   only. Therefore, it is possible to rewrite the necessary and sufficient condition as: 

 
 

 1 2 2 3 3

1
= , ,...,t t t N Ntg x x x

K
   


 

  2 3= , ,...,t t Ntg x x x  

 

Next, suppose 

    2 3, ,..., = 1,1,....,1 ,t t tNx x x  

then, we have 

  
 

 2 3

1
1,1,...,1 = , ,..., Ng g

K
  


 

  
 

 
2 3, ,...,

= .
1,1,...,1

Ng
K

g

  
  

 

Therefore, for CUPI to be commensurable, for any > 0  and > 0,tx  we must have 

 

       2 3 2 3 2 2 3 3, ,..., , ,..., = 1,1,...,1 , ,..., .t t Nt N s s N Nsg x x x g g g x x x       (A. 7) 

 

Next, suppose  

 

 2 3 1 1= = .. = = = ... = =1,t t i t i t Ntx x x x x   

 2 3 1 1= = .. = = = ... = =1.i i N       

 

then, (A.7) becomes  

 

        1,1,..,1, ,1,..,1 1,1,..,1, ,1,..,1 = 1,1,...,1 1,1,.,1, ,1,..,1 .it i it ig x g g g x   

 

In the case with = 2,N  we discussed that the general solution of this Cauchy’s functional equation for 

> 0tix  and > 0  is as follows,  

  1,1,..,1, ,1,..,1 = .
c
i

it itg x x A  

Denote A  as 
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=2

= ,
N

i

i

A a  

then, for  we have  

  
=2

1,1,..,1, ,1,..,1 =
N

c
i

ti it i

i

g x x a  

 

Now, suppose all tkx  for k i  are unity, that is,  

 1= = ... = =1.kt k t Ntx x x  

 

Also, suppose that the following functional equation,  

 

       2 3 1 2 3 1 2 2 3 3 1 1, ,., ,1,..,1 , ,., ,1,..,1 = 1,1,...,1 , ,.., ,1, ...,1 ,t t k t k t t k k tg x x x g g g x x x          

has the following general solution, 

  
1

2 3 1

=2 =2

, ,., ,1..,1 = .
k N

c
i

t t k t it i

i i

g x x x x a




  
  
  
   

Note that  1,1,..,1g  is given by, 

  
=2

1,1,..,1 = .
N

i

i

g a
 
 
 
  

Applying the above result, set 

 

    2 3 1= , ,., ,1,..,1t t k tg x g x x x   

    = 1,1,..,1, ,1..,1 ,ktg y g x  

 

then, we have 

    2 3 11,1,..,1, ,1..,1 , ,., ,1,..,1tk t t k tg x g x x x   

  

 
2

=1 =2

=
k N

c
k

it i

i i

x a
  
  
  
   

  2 3 1

=2

= , ,., , ,..,1 .
N

t t k t kt i

i

g x x x x a

 
 
 
  

 

Therefore,  

  2 3 1

=1 =2

, ,., , ,..,1 = .
k N

c
k

t t k t kt it i

i i

g x x x x x a

  
  
  
   

 

By mathematical induction, the general solution of the functional equation of  

        2 3 2 3 2 2 3 3, ,..., , ,..., = 1,1,...,1 , ,..., ,t t Nt N t t N Ntg x x x g g g x x x       

is 

  2 3

=1 =2

, ,..., = .
N N

c
i

t t Nt it i

i i

g x x x x a
  
  
  
   
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Therefore, to make CUPI be independent from the measurement unit of commodities, we must have the 

following normalization condition,  

 

 
1

=2 =2

=
N N

c
i

it i

i i

A x a
  

  
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   

where  

 
=2

= > 0
N

i

i

A a
 
 
 
      for all 2.ic i R  

 

Note that we  have 

 

1

1

1 1

= it it
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t t

p w

p w



 
  

  
  

 

 1= .it tx   

 

Therefore, the normalization condition can be written as  

 1

=2

=
N

c
k

t it

i

A x
 

 
 
  

 
=2 1

=

c
iN

it

i t

A




  
   
   
  

  

 

Denote  

 
=

= ,
N

i

i x

c c  

then, we get  

    1 1

=2

= .
N

c c
i

t it t

i

A  
 

 
 
  

 

The above equation can be written as  

    
1

1

=2

=1.
N

c c
i

it t

i

A  
  

 
 
  

 

Now consider the case where all commodities are treated similarly, then  

  

 = for all 2ic i   

Then, the above equation becomes 

    
 1 1

1

=2

= 1.
N

N

it t

i

A
 

 
   

 
 
  

 

Then, we find   that satisifies the following equation. 
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  = 1 1.N     

The solution is  

 
1

= .
N




 

Using ,  

    1

=2

= 1
N

it t

i

A
 

 
 

 
 
  

Take  

      
1/

1/

1

=2

= 1
N

it t

i

A



  
 

 
 
 
  

we get  

     
1/

1

=2

= 1
N

it t

i

A


 
 
 
 
  

Therefore, we get  

  
=1

= ,
N

it

i

   

where  

  
1/

= > 0A





 

End or Proof. 
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Appendix A3 

 

Table A1: Some Descriptive Statistics of CUPI, S-V, and Discrepancies 

 

 

 
 

 

 

  

 

 

 

 

(CUPI-S-

V)/S-V
DCUPI

DChained

S-V
DS-V

N 143 142 142 142

Mean 0.003 -0.046 -0.139 -0.041

Median 0.003 -0.065 -0.066 0.028

Standard Deviation 0.005 0.911 0.772 0.817

Min -0.015 -2.573 -2.295 -2.473

Max 0.014 2.259 2.034 1.850

Note: DCUPI, Dchained S-V, and DS-V are weekly change rates

(percentages) from the previous weeks of CUPI, Chained Sato-Vartia,

and Direct Sato-Vartia index, respectively.

Because CUPI is transitive, the selection of base does not affect the

change

(CCV-S-V)/S-V is the discrepancies between the level of CUPI and

direct Sato-Vartia whose bases are the first week of the sample period.


