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Abstract

Large-scale household inventory buildups occurred in Japan five times over the last

decade, including those triggered by the Tohoku earthquake in 2011, the spread of COVID-

19 infections in 2020, and the consumption tax hikes in 2014 and 2019. Each of these

episodes was accompanied by considerable swings in GDP, suggesting that fluctuations in

household inventories are one of the sources of macroeconomic fluctuations in Japan. In

this paper, we focus on changes in household inventories associated with temporary sales

and propose a methodology to estimate changes in household inventories at the product

level using retail scanner data. We construct a simple model on household stockpiling and

derive equations for the relationships between the quantity consumed and the quantity

purchased and between consumption and purchase prices. We then use these relationships

to make inferences about quantities consumed, consumption prices, and inventories. Next,

we test the validity of this methodology by calculating price indices and check whether the

intertemporal substitution bias we find in the price indices is consistent with theoretical

predictions. We empirically show that there exists a large bias in the Laspeyres, Paasche,

and Törnqvist price indices, which is smaller at lower frequencies but non-trivial even at

a quarterly frequency and that intertemporal substitution bias disappears for a particular

type of price index if we switch from purchase-based data to consumption-based data.
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1 Introduction

In the first week of March 2020, when the first wave of COVID-19 infections hit Japan, su-

permarket sales went up more than 20% over the previous year. This was due to hoarding by

consumers stemming from an increase in uncertainty regarding the spread of the virus. Similar

hoarding occurred during the third wave, which struck Japan in October 2020. Such hoarding

has occurred not only during the COVID-19 pandemic but also after the Tohoku earthquake

in March 2011 and the subsequent nuclear power plant accident in Fukushima, when residents

of Tokyo and other areas that were spared serious damage went on a buying spree for food

and other necessities. Consumer hoarding also occurred due to policy shocks: when the con-

sumption tax rate was raised in April 2014 and in October 2019, people hoarded large amounts

of goods just before the tax rate was raised, and a prolonged consumption slump occurred

thereafter. Each of these episodes was accompanied by considerable swings in GDP, suggesting

that fluctuations in household inventories are one of the sources of macroeconomic fluctuations

in Japan.

There is a considerable literature on household inventories, addressing a variety of aspects.

For instance, Boizot, Robin, and Visser (2001), Griffith et al. (2009), Hendel and Nevo (2006a,

2006b), and Kano (2018) investigate intertemporal patterns of household purchases and con-

sumption from a theoretical and/or empirical perspective. Hendel and Nevo (2013) focus on

heterogeneity in households’ ability to store goods and show that temporary sales are driven by

price discrimination. More recently, the responses of household inventories to various shocks

have been studied by Baker, Johnson, and Kueng (forthcoming), Cashin and Unayama (2021),

and Hansman et al. (2020).1 Meanwhile, Baker, Johnson, and Kueng (2020) regard inven-

tories as part of households’ non-financial wealth, and Coibion, Gorodnichenko, and Koustas

(forthcoming) focus on the increase in US households’ stockpiling due to a lower frequency of

shopping trips since 1980.

In this study, we focus on changes in household inventories associated with temporary sales.

While the five episodes we outlined above are noteworthy for consumer hoarding, such hoarding

occurs on a daily basis, especially during temporary sales, which has many important conse-

quences. The objective of this study is twofold. First, we propose a methodology to estimate

changes in household inventories at the product level using retail scanner data. Suppose that

a temporary sale takes place unexpectedly: a product is sold at the regular price in period 0,

1Baker, Johnson, and Kueng (forthcoming) examine consumers’ responses to changes in the sales tax rate

in the United States, while Cashin and Unayama (2021) compare the responses of expenditure on durable and

nondurable goods as well as storable and nonstorable goods to Japan’s consumption tax hike in 1997. Hansman

et al. (2020) examine stockpiling by households during disasters such as the COVID-19 pandemic, focusing on

the implications of sticky store prices for stockpiling.
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at the sale price in period 1, and again at the regular price in period 2. A typical response to

this temporary sale would be that the quantity purchased increases in period 1 and exceeds the

quantity consumed, resulting in an increase in household inventories. The quantity purchased

falls below the quantity consumed in period 2 and subsequent periods, so that inventories are

gradually drawn down in these periods. Importantly, the price consumers face in each period

also deviates from retailers’ selling price. In this process, the quantity and price of purchases

can be observed with scanner data, but the quantity consumed, the consumption price, and

changes in inventory are not observable. We construct a simple model on household stockpil-

ing and derive equations for the relationships between the quantity consumed and the quantity

purchased and between consumption and purchase prices. We then use these relationships to

make inference about quantities consumed, consumption prices, and inventories.

The second objective is to empirically test the validity of the methodology described above,

focusing on the intertemporal substitution bias in consumer price indices, which has been

extensively discussed in the field of price index theory. Existing studies have regarded the

intertemporal substitution bias as stemming from changes in household inventories associated

with temporary sales (see, for example, Nakamura, Nakamura, and Nakamura 2011). Taking

the Törnqvist index, which is known to be a second-order approximation of the cost of living

index (COLI), as an example, the weight attached to the price decline from period 0 to period

1 is the sum of the shares of the amount purchased of this product in period 0 and period

1 divided by 2, while the weight attached to the price increase from period 1 to period 2

is the sum of the shares of the amount purchased in the corresponding periods divided by

2. Since the amount purchased in period 2 tends to be smaller than the amount purchased

in period 0, the latter exceeds the former. Therefore, the inflation rate from period 0 to

period 2 takes a negative value, even though the price has returned to its original level. To

eliminate this bias, it is necessary to replace the purchase quantity with the consumption

quantity and the purchase price with the consumption price. In this study, we test the validity of

our methodology by calculating consumption-based (rather than purchase-based) price indices

using the consumption quantity and consumption price estimated based on the model and

check whether the intertemporal substitution bias we find in the price indices is consistent with

theoretical predictions.

The contributions of this study are as follows. First, we construct a simple partial equilib-

rium model on stockpiling by consumers, in which goods prices switch between regular and sale

prices following a Markov process. Our model is close to that by Hendel and Nevo (2006a) but

differs from it in that our model is a quasi-dynamic one. Specifically, we assume that a house-

hold consists of a household producer and a household consumer, and that household inventory

is held only by the household producer. The household producer is like an inventory trader.

3



On the other hand, the household consumer holds no inventory: all he/she does is to purchase

something today to consume today. While propositions in Hendel and Nevo (2006a) continue

to hold in the quasi-dynamic model, this setting allows us to divide household decisions into

two parts, making it easier to distinguish between purchasing and consumption. That is, the

household consumer has nothing to do with intertemporal optimization, and the optimization

problem he/she faces is a static one. All decisions related to intertemporal changes in inventory

are made by the household producer. We refer to the price associated with transactions be-

tween the household consumer and the household producer as the “consumption price,” while

the price associated with transactions between the household producer and firms is referred to

as the “purchase price.” Similarly, the quantity associated with transactions between the house-

hold consumer and the household producer is referred to as the “consumption quantity” in our

analysis, while the quantity associated with transactions between the household producer and

firms is referred to as “purchase quantity.” Optimization by the household producer and the

household consumer determines the relationships between the consumption price and quantity

on the one hand and the purchase price and quantity on the other. Using these relationships,

we estimate the price and quantity for consumption.

The second contribution of our study is that we apply our methodology for estimating

consumption prices and quantities to the issue of intertemporal substitution bias in price in-

dices stemming from temporary sales.2 Using our model, we first show theoretically that

consumer stockpiling driven by temporary sales results in intertemporal substitution bias and

then provide empirical evidence supporting this prediction. Specifically, based on retail scan-

ner data, we show that (1) quantities purchased before, during, and after a temporary sale

differ substantially, as predicted by the model; (2) there exists a surprisingly large bias in the

Laspeyres, Paasche, and Törnqvist price indices, and the sign and magnitude of this bias are

consistent with the predictions of the model. Further, the bias is smaller at lower frequencies

but non-trivial even at a quarterly frequency; (3) the intertemporal substitution bias is closely

correlated with the frequency and magnitude of sales at the product category level, which is

again consistent with the model.

We then replace purchase prices and quantities with the consumption prices and quantities

2Intertemporal substitution bias is often mentioned as one reason for chain drift, as the bias arises typically in

chained price indices. Notable empirical studies on chain drift include Frisch (1936), Reinsdorf (1999), Feenstra

and Shapiro (2003), de Haan (2008), de Haan and van der Grient (2011), Ivancic, Diewert, and Fox (2011),

Nakamura, Nakamura, and Nakamura (2011), de Haan and Krsinich (2014), Goolsbee and Klenow (2018), and

Diewert and Fox (2020). To the best of our knowledge, there are no empirical studies investigating whether

chain drift is generated by stockpiling by consumers during sales, although Nakamura, Nakamura, and Nakamura

(2011) investigate the effect of temporary sales on the bias by comparing price changes when temporary sales

are included and when they are excluded.

4



estimated using our methodology and construct price indices. We empirically show that the

intertemporal substitution bias of these price indices is much smaller than in price indices

using purchase-based data; however, non-trivial bias still remains. We show that this is also

consistent with our model, which predicts that while the consumption price declines at the

start of a sale, closely following the purchase price, after the sale ends, the consumption price

returns to the regular price level only gradually, even though the purchase price returns to it

immediately. Due to this asymmetric evolution of the consumption price, the consumption-

based Törnqvist price index deviates downward from the COLI. However, using the model,

we show theoretically that intertemporal substitution bias is completely eliminated for the

consumption-weighted order r superlative index and confirm this empirically.

The third contribution of our study is that we apply our methodology to a range of other

issues, such as the estimation of the elasticity of substitution, the examination of the response

of consumer stockpiling to consumption tax hikes, and the analysis of the extent to which

stockpiling is affected by business cycle fluctuations. For instance, Hendel and Nevo (2004)

show that the response of purchase quantities to a price reduction consists of the consumption

effect (i.e., consumers consume more as the good is cheap now) and the stockpiling effect (i.e.,

consumers stockpile as the good is cheap now), suggesting that estimation based on purchase-

based data leads to an upward bias. We empirically compare estimates of the elasticity of

substitution based on purchase-based data and those based on consumption-based data and find

that the elasticity of substitution is indeed overestimated when it is estimated using purchase-

based data.

As for consumers’ response to consumption tax hikes, we show that Japan’s consumption

tax hike in April 2014 led households to increase stockpiling one month before the tax hike,

and that stockpiling tended to be more pronounced for goods with longer storability.3 Finally,

regarding the extent to which stockpiling is affected by the business cycle, we empirically find

that the extent of stockpiling during a sale depends on labor market conditions as well as

financial conditions (which we represent by the interest rate level). Specifically, we find that

(1) the extent of stockpiling tends to be smaller when hours worked are longer, implying that,

due to longer working hours, consumers have less time to spend on searching for temporary

sales, and (2) consumers tend to stockpile less when financial conditions are tighter (interest

rates higher), presumably due to the higher costs of financing stockpiling.4

Our study is related to three strands of research. The first strand consists of research

3Another study using consumer stockpiling in response to a consumption tax hike in Japan (the hike in April

1997) to estimate the intertemporal elasticity of substitution is that by Cashin and Unayama (2016, 2021).
4These results are in line with studies by Klenow and Willis (2007), Sudo et al. (2018), and Kryvtsov and

Vincent (2020) showing that there is a statistically significant link between temporary sales and business cycles.

Similarly, Sheremirov (2020) shows that temporary sales account for price dispersion.
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on household inventories of storable goods. Boizot, Robin, and Visser (2001), Griffith et al.

(2009), Hendel and Nevo (2006a), and Kano (2018) empirically document patterns of consumer

purchases and consumption. In terms of the theoretical approach, our model is closest to that

developed by Hendel and Nevo (2006a) but differs from it in that our model is a quasi-dynamic

one with producer households, who hold and sell inventories, and consumer households, who do

not hold inventories. The second strand of literature is that on methodologies for eliminating

chain drift. Ivancic, Diewert, and Fox (2011), de Haan and van der Grient (2011), and de Haan

and Krsinich (2014) propose using the GEKS index (originally proposed by Gini, Elteto, Koves,

and Szulc). The third strand of literatur is that on COLIs. Feenstra and Shapiro (2003) and

Chevalier and Kashyap (2019) propose a proxy for COLIs to deal with sales in an environment

where consumers’ optimization problem is static. Osborne (2018) computes a dynamic COLI

by calculating the sequence of taxes on or subsidies to households that would keep their period

utility constant over time. While Osborne’s dynamic COLI is an important contribution to

the literature, a dynamic COLI is complex and difficult to calculate and, in addition, hard to

interpret.

The remainder of this study is organized as follows. Section 2 develops a quasi-dynamic

model on household stockpiling behavior and presents stylized facts on intertemporal substi-

tution bias in chained price indices, on household inventory, and on the relationship between

the two. Section 3 discusses our approach to calculating consumption and consumption prices

and shows the empirical results, while Section 4 discusses the application of our methodology

to other areas involving consumer stockpiling. Section 5 concludes.

2 Model and Stylized Facts

2.1 Quasi-Dynamic Model

In this subsection, we construct a simple partial equilibrium model of household inventory. We

assume that product k∈Kt is storable and, for simplicity, that it does not depreciate. Time t

is a discrete day.

The novelty of our model is that we assume that households comprise consumers and

household producers and distinguish between the two. That is, household producers are a

special type of household member that has technology to hold inventories, although there is a

cost associated. The household producer provides inventory services consisting of purchasing

storable goods from manufacturers (the quantity purchased denoted by xkt ), holding inventory

(denoted by ikt ), and selling the goods to consumers (the quantity sold denoted by ykt ). Market

entry is free, so that the expected firm value is zero. In this respect, there is no loss of consumer

surplus. On the other hand, consumers in a narrow sense cannot hold inventory: their purchases
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always equal their consumption, ckt . They purchase goods from household producers and/or

manufacturers at the consumption price rkt .

This framework enables us to infer inventories, consumption, and consumption prices, all

of which are often unobservable for economists and practitioners at national statistics offices

(e.g., in the retailer-side POS scanner data we use) and differ from the quantities purchased

and purchase prices, which are observable. Furthermore, it allows us to derive a COLI in a

conventional static manner. All we need to know is two variables: ckt and rkt . We do not need

to use a complex dynamic COLI.

Although the economy is hypothetical, many key properties continue to hold. For example,

the stylized facts we present in the next subsection can be explained not only by a dynamic

model like the one used by Hendel and Nevo (2006a) but also by our quasi-dynamic model.

Propositions 1 and 2 in Hendel and Nevo (2006a) continue to hold in the quasi-dynamic model.

On the other hand, it would be difficult to explain the stylized facts using a completely static

model that ignores stockpiling. A caveat with regard to our framework is that it does not incor-

porate consumption smoothing by consumers. If the consumption price jumps, consumption

also jumps. However, this caveat applies to all conventional frameworks, including those with

perishable goods which cannot be stockpiled, that couch consumers’ optimization problem in

static terms when discussing price indices. To incorporate consumption smoothing, a dynamic

model and dynamic COLIs are needed, but as we discussed in the introduction, interpreting

short-run movements in dynamic COLIs is often difficult (Osborne 2018, Ueda 2020).

2.1.1 Setup

We consider the optimization problems of household producers and consumers. The price of

storable goods, pkt , can take one of two different values, a high (regular) value and a low (sales)

value, which are determined stochastically and exogenously.

Consumers

There are a unit mass of consumers. Consumers’ cost minimization problem is given by

minckt

{ ∑
k∈Kt r

k
t c
k
t + λt

{
U −

[∑
k∈Kt b

k
(
ckt
)σ−1

σ

] σ
σ−1

} }
, (1)

where U is the target utility, σ(> 0) denotes the elasticity of substitution, and bk is a taste or

quality parameter for product k in period t.5 We extensively use the following relation with

5There is no consumer heterogeneity in the model. Many previous studies, such as Boizot, Robin, and Visser

(2001) and Hendel and Nevo (2004, 2006a), investigate the frequency of purchases conditional on past purchase

behavior. To obtain quantitatively plausible values for this, we need household heterogeneity, because otherwise

the frequency of purchases would be either zero or one. In our study, we ignore consumer heterogeneity to focus
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respect to the optimal quantity purchased:

ckt =
(
rkt /r

k
t′

)−σ
ckt′ . (2)

Household producers

Household producers maximize their “firm” value:

V (it−1, pt) = Et

 ∞∑
j=0

βj

 ∑
k∈Kt+j

(
rkt+jy

k
t+j − pkt+jxkt+j − C(ikt+j)

)
 , (3)

subject to the cost of inventory, C(0) > 0, C(i)′ > 0, C(i)′′ ≥ 0, and the evolution of inventory:

ikt = ikt−1 − ykt + xkt . (4)

Household producers sell amount ykt of product k to consumers at consumption price rkt . Fur-

thermore, purchases and inventories must be nonnegative:

xkt , i
k
t ≥ 0. (5)

Parameter β represents the discount factor.

The first-order conditions with respect to xkt and ikt are

0 =rkt − pkt + ψkt , (6)

C ′(ikt ) =βEt[r
k
t+1]− rkt + µkt , (7)

where ψkt and µkt represent the Lagrange multipliers with respect to xkt and ikt , respectively.

Note that ψkt is strictly positive when xkt is zero, and zero when xkt is positive. Likewise, µkt is

strictly positive when ikt is zero, and zero when ikt is positive.

The free entry condition leads to a nonpositive value for an entering household producer

with zero inventory holdings: V (it−1 = 0, pt) ≤ 0.

Prices

The prices of storable goods follow a Markov process. They take one of the following two

values: PH when there is no sale and PL (PH > PL) during a sale. Moreover:

Prob(PL|PH) = q

Prob(PL|PL) = q. (8)

The unconditional frequency of sales Prob(PL) is f = q/(1 + q − q).

on macroeconomic implications rather than individual behavior.

8



Market clearing

Goods market clearing is given by
∫ Nt
0 ykt,jdj +

∫Mt

0 zkt,jdj =
∫ 1
0 c

k
t,jdj, where zkt,j represents the

direct supply of storable product k by manufacturers to consumers. Household consumption ct

equals consumers’ purchases from household producers, yt, and manufacturers, zt. In the mar-

ket, there are a unit mass of consumers, Nt represents household producers, and Mt represents

manufacturers.

Note that the household producers we consider in the model are still part of the households,

although we separate them to simplify our analysis. Thus, the quantity purchased that is

recorded in the POS data, Xt, should equal the sum of the quantity purchased by household

producers
∫ Nt
0 xkt,jdj and the quantity purchased directly by consumers

∫ Nt
0 zkt,jdj. Clearly, this

is not equal to aggregate consumption
∫ 1
0 c

k
t,jdj.

The COLI

As highlighted, consumers’ optimization problem is static, so our COLI is identical to the

conventional COLI. Consumers’ cost minimization problem subject to constant utility yields

the following equation for the optimal quantity consumed:

ckt =
(
rkt /b

k
)−σ

λσt U. (9)

The unit cost function, λt = C(rt) for U = 1, is given by

C(rt) =
∑
k∈Kt

rkt c
k
t =

∑
k∈Kt

(
bk
)σ (

rkt

)1−σ1/(1−σ)

. (10)

Although bk is unobservable and even if it is time varying, equation (2) tells us that we need to

know only two variables for each period, the consumption price rkt and the consumption share

rkt c
k
t , to calculate the change in the COLI between period t and period t′, C(rt)/C(rt′).

6

2.1.2 Equilibrium Properties

The left-hand panel of Figure 1 illustrates the pattern of price and quantity changes during

a sales event when inventories are held just for one period. The top and bottom panels show

prices and quantities, respectively. The sales event takes place in periods t = 2 and 3, when

the price is lower than during other periods. The bottom panel shows that, in period t = 2,

quantities purchased by household producers and consumers, Xt, represented by the solid dot,

6Given that household producers form part of households, it would clearly be desirable to incorporate the

effect of changes in their “firm” value on consumers’ utility and the COLI. However, this effect likely is small,

because the free entry condition means that the firm value is close to zero.
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increase. The reason is not only that households consume more but also that they stockpile.

Thus, Xt is higher than consumption, ct, represented by the circle, with the difference repre-

senting stockpiling. In period t = 3, Xt coincides with ct, since there is no additional need for

stockpiling. Then, in period t = 4 when the sale ends, household producers sell their invento-

ries to consumers. The consumption price rt, at which the household producers and consumers

transact, lies between PL and PH . Since consumption decreases with the consumption price, its

level in period t = 4 is lower than in periods t = 2 and 3 but higher than in periods t = 1 and

5. At the beginning of t = 5, household producers hold no inventories, so consumers purchase

goods at price PH and consume less. See Appendix A for more discussions on the equilibrium

properties of the model.

2.2 Retail and Household Scanner Data

In this and the next subsections, we check the validity of the model by showing that the stylized

facts on household inventory are consistent with the equilibrium properties of the model.

In this exercise, we use two sets of scanner data for Japan. The first set consists of retailer-

side data, namely, the point-of-sale (POS) scanner data collected by Nikkei Inc. The data

include the number of units sold and the sales amount (price times the number of units sold)

for each product and retailer on a daily basis. The observation period is around thirty years,

running from March 1, 1988 to December 31, 2019. Products recorded consist of processed food

and daily necessities, covering 170 of the 588 categories in the CPI and making up about 20

percent of households’ expenditure. See Online Appendix B as to how we aggregate variables

of interest over days, products, and retailers, and Abe and Tonogi (2010), Sudo, Ueda, and

Watanabe (2014), and Sudo et al. (2018) for a detailed description of the data.

The other set consists of household-side data, namely, “Shoku-map”7 scanner data collected

by Lifescape Marketing Co. Respondents are mainly a female homemaker, and the data cover

about 400 households in each period (about 4,000 households in total). The data record the

number of units purchased and the date of consumption for each product and household on

a daily basis. Moreover, they record when consumption ends (i.e., when a product is used

up or has gone off, etc.) for each product and household. The data cover the period from

September 1998 to February 2019. Note that products recorded are food only and there is no

information on purchase prices. Another limitation is that there is no information on how much

of a product (e.g., in terms of weight) is consumed each time it is consumed. The data record

both the number of units purchased and consumed, which is sufficiently useful if products are

consumed in discrete units, such as a cup of instant noodles or a can of beer. However, for

products like salt, we do not know how much a household uses, although we do know the

7“Shoku-map” translates as “food map.”
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dates when they are used.8 For example, Figure 2 shows the consumption pattern for salt of a

particular household. In the figure, each vertical line represents a consumption flag. The figure

indicates that the household purchased salt on day t = 19, started using it on day t = 22, and

used it up on day t = 144. The inventory duration thus is 144− 19 + 1 = 126 days. See Online

Appendix C for detailed explanations about the Shoku-map data.

In both sets of data, all products are identified by the Japanese Article Number (JAN)

code, which enables us to merge the datasets. Further, we classify products into groups using

the 3-digit product categories provided by Nikkei Inc. There are 218 categories in total, such

as instant cup noodles, yogurt, beer, and toothbrushes.

In the following analyses using the POS data, we identify temporary sales by employing a

sales filter. Specifically, we follow the procedure explained in Nakamura and Steinsson (2010)

using their sales filter A with a window of L = K = J = 42 days.9 Product k is classified as

being on sale on date t if and only if its price pkt deviates from its regular price pkt by more

than two yen.

When no sales are recorded for a particular product at a particular retailer on a particular

date, earlier studies usually treated this simply as a missing observation, as if the product

disappeared from shelves at the retailer on the date. However, the POS data quite often

show no sales records for a particular product, retailer, and date after a sale, suggesting that

stockpiling by households during a sale results in zero purchases after the sale ends. Since this

conveys important information on household inventory, in this study, we interpolate missing

observations by setting pkt = pkt and xkt = 0 if we have observations after t (i.e., unless the

product permanently exits from the market). That is, we set the quantity purchased to zero

and the price to the regular price on the nearest past date.10

2.3 Stylized Facts on Household Inventory

Using the two datasets, we present four stylized facts that are closely related to the predictions

of our model. Note that Facts 1 to 4 correspond to Lemmas 3, 5, 6, and 4, respectively, in

Appendix A.

8If a household uses salt N times a day, the data record N , where N is an integer equal to or greater than

zero.
9The window length is chosen following Eichenbaum, Jaimovich, and Rebelo (2011) and Kehoe and Midrigan

(2015). For a detailed examination of the robustness of various filters to identify sales, see Sudo et al. (2018).
10If we do not interpolate the price and quantity, the price increase after a sale is completely neglected because

the product is not in the matched sample and therefore is excluded from the calculation of the changes in chained

price indices. Therefore, without interpolation, the downward bias of the Törnqvist price increases further.
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Fact 1: There is asymmetry in the quantity purchased when prices increase and

when they decrease.

Using the POS data, we collect the following variables for each product k and sales event s: T

denotes the number of days a product is on sale, P 1
H and X1

H denote the price and the quantity

purchased just before a sale (say, in period t), respectively, P 1
L and X1

L denote the average

price and quantity purchased during the first half of the sale, respectively (i.e., from t + 1 to

t+ bT/2c− 1), P 2
L and X2

L denote the average price and quantity purchased during the second

half of the sale, respectively (i.e., from t + bT/2c to t + T ), and P 2
H and X2

H denote the price

and the quantity purchased just after the sale, respectively (period t+ T + 1).11

Next, we compare the quantities purchased just before a sale and just after a sale (denoted

by QH), both of which correspond to when a product is not on sale. We calculate the difference

of the inverse hyperbolic sine function, that is, QH = log(X2
H +

√
1 +

(
X2
H

)2
) − log(X1

H +√
1 +

(
X1
H

)2
) for each product k and sales event s. This function is chosen because XH may

take zero. We then calculate the weighted average of QH over k and s within each 3-digit

product category, where weights are based on the sales amount, that is, P 1
HX

1
H + P 2

HX
2
H .

Similarly, we compare the quantities purchased during the first half and the second half of

a sale (denoted by QL), both of which correspond to when a product is on sale, as QL =

log(X2
L +

√
1 +

(
X2
L

)2
) − log(X1

L +
√

1 +
(
X1
L

)2
). The weighted average is calculated based

on sales given by P 1
LX

1
L + P 2

LX
2
L. Both QH and QL indicate that the quantity purchased

is asymmetric when the prices of products increase and when they decrease. That is, QH

represents the asymmetry between just before prices decrease (a sale starts) and just after they

increase (the sale ends), both of which correspond to periods when prices are high (i.e., PH).

Similarly, QL represents the asymmetry between just after prices decrease (a sale starts) and

just before they increase (the sale ends), both of which correspond to periods when prices are

low (i.e., PL).

The left-hand panel of Figure 3 shows QH and QL for each year. It indicates that QH is

negative in all years, suggesting that the quantity purchased just after a sale is smaller than

that just before. However, while the negative values of QH were quite large during the 1990s,

they gradually approached zero in the 2010s.

A similar pattern can be observed for QL, except that QL starts out in negative territory

in the 1990s and then gradually shifts into positive territory. The negative values for the

1990s suggest that the quantity purchased was larger at the beginning of a sale than at the

end, helping to account for the downward chain drift in the Törnqvist index. Meanwhile,

11Variable T is the smallest integer that is greater than or equal to one and satisfies |pt+T+1 − pt+T+1| ≤ 2,

where pt+T+1 represents the regular price.
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the positive values for QL in the 2010s suggest that the quantity purchased at the beginning

of a sale was smaller than that at the end, which works to generate upward chain drift in

the Törnqvist index. This can occur when the duration of a sale is known ex ante because

household producers do not need to stockpile except for the final day of the sale.

In summary, we find that QH has been negative and that QL has taken both negative and

positive values. This finding cannot be explained by a standard model with perishable goods

because perishable goods cannot be stockpiled and thus the same price should lead to the

same quantity purchased, so that QH and QL should have mean zero (i.e., there should be no

asymmetry). By contrast, our model of stockpiling with storable goods can account for this

asymmetry.

Fact 2: When weights are based on purchases, the relationship between the differ-

ent price indices is given by the following inequality: πP < πT < 0 < πL.

Let us denote the price and quantity purchased for product k in period t by pkt and xkt . Changes

in chained price indices from t− dt to t, πXt (X = L,P, T ), are defined by

πLt =
∑

k∈Kt−dt∩Kt

W k
t−dt(Kt−dt ∩Kt)log

(
pkt
pkt−dt

)
, (11)

πPt =
∑

k∈Kt−dt∩Kt

W k
t (Kt−dt ∩Kt)log

(
pkt
pkt−dt

)
, (12)

πTt =
∑

k∈Kt−dt∩Kt

W k
t−dt(Kt−dt ∩Kt) +W k

t (Kt−dt ∩Kt)

2
log

(
pkt
pkt−dt

)
, (13)

based on the Laspeyres, Paasche, and Törnqvist approach, respectively.12 The weight share

W k
t (Kt−dt ∩Kt) equals pkt x

k
t /
∑

k′∈Kt−dt∩Kt p
k′
t x

k′
t , where k∈Kt−dt ∩Kt represents a domain of

products that exist both in t−dt and t (such a common set is called a matched sample). When

dt = 1, we can construct the chained price indices using the cumulative sum of the past price

changes: PXt = exp
(∑t

s=1 π
X
s

)
for X = L,P, T.

Using the POS data, we calculate the time series of the price level (PXt ), normalizing the

initial price level to one. The results are striking. The left-hand panel of Figure 4 shows that

the price level increases by almost 1092 over our 30-year observation period when based on the

Laspeyres index, while it decreases to almost 10−111 when based on the Paasche index. The

price decline is milder but nevertheless remains large when based on the Törnqvist index. The

price level still decreases to almost 10−9. Thus, the following inequality holds: πP < πT < 0 <

πL, which is consistent with Lemma 5.

12There are various types of Laspeyres and Paasche indices. Here, we use the logarithmic Laspeyres and

logarithmic Paasche indices.
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This bias is caused by the asymmetry in the quantity purchased (Lemma 3), for the following

two reasons. First, the quantity purchased before a sale is greater than or equal to that just

after the sale. As a result, the share of the product in households’ total purchases when the

price decreases at the beginning of a sale is larger than that when the price increases at the end

of the sale, which decreases the purchase-weighted Törnqvist price index. Second, the quantity

purchased during the first half of a sale is greater than or equal to that on the second half of

the sale. This means that the share of the product in households’ total purchases when the

price decreases at the beginning of a sale is larger than that when the price increases at the

end of the sale. Consequently, the purchase-weighted Törnqvist price index decreases.

Although the sizes of the changes in the price indices shown above are far too large, this

does not necessarily mean that they are biased, since we do not observe a true price index such

as a COLI that would allow us to make comparisons. We therefore employ the following test

for bias.

Chain Drift Test As argued by Ivancic, Diewert, and Fox (2011) among others, a chained

price index should take the same value at t = 0 and τ if the prices and quantities for all products

at t = 0 and τ are equal (i.e., there should be no chain drift). We formulate this argument by

defining chain drift dX0,τ,dt as

dX0,τ,dt =

(τ−1)/dt∑
s=1

πX(s−1)dt,sdt − π
X
0,τ−1, (14)

where τ represents the interval over which chain drift is measured, which we set to 365 days,

and πXt1,t2 represents the change in the chained price index from t1 to t2 for X = L,P, T .13 The

first term on the right-hand side of the equation represents the change in the chained price

index when it is incrementally chained forward by interval dt from 0 to τ − 1. The second

term represents the change in the chained price index when we calculate the price change from

0 to τ − 1 all at once. If the chained price index has no chain drift, the second term should

completely offset the first term, so that dX0,τ,dt should be zero. By definition, dT0,τ,dt is zero when

dt = 364. We calculate dX0,τ,dt for each year of the observation period, each 3-digit product

category, each price index (X), and each interval (dt).

The right-hand panel of Figure 4 shows the mean of dX0,τ,dt over years and 3-digit product

categories for each price index (X) and interval (dt). The panel shows that the indices deviate

considerably from zero. Further, we find that the deviation is positive for the Laspeyres index

and negative for the Törnqvist and Paasche indices, with the negative deviation of the Paasche

13πXt1,t2 is the same as πXt2 defined in equations (11) to (13) if t1 = t2 − dt and the domain of products is the

same. Here, we use the domain of products that exist from t = 0 to τ to apply equation (14) to the POS data.

This implies that we ignore the effect of product turnover for this calculation.
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index being larger, i.e., we find the following relationship: dP < dT < 0 < dL. The deviations

are larger the smaller is dt. For example, for the Törnqvist index, we find that the deviation is

−40% when dt = 1 and −1% when dt = 28.

After calculating dX0,τ,dt, we conduct a test for chain drift. The test is a simple sign test for

the null hypothesis that the probabilities that dX0,τ,dt takes a negative or positive sign are each

equal to 0.5. The first column of Table 1 shows that the null hypothesis is rejected for dt = 1.

Use of Lower Frequency Data The finding that the deviations are larger the shorter the

interval might suggest that it is preferable to use lower frequency data (such as monthly or

quarterly rather than daily data) or fixed base indices. This would help to reduce the bias in

chained price indices because inventories of most products, particularly those we analyze in

this study, last for less than a month. However, the use of lower frequency data and/or fixed

base indices has three shortcomings.

First, as pointed out in many previous studies, the use of lower frequency data alone does

not completely eliminate the bias. The right-hand panel shows that chain drift decreases as the

interval (dt) increases. However, the drift is still −1% for dt = 28 and −0.5% for dt = 182 when

the Törnqvist index is used, which is not negligible. Further, the chain drift is significantly

different from zero for all dt, as the first column of Table 1 shows. Given that in almost all

industrial countries the consumer price index (CPI) is published on a monthly basis (around

dt = 28), this suggests that using a frequency that is sufficiently low to avoid bias is not a

realistic solution (also see Ivancic, Diewert, and Fox 2011).

The second shortcoming of using both lower frequency data and fixed base indices is that

they ignore some products that are short lived or new. Szulc (1983) points out that a fixed base

index is likely to be more biased the more distant the current period from the based period.

Also see ILO et al. (2004, 2020) and Ivancic, Diewert, and Fox (2011).

The third shortcoming is that some of the high frequency (e.g., daily) fluctuations in prices

and quantities may be closely related to business cycle fluctuations. Specifically, we will show

that consumers change their stockpiling behavior depending on the macroeconomic environment

such as hours worked and interest rates. This suggests that it may not be a good idea to

discarding information from high frequency data in constructing price indices because this will

yield biased price indices where the bias changes with the business cycle.14

14An analogous issue is whether temporary sales can be ignored in the analysis of monetary policy. Since

temporary sales are high frequency events lasting only around a week, most models ignore temporary sales

despite the fact that they considerably decrease price stickiness. However, Klenow and Willis (2007), Sudo et

al. (2018), and Kryvtsov and Vincent (2020) find statistically significant links between temporary sales and the

business cycle and argue that temporary sales decrease the real effect of monetary policy.
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Fact 3: Chain drift is associated with household stockpiling during temporary

sales.

Household stockpiling and in particular the asymmetry in the quantity purchased are not

necessarily the sole reason for the chain drift. Therefore, we next examine whether the chain

drift we observe can be explained by the asymmetry in the quantity purchased. To this end,

we investigate whether the extent of the asymmetry, as measured by QH and QL, is correlated

with the chain drift. Specifically, we conduct the following three analyses.

First, we examine the time-series correlations between the asymmetry of the quantity pur-

chased (QH and QL) and the chain drift (dT0,τ,dt=1) based on the Törnqvist index. The left panel

in Figure 3 suggested that QH and QL trended upward during the observation period. Based

on this, one would expect the downward chain drift to have diminished over time, and the right

panel of Figure 3 shows that this is indeed what happened: the extent of the downward chain

drift has been decreasing. However, the chain drift nevertheless remains negative.

Second, we investigate whether there is a positive correlation between the chain drift and

the asymmetry in the quantity purchased. We run a regression for dT0,τ,dt=1 using QH and QL

at the 3-digit product category level after calculating the temporal mean of each variable. The

first column in Table 2 shows the estimation result. The coefficients on both QH and QL are

positive and significant at the 5% level.

Third, we examine the correlation between the chain drift and variables associated with

temporary sales. We conduct this exercise because QH and QL are endogenous and therefore

the causality from QH and QL to the chain drift is ambiguous. We run a regression for dT0,τ,dt=1

using the following variables associated with sales: qj , qj , qj , and (PL/PH)j , which respectively

represent the probability that product j is on sale, the probability that the product will go on

sale on the following day given that it is not currently on sale, the probability that the product

will continue to be on sale on the following day given that it is currently on sale, and the ratio

of the sale price to the regular price. These are the variables that are more exogenous than

QH and QL and cause the chain drift according to our model.

The second to fourth columns in Table 2 show the estimation results. The coefficient on

(PL/PH)j is significantly positive, showing that the size of deflation increases as the size of

sale discount is larger. The coefficient on qj is significantly negative, suggesting that the size

of deflation increases as the probability of sales increases. Meanwhile, in column (3), the

coefficient on qj is insignificant and that on qj is significantly negative. However, as shown in

column (4) this result changes when we control for the degree of stockpiling m, which we will

define in the next section. In this case, the coefficient on qj is significantly negative and that

on qj is insignificant. These estimation results are consistent with Lemma 7, except for the
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insignificant coefficient on qj . Conducting further simulations, which we do not show here, we

find that an increase in q increases the price change but that the size of the effect of q is small

compared with that of q and PL/PH . Furthermore, the adjusted R2 is around 0.5, suggesting

that temporary sales account for a considerable portion of the bias in chained price indices.

Fact 4: Consumption tends to decrease as household inventories decrease.

While earlier studies on household inventories often assume that consumption is constant,

Hendel and Nevo (2006a) and Kano (2018) highlight that consumption is state dependent. To

examine whether consumption is indeed state dependent, we investigate whether consumption

decreases until the next purchase as inventories decrease, using the Shoku-map data. Suppose

that household i uses product k on date tl ∈ t1, t2, · · · , tnikt and t represents the purchase date.

If the household uses product k twice on date tl0 , we record tl0 twice. Thus, nikt represents

the number of times product k is used. We define the inventory on date t
′

(t ≤ t
′ ≤ tnikt) as

λikt′ = nikt − n∗, where n∗ is the maximum integer n that satisfies tn < t
′
. Note that λikt′ is

an integer between 0 and nikt. For example, λikt′ = nikt for t ≤ t
′ ≤ t1. We further define the

sum of inventory Λijt for household i in product category j at the beginning of date t as

Λijt =
∑
k∈j

λikt. (15)

We then estimate the following linear probability model when Λijt > 0:

yijt = ci + dj + αΛijt + εijt, (16)

where yijt is a binary variable for consumption and takes a value of one if household i uses

products in product category j on date t and zero otherwise. As an alternative, we also use

yijt defined as the sum of the times that products in product category j are used by household

i on date t.

As Table 3 shows, the coefficient on inventories is significantly positive, regardless of which

dependent variable is used. This indicates that consumption is state dependent and decreases

as inventories decrease.15 Further, the size of the coefficient is small and significantly lower

than one. This suggests that households engage in consumption smoothing, that is, they do not

15For the estimation presented in the table, we did not use instrumental variables but employed ordinary least

squares (OLS). This means that the estimates are biased if, for example, Cor(εijt, εijt−1) > 0, that is, if high

consumption demand at time t−1 not only decreases inventories Λijt at time t but also increases consumption at

time t. If such endogeneity exists, the coefficient on inventories is underestimated when using OLS. Thus, the fact

that we obtained a significantly positive estimate using OLS indicates that the state dependency of consumption

continues to hold or is stronger than our estimates suggest. See Online Appendix C for the estimation results

at a product category level.

17



consume as much as they purchase or hold as inventories. As a result, consumption-weighted

chained indices provide more stable indicators of price changes than purchase-weighted chained

indices.

3 Inference of Consumption and Consumption Prices and Cal-

culation of the COLI

In this section, we propose an approach to calculating consumption and consumption prices

using the POS data. We then check the validity of our approach and calculate price indices

based on the consumption we infer.

3.1 Methodology

In the previous section, we examined the validity of the model predictions regarding prices

and quantities purchased using scanner data for Japan. However, many important variables

such as consumption, inventories, and the consumption price are often unobservable, although

we can observe the quantity purchased and the posted price using retailer-side POS scanner

data. From a practical perspective, consumption and the consumption price are essential

for constructing the COLI.16 For macroeconomists, it is of great interest to see whether any

changes in stockpiling behavior can be observed over time and, if so, what the determinants

are. Therefore, in this section, we propose a simple and tractable methodology to infer these

variables using retailer-side scanner data. See Online Appendix E for details.

The consumption price at pt = PL equals PL. The key variable is the consumption price at

pt = PH after a sale ends, that is, rH(It−1) ≡ r(It−1, PH), where rH(0) = PH . Knowing this

variable enables us to obtain consumption ct after a sale using equation (2).

When pt = PH , household producers’ optimization problem is given by

C ′(iH ; It−1) = β {(1− q)rH(It) + qPL} − rH(It−1) + µt (17)

from equation (7). This equation shows that household producers strike a balance between the

benefits of a future consumption-price increase (the right-hand side) and the costs of holding

inventories (the left-hand side). Note that µt is the Lagrange multiplier associated with it and

equals zero if it > 0.

We note that when inventory cost function C(·) is written in a certain form, rH(It)−rH(It−1)

becomes a positive constant. In other words, the expectation of a linear consumption-price

16How to deal with chain drift including intertemporal substitution bias is an important issue for national

statistics offices, especially when they employ high frequency scanner data in constructing consumer price indices.

See Konny et al. (2019), Eurostat (2017), and EFTA (2020) for more on this practical aspect of chain drift.
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increase prevents household producers from selling all of their inventories instantaneously or

from selling none at all. Household producers gradually sell off their inventories to consumers.

In the following analysis, we assume this linearity holds. While this admittedly is a re-

strictive assumption, it can be interpreted as an intermediate of the following two scenarios.

The first is when C ′′ → 0. In this scenario, rH(It) − rH(It−1) increases in t. Put differently,

if inventory costs are not convex, household producers require a greater consumption-price

increase as time goes by, because they discount the future (β < 1) and expect another sale

to come at some point (q > 0). As for the second scenario, suppose β = 1 and q = 0. Then

rH(It) − rH(It−1) decreases in t. The cost of holding inventories decreases as household pro-

ducers’ inventories decrease because of C ′′ > 0, which makes household producers require a

smaller consumption-price increase as time goes by.

The benefit of this linearity assumption is that it greatly simplifies our analysis. Given the

path of rH(It−1), we compute consumption ct as (rH(It−1)/PL)−σ c∗L, where c∗L represents con-

sumption during a sale. Briefly put, c∗L is the lower value of the quantity purchased (observable

in the POS data) during the first and second half of a sale because according to the model,

consumption during a sale is equal to the lowest amount of purchases during the sale. Further-

more, we can calculate the degree of stockpiling, m. More precisely, we define m to denote how

long inventories last after a sale ends. In continuous time, we can derive the following equation:

mcont =
PH − PL
PL

σ − 1

1− (PH/PL)−σ+1

IL
c∗L
. (18)

Simply put, the equation can be derived because cumulative consumption for mcont periods

equals the initial inventories outstanding just after a sale ends, IL, and the consumption price

linearly increases from PL to PH in mcont periods. Inventories IL equal the cumulative amount

of purchases during a sale minus the cumulative amount of consumption, Tc∗L, in the same

period. Because the variables PH , PL, c∗L, σ, and IL are observable/estimable from pur-

chase data, we can estimate mcont, the path of consumption prices, and the path of quantities

consumed after a sale ends. In the next subsection, we apply our methodology to infer con-

sumption from retail scanner data and verify the methodology empirically by showing that the

consumption-weighted Törnqvist price index continues to have, albeit small, downward bias,

while the consumption-weighted order r superlative index has no bias, as shown in Lemmas 5

and 8 in Appendix A.

The right-hand panel of Figure 1 illustrates the pattern of price and quantity changes in

the case of m = 5. The consumption price, depicted by the circles in the top panel, increases

at a constant rate from t = 3 to 8. The bottom panel shows that while the quantity purchased

falls to zero from t = 4 to 7, consumption does not fall to zero, but decreases gradually.

In Online Appendix F, we employ numerical simulations to depict a typical path of the price
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and quantity and calculate biases in chained price indices. The simulations show that the COLI

and the chained order r superlative index do not have any bias and asymptotically return to

their original level. The chained consumption-weighted Törnqvist index has a downward bias,

while the purchase-weighted price indices have a much larger bias. The size of the bias in the

purchase-weighted Törnqvist index is comparable to the actual size of the bias in the Törnqvist

index for Japan.

It should be noted that the fact that goods are storable means that price indices will always

be subject to the intertemporal substitution bias. This is the case regardless of whether a

simplifying assumption such as the one we introduce is employed. In fact, the model in the

previous section succeeded in qualitatively explaining the bias in various chained price indices,

including its sign, without relying on this simplifying assumption.

However, additional assumptions are needed for quantitative purposes such as investigating

the size of the bias. Since the linearity assumption is only one of many possible assumptions,

in Online Appendix G, we examine how much the size of the chain drift changes in response to

different assumptions about the path of the consumption price after a sale ends. We conclude

that the alternative approaches leave our quantitative results more or less unchanged.

In what follows, we take the following four steps. First, we identify all sales events for

each product and retailer using the sales filter. Second, we record the price and the quantity

purchased just before and after a sale, as well as the average price and the quantity purchased

in the first and the second half of a sale. This enables us to obtain consumption prices and the

quantities consumed just before and during the sale (but not after the sale). Third, we calculate

the elasticity of substitution, σ, for each 3-digit product category. We use the consumption

prices and the quantities consumed before and during the sale obtained in the previous step

to estimate σ from equation (2). We will come back to this point in Section 4.1. Finally, we

calculate rt = rH(It−1), ct, c
∗
L, m, and IL for each sales event for each product at each retailer.

We employ the methodology discussed in the previous subsection to calculate m. Once we have

obtained m, we can calculate the path of consumption prices rt = rH(It−1) and consumption

ct after a sale ends. A detailed explanation of how we calculate these variables is provided in

Online Appendix E.

3.2 The Degree of Stockpiling

We apply the approach explained in the previous subsection to Japanese POS scanner data.

Figure 5 presents a histogram of the degree of stockpiling mcont at the 3-digit product category

level (hereafter we simplify the notation by dropping cont from mcont). The distribution of m

ranges from one to five, with the mode being around two. Table 4 lists the top and bottom

five product categories with the largest and smallest m. The top three categories are instant

20



cup noodles, diluted beverages, and frozen meals, in that order. These products can indeed

be stored for a long time. However, the storability of products does not necessarily imply a

high degree of stockpiling. In fact, of the five bottom categories, razors, cosmetic accessories

(e.g., hand cream and sunscreen lotion), home medical supplies, and batteries are also highly

storable. What distinguishes them from storable goods such as cup noodles is that once they

are opened, they can continue to be used for a long time. That is, whereas cup noodles,

for example, are consumed more or less immediately after they are opened, razors, cosmetic

accessories, and batteries can often be used for longer than a week. As a result, consumers tend

not to purchase more than two units even when they are on sale. This suggests that the degree

of stockpiling, m, may be negatively correlated with the length that a product lasts once it is

opened.17

3.3 Validity Checks of Our Approach

3.3.1 Comparison of Inflation Rates: Data and Simulation

To check the validity of our approach, we first examine whether the simulated bias in the chained

indices is comparable to the actual price change. On the one hand, we calculate the actual

price change defined as the average of price changes based on the purchase-weighted Törnqvist

index for each 3-digit product category j (denoted by πj) over the observation period. On the

other hand, we calculate qj , qj , (PL/PH)j , and mj to obtain the simulated bias in the chained

indices for each 3-digit product category. Then, using these values, we simulate the model

and calculate the average price change in the purchase-weighted Törnqvist index (see Online

Appendix F for the simulation method). The elasticity of substitution σ is set to 3 for all

product categories.

Figure 6 shows that our approach does a reasonably good job in explaining the actual

change in chained price indices. In the figure, each circle represents a product category. The

figure shows that product categories that have a large price change in the data tend to exhibit a

large bias in the simulation as well. The circles tend to lie below the 45 degree line, suggesting

that the actual price change is smaller than the simulated bias.18

17The degree of stockpiling is highly heterogeneous even within products belonging to the same product

category. See Online Appendix F.
18Column (4) in Table 2 shows that the chain drift is negatively correlated with mj . In Online Appendix F,

using simulations, we investigate how the inflation rate, πj , depends on mj , qj , qj , and (PL/PH)j . We find that

πj depends negatively on mj .
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3.3.2 Comparison with the Shoku-map Data

To further check the validity of our approach, we compare the degree of stockpiling (m) obtained

from the POS data with related variables in the Shoku-map data. Specifically, we look at the

duration of inventories defined as the difference between the date of purchase (tp) and the date

on which the item is used up (tl). Using the cross-sectional dispersion of m at the 3-digit

product category level, we examine if there is any significant correlation. The left-hand panel

of Figure 7 shows that there is no significant correlation between log(m) in the POS data and

log(tl− tp+ 1) in the Shoku-map data for the period of 1988−2013. This suggests that m does

not necessarily represent storability.

If m captures stockpiling, it should incorporate not only storability but also the quantity

purchased. For this reason, the average quantity purchased in the Shoku-map data, log(q), may

correlate with log(m) in the POS data. The right-hand panel of Figure 7 shows that this is

indeed the case. A positive correlation is observed between log(q) and log(m) for the average

of the entire observation period with the correlation coefficient of +0.32.

3.4 Price Indices

Using the POS data, we calculate the time-series of the price level based on the following

three definitions. The first is the Törnqvist index based on the purchase weight. This is the

conventional approach and we showed the results in Figure 4. The second definition is the

Törnqvist index based on the consumption weight. Here, we use the consumption price as well

as consumption to calculate the price index. The third definition is the order r superlative index,

where we use the estimated elasticity of substitution σ at the category level (see Appendix A

for the definition).

Table 1 presents the average chain drift and inflation rate based on the three price indices. It

shows that the chain drift in the consumption-weighted Törnqvist index is significantly negative

for dt ≤ 52. By contrast, the chain drift in the consumption-weighted order r superlative

index for dt = 1 is insignificant. This result shows that our approach using the consumption-

weighted order r superlative index is effective in eliminating chain drift, although the chain

drift is significantly negative for intermediate values of dt (i.e., 7 or 14 days).

The bottom row shows that the averages of the annualized inflation rates are negative

and still sizable for all three indices. However, the size of measured deflation decreases the

more household stockpiling is taken into account; that is, it is −46% for the purchase-weighted

Törnqvist index, −13% for the consumption-weighted Törnqvist index, and −11% for the

consumption-weighted order r superlative index. Online Appendix F compares developments
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in the inflation rates over time.19

4 Further Issues Regarding Household Inventories

Household inventories matter not only for price indices. In this section, we first investigate

the implications of household inventories for the measurement of the elasticity of substitution.

Further, we then examine how household stockpiling changes in response to a preannounced

consumption tax hike and the business cycle.

4.1 The Elasticity of Substitution

4.1.1 Our Approach to Measuring the Elasticity of Substitution

Our approach is also useful for obtaining the value of the elasticity of substitution, σ.20 Note

that the estimate of the elasticity of substitution is biased unless we properly take stockpiling

into account. As argued by Hendel and Nevo (2004), price reductions influence the quantity

purchased not only via the consumption effect (consumption is price sensitive) but also via the

stockpiling effect (i.e., consumers stockpile for future consumption). Owing to the latter effect,

which is often larger than the former, the elasticity of substitution is likely to be overestimated

when we ignore stockpiling.

Our approach makes it possible to obtain the value of σ. For each 3-digit product category,

for each sales event of product k and retailer r, we collect the records of the log ratio of

the quantity consumed during a sale to the quantity consumed when the product is sold at

the regular price divided by the log ratio of the sale price to the regular price, that is, Γ ≡
−log (cL/cH) /log (rL/rH). Equation (2) suggests that Γ equals σ on average.21 We calculate

19Other factors may contribute to the bias in the chained price indices. The most important factor likely is

product turnover. Ueda, Watanabe, and Watanabe (2019) show that in Japan product prices tend to decline over

the life-span of a product. In this case, price indices that use only matched samples and ignore price differences

between old and new products will be biased downward. This downward bias is indeed consistent with the result

shown in Table 1 that the inflation rate based on the Törnqvist index is 6% lower than the chain drift in the

POS data. Another possible reason for bias is cross-sectional substitution if, for example, the timing of sales

is correlated across retailers or products. Such cross-sectional substitution may amplify or reduce household

stockpiling, which would affect the bias in chained price indices. See Ivancic, Diewert, and Fox (2011).
20The elasticity we measure in this study is the short-run intertemporal own price elasticity of consumption.

By this we mean the following. First, by “short-run intertemporal elasticity” we mean that the elasticity we

focus on incorporates stockpiling (see Ogaki and Reinhart 1998). Second, by “own price elasticity” we mean that

we focus on the elasticity in response to changes in the price of the product in question, not of other products

that are substitutes, which would be the cross-price elasticity.
21It can be assumed that prices are exogenous for households, especially over such a short time horizon. Thus,

any bias from endogeneity is unlikely to be a major problem.
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the unweighted average of Γ across sales events, products, and retailers for each 3-digit product

category, which we define as σ.

For comparison, a simple calculation of σ is possible if we ignore storability. Hendel and

Nevo (2004) argue that neglecting stockpiling leads to an overestimation of σ by a factor of two

to six. To confirm this, we obtain σ by simply calculating the slope of −∆logXt/∆logpt using

the observed series of purchases Xt and posted prices pt, where ∆ is the difference from the

previous date. In this simple calculation, we use all observations as long as the posted price

changes by more than two yen from the previous date. Note that, according to equation (2),

the simple calculation would be valid if ct and rt equal Xt and pt, respectively.

4.1.2 Results

Figure 8 shows the value of the elasticity of substitution σ for 3-digit product categories,

calculated from Γ = −log (cL/cH) /log (rL/rH) . The left-hand panel displays the histogram of

σ and shows that σ is distributed smoothly around the mode of three and most of the values

are positive.

The dotted line in the left-hand panel shows the histogram of the simple estimate of σ, which

is distributed to the right of the solid line (our estimate). This result is in line with Hendel

and Nevo’s (2004) result, suggesting that σ is overestimated if we ignore storability. The right-

hand panel shows the scatter plot of the value of σ, where each dot represents a 3-digit product

category. In most categories, the simple estimates are larger than our estimates. Nevertheless,

the two measures are not independent of each other and exhibit a positive correlation. Finally,

it should be noted that the estimates of σ are negative for some product categories (although

they are not necessarily significant), whereas from a theoretical perspective we would expect

them to be positive. We aggregate the variables of interest at the 3-digit category level only

when σ is greater than zero.

4.2 Effect of the Consumption Tax Rate Hike

On April 1st, 2014, the consumption tax rate in Japan was raised from 5% to 8%. This was a

preannounced event, which prompted households to stockpile before the tax hike.22 To examine

the effect of the consumption tax hike, we calculate the change in log(m) in March 2014 from

the same month in the previous year.

22In Japan, increases in the consumption tax rate—from 3 to 5% in April 1997, from 5 to 8% in April 2014,

and from 8 to 10% in October 2019—have always been a major political and economic event, because they have

been accompanied by large demand increases before the tax hike and persistent weak demand (recessions) after

the hike. For this reason, Prime Minister Shinzo Abe postponed the latest hike, from 8% to 10% twice, once in

2014 and once in 2016.
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The left-hand panel of Figure 9 shows that the changes in log(m) in March 2014 are positive

for most product categories. Furthermore, the correlation coefficient between this variable and

log(tl − tp + 1) based on the Shoku-map data is high at +0.48, although the correlation was

insignificant for the period of 1988–2013. This evidence supports our interpretation that m

captures the degree of stockpiling. That is, the degree of stockpiling increases in response to an

anticipated price increase, and more storable goods tend to be stockpiled more. Furthermore,

the right-hand panel of Figure 9 shows that a positive correlation continues to be observed

between the average quantity purchased in the Shoku-map data, log(q), and log(m) in March

2014: the correlation coefficient is +0.398.

4.3 Developments in Households’ Stockpiling Behavior

4.3.1 Changes in Stockpiling Behavior

The degree of stockpiling m is not only heterogeneous but also time-varying. The line with dots

in Figure 10 shows the time-series developments in aggregate log(mt), given by the unweighted

mean of log(mj) for 3-digit product category j, from January 1989 to December 2018. The

line indicates that there has been a secular decrease in the last two decades.

It should be noted that m can change as a result of changes not only in households’ intrinsic

behavior but also in prices, which are exogenous to households. To show this formally, we use

equation (7) when pt = PL. Household producers optimize their inventories during a sale to

satisfy

C ′(iL; It−1) = β
{

(1− q)rH(It) + qPL
}
− PL + µt. (19)

If a sale ends in period t, the consumption price increases in period t+1. This provides household

producers with a profit if they hold inventories, as the right-hand side of the equation shows.

However, household producers incur a cost when holding inventories, as shown in the left-hand

side of the equation. Suppose C ′(it; It−1) = C > 0 and linear consumption-price increases.

Then we have C = β(1− q)
{

1
m
PH−PL
PL

+ 1
}
PL − (1− βq)PL, and, in turn,

m = β(1− q)PH − PL
PL

(
1− β +

C

PL

)−1
. (20)

This equation suggests that the degree of stockpiling m negatively depends on the proba-

bility that a sale will continue to occur at t+ 1 given that a sale occurs at t, positively depends

on the size of the sale discount, and negatively depends on the cost of holding inventories. In

other words, more stockpiling occurs the sooner a sale is expected to end and the larger the

sale discount is. More generally, q is also likely to influence rH and, in turn, m. Thus, q, q,

and (PH − PL)/PH should constitute explanatory variables for m.
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Therefore, we regress the following equation: log (mjt) = cj+dt+AXjt+εjt, using the vector

of explanatory variables Xjt= {log (1− qjt), log
(

1− qjt
)
, log ((PH − PL)/PH)jt}, where j

and t represent the 3-digit product category and the month (January 1989 to December 2018),

respectively. Time fixed effect dt captures the aggregate, demand-side, time-varying component

of mjt. Some of the variables we use are persistent and close to an I(1) process. Thus, to avoid

spurious regression, we also estimate the above equation using the time differences of the

variables such as ∆log(mjt) ≡ log(mjt)− log(mjt−1).

Table 5 presents the estimation results. In the table, column (1) shows the result when

we use log(mjt) as the dependent variable and do not include the time fixed effect. Column

(2) shows the result when we use log(mjt) as the dependent variable and include the time

fixed effect. Column (3) shows the result when we use the time difference of log(mjt) as the

dependent variable and do not include the time fixed effect.

The coefficient on log ((PH − PL)/PH) is significantly positive in all columns. The positive

relationship between (PH − PL)/PH and m is consistent with the relationship derived from

equation (20). The coefficient on log (1− q) is insignificant at the five percent level in columns

(1) and (2) but significantly negative in the regression that uses time differences (column (3)).

The coefficient on log
(
1− q

)
is significantly negative in all columns, even though equation

(20) suggests it should be positive. One possible reason is that q might be endogenous. It

should be noted that in this regression, the cost of inventories is not controlled for. For product

categories with low inventory costs, m is likely to be high. If firms hold longer sales (high q)

for these products, we would expect to observe a negative coefficient on log
(
1− q

)
rather than

a positive one. Another reason is that in equation (18) m is proportional to IL, which tends

to increase as the duration of a sale T increases. Owing to this construction, our measure of

m tends to increase as q increases.

The solid line in Figure 10 shows the time-series of time fixed effect dt (column 2 in the

table), which represents changes in the degree of stockpiling after controlling for the effects

of price changes. Developments in dt differ from those in aggregate log(mt). Specifically, dt

exhibits an increase in the 2000s, while aggregate log(mt) does not.23

4.3.2 Effects of Macroeconomic Variables on Stockpiling Behavior

What brought about the secular decrease in household stockpiling behavior (mt and dt) in the

1990s and then the reversal in the 2000s (dt, but not mt)? Household stockpiling behavior

likely is influenced by a number of factors, which we consider in this subsection.

23We find that this deviation is explained by both the decrease in the probability of sales (q) and the decrease

in the size of sale discounts (log ((PH − PL)/PH)). For the detailed changes in these variables associated with

sales, see Sudo, Ueda, and Watanabe (2014).
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Possible Channels First, according to equation (20), an increase in β increases stockpiling

because households put greater weight on future consumption. Possible factors that may bring

about changes in β are preference shocks, which are often incorporated in dynamic stochastic

general equilibrium models as part of demand shocks and also cause changes in real interest

rates. Specifically, preference shocks generate a negative relationship between stockpiling and

real interest rates. Furthermore, it is also thought that higher inflation expectations promote

stockpiling, which also yields a negative correlation between real interest rates and stockpiling.

Thus, investigating developments in real interest rates should provide a clue as to how and

why stockpiling has changed in Japan.24 Over the last two decades, Japan has seen successive

waves of monetary accommodation, leading to a decline in nominal interest rates, although,

due to the zero lower bound on nominal interest rates, it is debatable whether real interest

rates have declined as a result of monetary policy.

Second, stockpiling behavior may be influenced by factors that change the cost of holding

inventories C. According to equation (20), an increase in C decreases the incentive for stock-

piling. One possible factor that may influence C is an interest rate. For example, a higher

interest rate increases borrowing costs, which may prevent households from stockpiling.25

The third factor concerns labor market conditions. Consider the following two opposing

hypotheses. Suppose that labor market conditions are unfavorable for households, that is,

low labor demand brings about high unemployment, low hours worked, and low income. One

hypothesis is that households face stricter financial (liquidity) constraints and are therefore

unable to purchase as much as they would like when prices are low. In that case, unemployment

has a negative effect on stockpiling, while hours worked have a positive effect. The other

hypothesis is that when unemployment is high and hours worked are low, households have

more time for shopping, which allows them to find products that are on sale and stockpile

inventories. Also, a decrease in income may make households more price-sensitive. In that

case, unemployment has a positive effect on stockpiling and hours worked have a negative

effect.

24Similarly, interest rates and the cost of holding inventories are also important determinants of firm inventory

investment (see, e.g., Kahn, 2016).
25Another possible factor is the size of houses and Japan’s demographic structure (population aging). However,

looking at data for the size of houses from the Housing and Land Survey conducted by the Ministry of Internal

Affairs and Communications every five years shows that there has been a steady increase in both the average

housing area and the average housing area per household member from 1993 to 2013 from 88.4m2 to 93.0m2 and

from 29.8m2/person to 38.5m2/person, respectively. This suggests that C should have decreased monotonically

and dt increased monotonically. However, such a monotonic decrease did not occur, as shown in Figure 10.

Population aging is also a monotonic development in Japan.
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Regression Bearing these factors in mind, we examine whether the degree of stockpiling mt

depends on the macroeconomic environment. We estimate the following equation: ∆log (mjt) =

cj + B∆Zt + A∆Xjt + µjt or ∆log (mjt) = cj + B∆Zt + Aν̃jt + µjt. Here, ∆Xt is the time

difference of the price variables used above from month t−1 to t, and ∆Zt is the time difference

of exogenous variables consisting of the unemployment rate, log hours worked, and the real

interest rate from month t−1 to t and t−2 to t−1. The real interest rate in period t is defined

as the overnight call rate in period t minus the actual inflation rate based on the CPI from t

to t+ 12 (all in percent). We estimate the equation using the time difference to avoid spurious

regression. Lagged variables for Zt are added to incorporate the possibility that it takes time for

labor market conditions and the real interest rate to influence household stockpiling behavior.26

In the first regression, we estimate the degree of stockpiling using ∆Xt as the independent

variable. In the second regression, we use ν̃jt, the residuals of the estimated equation of

∆Xjt = ej + D∆Zt + νjt, as the independent variable. Labor market conditions and the real

interest rate ∆Zt likely influence firms’ pricing ∆Xjt as well. Since ν̃jt is orthogonal to ∆Zt,

by using ν̃jt, we aims to evaluate the overall effect of ∆Zt on ∆log (mjt), which incorporates

the indirect effect through ∆Xjt.

Table 6, particularly column (5), shows the main estimation results, while column (1) shows

the estimation results when we simply use ∆Xjt. The effect of the unemployment rate on

∆log (mjt) is small, because the two coefficients on the unemployment rate at t and t− 1 more

or less cancel each other out. The two coefficients on hours worked at t and t−1 are significantly

negative, suggesting that longer hours worked decrease the degree of stockpiling. This result

supports the hypothesis that longer hours worked decrease households’ time for shopping, which

prevents them from stockpiling inventories during sales, rather than the hypothesis focusing on

households’ financial constraints and predicting the opposite effect. The coefficient on the real

interest rate at t is significantly negative, suggesting that a higher real interest rate decreases

the degree of stockpiling. This is consistent with the reasoning mentioned above.

Columns (2) to (4) show that, in response to longer hours worked, firms change their pricing

so that the frequency of sales decreases (low q), the duration of sales increases (high q), and

the size of sale discounts increases (high (PH − PL)/PH). The effects of the changes in the

unemployment rate and the real interest rate on pricing are unclear, however.

These results suggest that using lower frequency data to calculate price indices has the

risk of ignoring the effects of business cycle fluctuations. This may yield biased price indices

where the bias changes with the business cycle. Online Appendix H provides a quantitative

examination of the implications of this endogeneity of stockpiling.

26Note that mjt is not likely to influence Zt because the former is a variable at the product category level.
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5 Conclusion

Goods storability, especially stockpiling during temporary sales, causes a large degree of bias

when price indices are based on purchases, since consumers tend to stockpile when prices are low

(i.e., during a sale) and purchases exceed consumption. To deal with this issue, we constructed

a model to explain the stylized facts, proposed a tractable approach to infer consumption and

consumption prices using data on purchases and purchase prices, and applied the approach to

Japanese data. We showed that consumers’ stockpiling behavior can be conveniently summa-

rized by a single variable: the degree of stockpiling during a sale, which expresses how long

inventories last after a sale ends. Applying the approach to POS data for Japan, we found

that our approach of using a consumption-weighted index succeeds in eliminating chain drift.

Furthermore, we showed that the degree of stockpiling depends on the business cycle.

Tasks for the future include, first, a more careful consideration of heterogeneity at the

product and household levels. We found that there exists sizable heterogeneity in the degree of

stockpiling across products. A more detailed investigation might shed new light on household

inventory behavior. Equally important is the heterogeneity at the household level. Considering

the possibility that stockpiling behavior depends on the size of the family and home, income,

age, etc., could provide new insights.

Second, we should apply our approach to a wider range of product categories than those

covered in our data, processed food and daily necessities, which make up only about 20 percent

of households’ expenditure. For instance, prices for some storable goods (e.g., gasoline and

fresh food), durable goods (e.g., clothing and personal computers), and services (e.g., travel)

occasionally change substantially just like in a temporary sale, which seems to cause demand

fluctuations similar to stockpiling. It is worth testing whether our approach is useful for the

analysis of these product categories.

Appendix A. Equilibrium Properties

In this appendix, we discuss the equilibrium properties of the model. In the following discussion,

we omit the superscript for product k for simplicity. Further, we denote aggregate inventories

at the end of period t− 1, by It−1 ≡
∫ Nt
0 it−1,jdj.

A.1 Consumption Price

The first lemma states the property of the consumption price, the price at which consumers

make their purchase, rt. When pt equals PL (during a sale), rt equals PL. That is, consumers

purchase goods directly from manufacturers at rt = PL. When pt = PH (during a non-sale),
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consumers may purchase goods from household producers at a price below PH . Price rt is lower

the larger inventories It−1 are.

Lemma 1 Consumption price rt satisfies PL ≤ rt ≤ PH . When pt = PL, rt = PL. Further-

more, rt = r(It−1, pt, b) is nondecreasing in pt and b and nonincreasing in It−1.

The proofs of this and the lemmas that follow are provided in Online Appendix D.

A.2 Stockpiling by Household Producers

The next lemma states the stockpiling behavior of household producers. Only when pt = PL

do household producers purchase goods and hold inventories with the aim of selling the goods

at a higher price after the sale has ended.

Lemma 2 If pt = PH , household producers do not purchase goods, that is, xt = 0. If pt = PL,

household producers purchase goods and hold inventories. Inventories are independent of it−1,

It−1, and b.

A.3 Asymmetry in the Quantity Purchased (Intertemporal Substitution)

The next lemma shows that the change in quantities purchased in response to a price increase

and a price decrease is asymmetric.

Lemma 3 The quantity purchased by household producers and consumers just before a sale is

greater than or equal to that just after a sale.

The quantity purchased by household producers and consumers on the first day of a sale is

greater than or equal to that on the final day of a sale.

This asymmetry reflects intertemporal substitution. Household producers stockpile when

the price of a product is low, so that on the day after a sale, households do not need to purchase

as much of the product as before the sale.

It should be noted that whether the quantity purchased on the first day of a sale is smaller

than that purchased on the final day of a sale depends on whether prices are stochastic. In the

model, prices are stochastic, and neither household producers nor consumers can accurately

predict future prices. This is why household producers hold inventories at the end of the first

day of a sale. Suppose instead that the duration of a sale is known ex ante. In this case, there

is no incentive for household producers to stockpile except for the final day of the sale. Thus,

the quantity purchased by household producers and consumers on the first day of a sale should

be smaller than or equal to that on the final day of a sale.27

27Feenstra and Shapiro (2003) document upward chain drift for the Törnqvist index and conjecture that
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A.4 State-dependent Consumption

Consumption ct is state dependent; specifically, it depends on consumption price rt.

Lemma 4 ct decreases in rt. After a sale ends, rt and ct are nondecreasing and nonincreasing

over time, respectively, until the next sale begins.

A.5 Intertemporal Substitution Bias in Chained Price Indices

Using equations (11) to (13), we calculate changes in purchase-weighted chained price indices

from t− dt to t, πXt (X = L,P, T ) based on the Laspeyres, Paasche, and Törnqvist approach,

respectively. Further, we define the change in the consumption-weighted chained Törnqvist

price index as πT∗, for which we use consumption quantity ckt and price rkt instead of xkt and

pkt , and the change in the COLI as πCOLI .

Moreover, we introduce the degree of stockpiling m(≥ 0), which indicates how many days’

worth of inventories remain in the hands of household producers. If m = 0, no stockpiling

occurs during a sale and hence no bias (i.e., no chain drift) due to sales arises. Therefore, what

we are interested in is the case where m > 0. In the next subsection, we will specify how m

is determined. In Online Appendix D, we discuss how equilibrium is determined in the special

case of m = 1, that is, when inventories are cleared in just one period after a sale.

Lemma 5 Consider one sales event for product k such that pt = pt+T+1 = PH and pt+j =

PL for j = 1, · · · , T (T ≥ 1). Suppose that the prices and quantities of other goods remain

unchanged;
∑

k′∈K0∩Kt p
k′
t x

k′
t = 1; and the price before and after the sale is PH for a sufficiently

long duration (i.e., pt−j = pt+T+1+j = PH for j = 0, 1, · · · , TH , where TH is sufficiently large

compared with m).

If σ > (<)1 and m > 0, the cumulative sum of changes in the chained price index from t

to t+ T + 1 + TH satisfies πCOLI = 0; πL > (<)0; πP < (>)0; πT < 0; and πT∗ < (>)0.

If σ = 1 or m = 0, then πCOLI = πL = πP = πT∗ = 0 and πT < 0.

If σ > 1, πP < πT < 0 < πL. If σ > 1 and m = 1, πT < πT∗ < 0.

This lemma shows that, when σ > 1, purchase-weighted chained price indices entail biases,

with the Paasche and Törnqvist indices having a downward and the Laspeyres index having an

upward bias. It is well known that the Törnqvist index is a good approximation of the COLI

up to the second order (Diewert 1976). However, as pointed out by Feenstra and Shapiro

temporary sales “attract high purchases only when they are accompanied by advertising, and this tends to occur

in the final weeks of a sale.” If such advertisement informs households of when the sale ends, there is no incentive

for household producers to stockpile except for the final day of the sale. Our model shows that in this case chain

drift may potentially (but not necessary) go in an upward direction.
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(2003) and Ivancic, Diewert, and Fox (2011) among others, the purchase-weighted Törnqvist

price index entails a bias, which stems from using quantities purchased rather than quantities

consumed.28

The above lemma also suggests that using purchase weights is not the sole reason for the

bias. Using consumption weights does not eliminate the bias from the Törnqvist index (i.e.,

πT∗ < 0 if σ > 1) because the path of consumption prices is asymmetric. Specifically, the

model shows that the consumption price decreases quickly when the purchase price drops at

the start of a sale but then increases again only gradually when the purchase price returns to the

regular price after the sale ends, as a result of household inventories. Such asymmetry is not a

coincidence but a natural outcome of the non-negative constraints on inventories and purchases.

This asymmetric response of the consumption price and the fact that a temporary price change

almost always consists of a decrease (i.e., a sale) mean that although the Törnqvist price index

is a good approximation of the COLI up to the second order, the third-order approximation

error cannot be eliminated if σ > 1, so that the Törnqvist price index continues to entail a

downward bias even when it is constructed based on consumption weights.

The elasticity of substitution σ influences the sign of the chain drift in purchase-weighted

indices. When σ < 1, the sign of the chain drift changes for the Paasche and Laspeyres indices

changes: the Paasche index has a positive bias, while the Laspeyres index has a negative bias.

Interestingly, the sign of the bias in the Törnqvist index is negative irrespective of σ.

A.6 The Sign and Magnitude of the Bias in Chained Price Indices

The next lemma shows how the bias in the purchase-weighted Törnqvist index depends on vari-

ables associated with temporary sales. We consider price changes over a sufficiently long period

(e.g., 30 years), which we denote by πT . The following lemma shows that πT depends on the

probability of sales and the ratio of sale prices to regular prices, that is, πT = πT (q, q, PL/PH).

Lemma 6 Suppose σ > 1 and m > 0. Then πT = πT (q, q, PL/PH) is decreasing in q, increasing

in q, and increasing in PL/PH .

The result that πT increases in q may appear counterintuitive. The reason for this is that

28Chain drift is frequently discussed in the context of a nonlinear correlation between changes in prices and

changes in quantities purchased (price/quantity bouncing), which implies that the weight of a product in a price

index differs at the time of a positive price change and at the time of a negative price change. Our model

shows that stockpiling causes such price/quantity bouncing as a result of intertemporal substitution. A similar

argument has been made by, for example, Triplett (2003), de Haan and van der Grient (2011), and von Auer

(2019). Also note that the relationship between the Laspeyres and Paasche indices that πP < 0 < πL holds even

when no stockpiling occurs. One could therefore argue that the chain drift does not necessarily occur due to

stockpiling. However, the bias in the Törnqvist price index, πT < 0, cannot be explained without stockpiling.
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an increase in q lengthens the duration of a sale. This decreases the number of sales events and

therefore increases πT .

The following lemma shows that the sign of the bias in the Törnqvist index can be positive

in the following case.

Lemma 7 Suppose that households know when a sale will end once it begins. Then πT is

positive if m exceeds a certain threshold and negative otherwise.

As noted, the bias in chained price indices is caused by the asymmetry in the quantity

purchased. When the asymmetry has the opposite sign, that is, when the quantity purchased

on the first day of a sale is smaller than or equal to that on the final day of a sale, the sign of

the bias in the Törnqvist index can be positive.

A.7 COLI

To resolve the bias in chained indices and derive a better approximation of the COLI, we need

a superlative index that takes the elasticity of substitution σ into account. One candidate is

the order r superlative index, where we define Pr as

Pr(r0, r1, c0, c1) =

{∑
k∈K0∩K1

sk0
(
rk1/r

k
0

)(1−σ)}1/{2(1−σ)}

{∑
k∈K0∩K1

sk1
(
rk0/r

k
1

)(1−σ)}1/{2(1−σ)} , (21)

where skt represents the consumption share of product k in period t.

The following lemma shows that Pr serves as a COLI if the unit cost function is expressed

as

C(rt) =

 ∑
i∈K0∩K1

∑
k∈K0∩K1

αik
(
rit
)(1−σ) (

rkt

)(1−σ)1/{2(1−σ)}

(22)

where αik = αki. This cost function is based on a more generalized form of utility than that

given by equation (1).29

Lemma 8 Given the unit cost function of (22), Pr equals C(r1)/C(r0).
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Table 1: Chain Drift and Inflation Rate

Price indices

dt Törnqvist Törnqvist Order r superlative
(purchase-weighted) (consumption-weighted) (consumption-weighted)

Annual chain drift

1 −40.44∗∗∗ -5.69∗∗∗ −1.20

7 −7.24∗∗∗ −2.28∗∗∗ −1.23∗∗∗

14 −2.43∗∗∗ −1.10∗∗∗ −0.59∗∗∗

28 −0.97∗∗∗ −0.46∗∗∗ −0.04

52 −0.66∗∗∗ −0.20∗∗ 0.23

91 −0.61∗∗∗ 0.06 0.17

182 −0.49∗∗∗ 0.01 0.14

Annualized inflation rate

1 -46.34 -13.06 -10.71

Note: The figures for chain drift show the averages for the period from 1989 to 2019. See the main text for

an explanation of the calculation of the chain drift, d0,365,dt, where dt represents the interval. We transform

d0,365,dt, which is on a daily basis, to an annualized rate as follows: exp(365×d0,365,dt)−1. ***, **, and * denote

significance at the 1%, 5%, and 10% levels, respectively, when we apply the sign test for the null hypothesis that

the probabilities that the chain drift is positive or negative are each equal to 0.5. The annualized inflation rate

is calculated as exp(365× xdt=1)− 1, where xdt=1 is the mean of daily log inflation from 1990 to 2018.
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Table 2: Relationship between Chain Drift and Stockpiling

Dependent variable:

Chain drift of purchase-weighted Törnqvist

(1) (2) (3) (4)

QH 0.698∗∗

(0.315)

QL 1.781∗∗∗

(0.463)

q −1.916∗∗∗

(0.483)

q −0.807 −2.190∗∗

(1.039) (1.089)

q −0.708∗∗∗ 0.014

(0.154) (0.259)

log(PL/PH) 3.979∗∗∗ 3.929∗∗∗ 2.899∗∗∗

(0.644) (0.618) (0.673)

logm −0.344∗∗∗

(0.101)

Constant −0.320∗∗∗ 0.178∗∗∗ 0.418∗∗∗ 0.223∗∗

(0.039) (0.062) (0.075) (0.093)

Adjusted R2 0.102 0.400 0.440 0.470

Observations 189 195 195 195

Note: Figures in parentheses represent standard errors. ***, **, and * denote significance at the 1%, 5%, and

10% levels, respectively. The explanatory variables are as follows: QH and QL represent the degree of asymmetry

in the quantity purchased when the price of a product increases and when it decreases, q is the probability that

a product is on sale, q is the probability that a product will go on sale on the following day given that it is not

currently on sale, q is the probability that a product will continue to be on sale on the following day given that it

is currently on sale, PL/PH is the ratio of the sale price to the regular price, and m is the degree of stockpiling.
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Table 3: State-dependent Consumption

Dependent variable 1 if household uses product Number of times a product is used

Inventory 0.0006895*** 0.00410***

(0.0000171) (0.000901)

Observations 90,545,020 90,545,020

No. of households 3,602 3,602

R2 0.12 0.12

Fixed effects household/category household/category

Note: Figures in parentheses represent robust standard errors. ***, **, and * indicate significance at the 1%,

5%, and 10% levels, respectively.

Table 4: Top and Bottom Five Categories with Regard to the Degree of Stockpiling

Product category m Product category m

Top 5 Instant cup noodles 4.98 Bottom 5 Razors 1.15

Diluted beverages 3.74 Prepared bread meals 1.19

Frozen meals 3.58 Cosmetic accessories 1.26

Packaged instant noodles 3.23 Home medical supplies 1.27

Coffee beverages 3.08 Batteries 1.30

Note: The degree of stockpiling m is inferred using the POS data.
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Table 5: Regression of the Degree of Stockpiling

(1) (2) (3)

log(m) log(m) ∆log(m)

log(1− q) 0.6254 -0.9757* ∆log(1− q) -2.4682***

(0.428) (0.547) (0.607)

log(1− q) -0.6270*** -0.7785*** ∆log(1− q) -0.5104***

(0.035) (0.034) (0.036)

log(1− PL/PH) 0.3511*** 0.3057*** ∆log(1− PL/PH) 0.2546***

(0.044) (0.046) (0.032)

Fixed effects category category/month category

Observations 54,000 54,000 53,850

Within R2 0.650 0.753 0.283

No. of categories 150 150 150

Note: Variable m is the degree of stockpiling, q is the probability that a product will go on sale on the following

day given that it is not currently on sale, q is the probability that a product will continue to be on sale on the

following day given that it is currently on sale, and PL/PH is the ratio of the sale price to the regular price. ***,

**, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 6: Effects of Macroeconomic Variables on Stockpiling Behavior

(1) (2) (3) (4) (5)

∆log(m) ∆log(1− q) ∆log(1− q) ∆log(1− PL/PH) ∆log(m)

∆(unemp rate) 0.0026 -0.0017*** -0.0338*** 0.0277*** 0.0312***

(0.004) (0.000) (0.003) (0.003) (0.003)

∆(unemp rate(-1)) -0.0106*** 0.0007*** 0.0244*** -0.0300*** -0.0327***

(0.004) (0.000) (0.003) (0.003) (0.004)

∆log(hours worked) -0.2940*** 0.0210*** 0.1341*** 0.1989*** -0.3612***

(0.043) (0.002) (0.030) (0.033) (0.043)

∆log(hours worked(-1)) -0.6677*** 0.0077*** -0.6106*** 0.4365*** -0.2602***

(0.046) (0.001) (0.044) (0.040) (0.044)

∆(real r) -0.0133*** 0.0009*** 0.0147*** -0.0052*** -0.0243***

(0.003) (0.000) (0.002) (0.002) (0.002)

∆(real r(-1)) -0.0036* -0.0002*** -0.0086*** 0.0037** 0.0024

(0.002) 0.000 (0.002) (0.002) (0.002)

∆log(1− q) -2.4013*** -2.4013***

(0.615) (0.615)

∆log(1− q) -0.5117*** -0.5117***

(0.036) (0.036)

∆log(1− PL/PH) 0.2604*** 0.2604***

(0.032) (0.032)

Fixed effects category category category category category

Observations 53,700 53,700 53,700 53,700 53,700

Within R2 0.289 0.008 0.008 0.005 0.289

No. of categories 150 150 150 150 150

Note: Variable m is the degree of stockpiling, q is the probability that a product will go on sale on the following

day given that it is not currently on sale, q is the probability that a product will continue to be on sale on the

following day given that it is currently on sale, PL/PH is the ratio of the sale price to the regular price, and real

r is the real interest rate. In column (5), the explanatory variables corresponding to ∆log(1 − q), ∆log(1 − q),
and ∆log(1 − PL/PH) are the residuals of the estimation for columns (2), (3), and (4), respectively. ***, **,

and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Figure 1: Pattern of Price and Quantity Changes during a Sales Event
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Note: The solid dots represent observable posted prices (top) and quantities purchased (bottom). The circles

represent unobservable consumption prices (top) and quantities consumed (bottom).

Figure 2: Consumption Pattern of Salt
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Note: The figure shows the consumption pattern for salt of a particular household in the Shoku-map data. Each

vertical line represents a consumption flag.
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Figure 3: Asymmetry in the Quantity Purchased When the Price Increases and When It

Decreases
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Note: In the left-hand panel, QH and QL represent the degree of asymmetry in the quantity purchased when

the price increases and when it decreases. Specifically, QH indicates the asymmetry in the quantity purchased

between just before a sale starts and just after the sale ends, while QL indicates the asymmetry in the quantity

purchased between just after a sale starts and just before the sale ends. The black squares and the horizontal

bars at the end of the vertical lines represent the median as well as the 25th and 75th percentiles of products

and sale events in each year. The right-hand panel shows the degree of chain drift, d0,365,1, for each year.

Figure 4: Price Changes in Chained Indices
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Note: The left-hand panel shows the time-series of price levels based on the purchase-weighted Laspeyres,

Paasche, and Törnqvist indices using the POS data. The initial price level is normalized to one. The right-

hand panel shows the degree of chain drift, d0,365,dt, based on the purchase-weighted Laspeyres, Paasche, and

Törnqvist indices, where we employ different intervals dt from 1 day to 364 days.
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Figure 5: Histogram of the Degree of Stockpiling
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Figure 6: Inflation Rates Based on the Törnqvist Index: Data and Simulation
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Note: Each circle represents a 3-digit product category. The inflation rates are the daily averages and are based

on the purchase-weighted Törnqvist index. The red dashed line represents the 45 degree line.
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Figure 7: Correlation Between Length of Time Until Product is Consumed/Quantity Purchased

and Degree of Stockpiling
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Note: Each dot represents a 3-digit product category. In the left-hand panel, the horizontal axis represents

the log of the length of time until a product is used up, which is defined as the difference between the date

of purchase (tp) and the date the household finishes the product (tl) plus one. In the right-hand panel, the

horizontal axis represents the log of the quantity purchased.

Figure 8: Elasticity of Substitution

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-5  0  5  10  15  20

N
u

m
b

er
 o

f 
ca

te
g

o
ri

es

Elasticity of substitution

Our estimate
Simple estimate

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

O
u

r 
es

ti
m

at
e

Simple estimate

Note: “Our estimate” represents our calculation of the elasticity of substitution σ from Γ ≡
−log (cL/cH) /log (rL/rH) using the inferred series of consumption c and consumption price r. “Simple esti-

mate” represents the calculation of σ from −∆logXt/∆logpt, where X and p represent the quantity purchased

and the posted price, respectively. The left-hand panel shows the histogram of the values of σ for 3-digit product

categories, while the right-hand panel shows a scatter plot where each dot represents a 3-digit product category.
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Figure 9: Correlation Between Length of Time Until Product is Consumed/Quantity Purchased

and Degree of Stockpiling: One Month Before the Consumption Tax Increase
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Note: Each dot represents a 3-digit product category. In the left-hand panel, the horizontal axis represents

the log of the length of time until a product is used up, which is defined as the difference between the date

of purchase (tp) and the date the household finishes the product (tl) plus one. In the right-hand panel, the

horizontal axis represents the log of the quantity purchased.

Figure 10: Aggregate Time-Series of the Degree of Stockpiling
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Note: The solid thick line denoted as “Aggregate log(m)” represents the mean of log(m) for all 3-digit product

categories, while the thin lines represent the 10th, 25th, 75th, and 90th percentiles of log(m). The shaded areas

indicate recession periods as identified by the Cabinet Office.
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