A CENSUS-BASED SUSTAINABILITY INDICATOR OF AGRICULTURAL HOLDINGS

ROBERTO GISMONDI - ISTAT gismondi@istat.it

THE SUSTAINABILITY GOAL

Sustainability of agriculture is a key goal worldwide, that can guarantee both the survival of smaller farms and the competitiveness of agricultural holdings. It is a complex multidimensional concept. Its evaluation is based on statistical data at the single farm level. The 7th agricultural census, referred to 2020, provided information on the development of Italian farms. Based on the census, we propose a **methodology for estimating the degree of sustainability of the Italian agricultural holdings**. The methodology uses 5 indicators referable to specific strategic farm features connected to sustainability.

METHODOLOGY

The classification methodology is based on **5 binary indicators attributed to each farm**. Each indicator is equal to one if the farms owns a particular feature and is equal to zero otherwise. The 5 features are:

- **1. Crops diversification**. According to the CAP 2023-2027, crop diversification is one of the good practices for the climate and the environment to be respected by farmers in order to receive the ecological payment, or *greening*. The census data were used to evaluate which farms would have met the requirements in 2020 (diversification binary variable = 1).
- 2. Organic farming. It indicates the propensity of farmers to change their production techniques in order to guarantee sustainable agriculture and to preserve food safety. The second indicator is expressed through the binary variable, equal to 1 (Yes) if the farm is organic (crops and/or livestock, organic or in conversion to) and equal to 0 (No) otherwise.
- 3. Other Gainful Activities. OGAs (agritourisms, care farming, educational farming, etc.) guarantee additional income sources, respond to new demand needs and allow valorization of territory's characteristics and traditions. The third dimension is expressed through the binary variable, equal to 1 (Yes) if the farm had at least one OGA in 2020 and equal to 0 (No) otherwise.
- **4. Innovation**. The census asked: "In the years 2018-2020, has the farm made investments aimed at innovating the production management?" The fourth indicator is given by the binary variable, equal to 1 (Yes) if the farm answered "Yes", and/or if the farm received at least one EU subsidy concerned with innovation, and to 0 (No) otherwise.
- **5. Economic size**. Each modern farm must have net incomes larger than a certain threshold, given by the ISTAT poverty threshold. On average, the poverty threshold was found to be 17,562 euro. We used the Standard Output (SO) as proxy of net incomes. The fifth indicator is given by the binary variable, equal to 1 (Yes) if the farm had SO≥17,562 euro and equal to 0 (No) otherwise.

We indicate as \mathbf{n} the number of agricultural holdings, $\mathbf{n}(\mathbf{i})$ the number of agricultural holdings which have \mathbf{i} sustainability dimensions (i=0,1,2,3,4,5). For instance, $\mathbf{n}(3)$ = number of farms with 3 sustainability dimensions. Therefore, we define: $\mathbf{n}(0)$ = number of not sustainable farms and \mathbf{n} - $\mathbf{n}(0)$ = number of sustainable farms

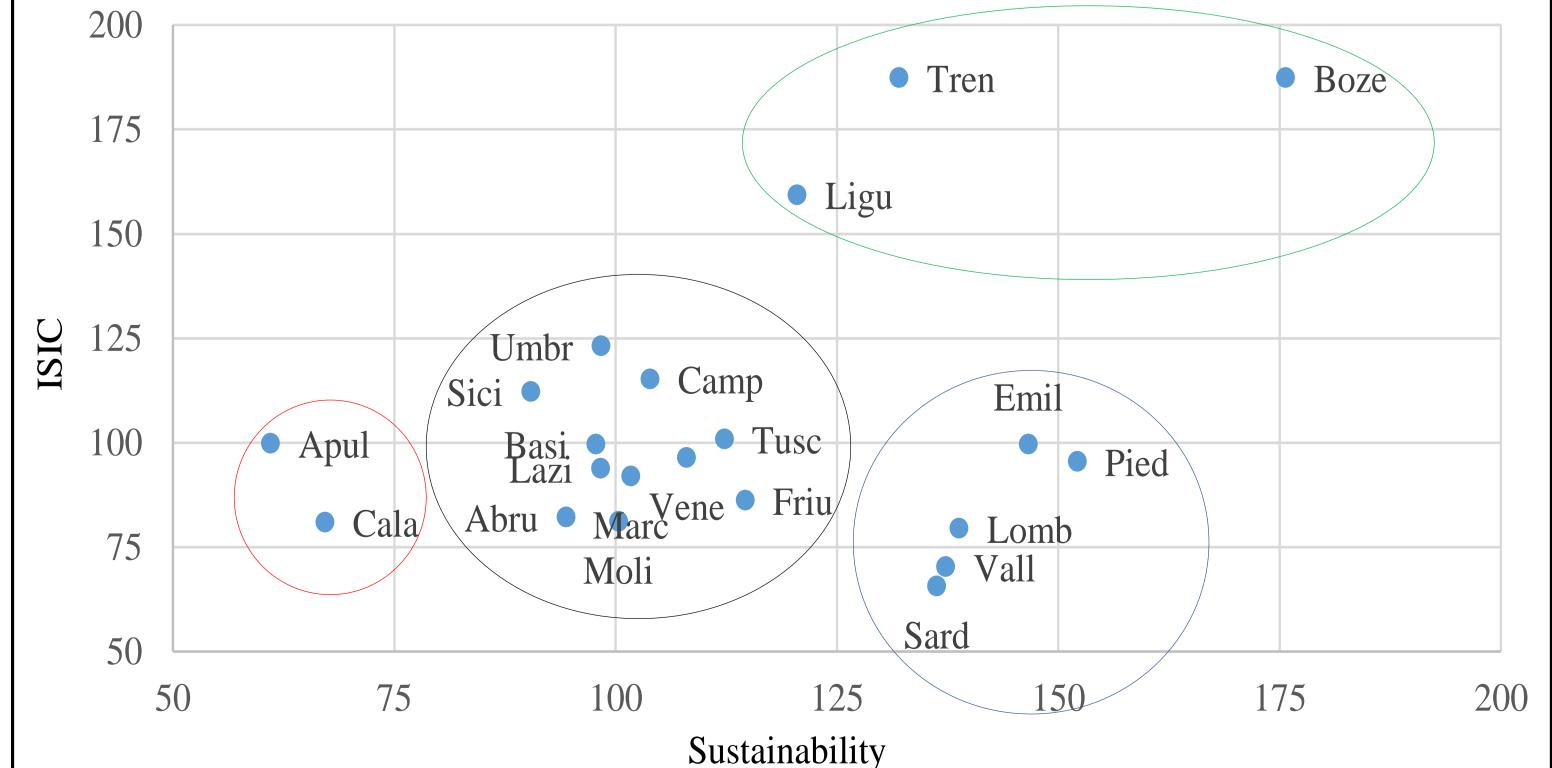
MAIN RESULTS

Elaboration on ISTAT data.

Table 1 summarizes the **n(i)** frequencies and the ratios **n(i)/n**, in order to classify the Italian farms based on the number of sustainability dimensions they possess (**sustainability score**). In 2020, **45 farms on 100 were sustainable** (more than **508 thousand**). On the other hand, **55 farms on 100 were not sustainable** at all (more than **622 thousand**).

Table 1. Degree of sustainability of Italian farms and some average levels per farm – 2020

		Number of farms		Average per farm					
Number of "Yes"				Standard	Utilized agricultural area (2)	Adult livestock units (3)	Full time equivalents		
Total	Whole population	1,130,513	100.0	49,740	10.6	8.3	0.67		
>0	Sustainable	508,303	45.0	105,474	20.6	18.2	1.23		
4 or 5	High sustainability	23,862	2.1	253,617	52.6	44.3	2.71		
2 or 3	Medium sustainability	233,905	20.7	147,928	28.9	27.0	1.58		
1	Low sustainability	250,536	22.2	51,729	9.8	7.5	0.76		
0	Not sustainable	622,210	55.0	4,209	2.5	0.1	0.22		


For each highly sustainable farm (23,862), there are 10,5 lowly sustainable farms (250,536)

Elaboration on ISTAT data. (1) Euro. (2) Hectares. (3) This indicator synthetizes the various animal species. Common lands are not included.

Table 2. % ratio between sustainable and total farms in some sub-populations – 2020

Table 2. % Tallo between	Sustai	nable and total farms i	n som	e sub-populations – z	020	
Farm manager's profile		Farm's features		Geographic area		Farming is more sustainable if:
Management < 3 years	54.9	Crops and livestock	73.4	ITALY	45.0	The farm is young
Management ≥ 3 years	44.5	Only cultivations	39.4		43.0	The name youngThe manager is young
Young (< 40 years)	71.8	Only livestock	34.5	North-West	64.2	The manager is a male
Not young (≥ 40 years)	42.5	Plains	44.0	North-East	57.8	> The manager has high education
Male	48.2	Hills	43.5	Centre	46.4	The farm has crops and livestock
Female	37.8	Mountain	51.0			The farm is on mountains
Basic education	40.4	Disadvantaged	39.2	South	34.6	The municipality is not disadvantaged
Diploma/degree	53.8	Not disadvantaged	46.7	Islands	45.7	The farm is in the North

Figure 1. Agriculture competitiveness (ISIC) and sustainability by regions

Elaboration on ISTAT and ISMEA data. Italian average = 100.

Competitiveness vs sustainability

- ISIC is a synthetic indicator of agro-food competitiveness in Italian regions, which summarizes the four dimensions of competitiveness: cost competitiveness, gross profitability, foreign markets and innovation
- > Italian regions can be grouped into 4 clusters:

Color	ISIC	Sustainability
	High	High
	Medium-low	High
	Medium	Medium
	Low	Low

References: Lampridi M.G., Sørensen C.G., Bochtis D. (2019). Agricultural Sustainability: A Review of Concepts and Methods. Sustainability. 11: 1-27. https://doi.org/10.3390/su11185120