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Abstract

Measuring societal well-being as a multi-dimensional perspective on the conditions 
of people’s life satisfaction has evolved to be an important task of European Official 
Statistics. Routinely, the focus of analysis is on country-comparisons. As central 
dimensions of well-being also vary on local level, we complement these insights 
by measuring well-being on the very low level of city districts and 100 metre grid 
cells. To achieve this, we combine high-resolution remote sensing data products with 
data from official statistics. As the data from different sources often have different 
scales, we discuss several scaling methods both from the field of geospatial research 
and from small area estimation. We calculate a composite well-being indicator on 
district and grid cell level for the city of Cologne and assess the influence of scaling 
methods and other construction decisions in a sensitivity analysis.
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1.	Introduction and motivation

The concept of well-being is gaining in importance within the global 
indicator framework for the Sustainable Development Goals (SDGs). The 
United Nations member states adopted 17 integrated SDGs in 2015. Well-
being is directly included in the third goal, which is to ensure healthy lives 
and promote well-being for all at all ages (United Nations, 2019). For a long 
time, well-being was measured as gross domestic product (GDP) per capita. 
Easterlin (1974) has induced a paradigm shift from GDP as a proxy for well-
being to the concept of relative income and the incorporation of aspects 
beyond income by showing that higher income leads to a higher perception 
of well-being only up to a certain point. Other initiatives, such as the Stiglitz-
Sen-Fitoussi Commission Report (2009) and the European Commission GDP 
and beyond communication (2009), have supported the development from 
GDP per capita as a measure for well-being towards multidimensional well-
being measures. Eurostat (2019) defines 8+1 dimensions as an overarching 
framework for the measurement of well-being:

	- Material living conditions;
	- Productive or main activity;
	- Health;
	- Education;
	- Leisure and social interactions;
	- Economic and physical safety;
	- Governance and basic rights;
	- Natural and living environment;
	- Overall experience of life.

Stiglitz et al. (2009) identify material living standards, personal insecurity, 
social connections and relationships, environmental conditions and political 
voice and governance as main dimensions in the Stiglitz-Sen-Fitoussi report. 
The OECD (2020) defines human well-being in terms of eleven dimensions 
under the themes of material conditions and quality of life. All definitions 
comprise both individual and place-related factors. Thus, well-being highly 
depends on the living environment and differs not only from country to 
country, but rather is affected by local living conditions.
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The traditional initiatives to measure well-being have focussed on 
international comparisons of country-level indicators (Eurostat, 2020; OECD, 
2020). More recently, this perspective has been complemented by regional 
studies, both in research and official statistics. For example, some National 
Statistical Institutes have started to report well-being at a local level (see 
Office for National Statistics, 2019 and Istituto Nazionale di Statistica – Istat, 
2019). Eurostat, National Statistical Institutes and the European Commission 
cooperate in a voluntary data collection exercise to build a database for 
measuring life quality in European cities (a project previously known as Urban 
Audit; see Eurostat, 2017). Eurofound (2020), the European Agency for the 
improvement of living and working conditions, recently examined the quality 
of life in European capitals in comparison to the rest of the country based on its 
own European Quality of Life Surveys (EQLS). Moretti et al. (2019) employ 
small area estimation techniques to estimate composite well-being indicators 
on a regional level. More detailed, they employ factor analysis to reduce the 
dimensionality of complex indicator systems and integrate this approach into 
multivariate small area statistics to gain estimates at municipality level.

Generally, the availability of data is a challenge for each initiative to measure 
well-being at a regional level. Data commonly used to assess the quality of 
life come from survey data such as the European Union Statistics on Income 
and Living Conditions (EU-SILC). This data cannot reliably be evaluated 
at a local level. Small area estimation techniques, as employed by Moretti 
et al. (2019), are a possible solution. Additionally, a feasible strategy is to 
exploit further data sources such as administrative data from local authorities 
(see e.g. Istituto Nazionale di Statistica, 2019). Integrating administrative and 
other data, however, may suffer from different degrees of granularity. Shuvo 
Bakar et al. (2020) provide a Bayesian approach to model predictions that 
help compensating overlapping geographical areas. Alternative methods from 
geostatistics are known as spatial resampling methods. Against this backdrop, 
we explore the opportunity of combining high-resolution remote sensing data2 
with official data as an efficient strategy to conduct analyses of well-being at 
local level.

2	� In the field of remote sensing, high resolution data is used to describe raw images. In this paper, we use the term 
to describe products derived from satellite images or other georeferenced sources. These derived products are 
referred to as remote sensing data products in the field of remote sensing.
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Since the late 1950s, geospatial data have been incorporated in the 
analysis of urban sociology. In his pioneering work, Green (1957) relates 
aerial photographic interpretation information with socio-economic data of 
Birmingham, Alabama and finds that photographic interpretation information 
can supplement and substitute other socio-economic data sources. Satellite 
data have since been used to estimate well-being at local level. Lo and Faber 
(1997) complement census data with satellite data and assess the quality of life 
in the Athens-Clarke County of Georgia with an environmental perspective. 
Ghosh et al. (2013) evaluate well-being using night-time light data and 
Engstrom et al. (2017) estimate economic well-being by extracting object 
and texture features from satellite images of Sri Lanka.

In this article, we analyse the potential of combining high-resolution 
remote sensing data and official data for small-scale estimation (e.g. block 
and district level) using the example of well-being in the city of Cologne. 
We consider data with a resolution of 100 metres or more as high-resolution 
data. The analysis of well-being is conducted at 100 metre grid cell and city 
district level. Since the data come from different sources and have different 
scales, we introduce scaling techniques from the field of geostatistics as well 
as small-area estimation and investigate methodological (e.g. different scales) 
and technical (e.g. confidentiality requirements) challenges of combining 
methods from both disciplines. The main focus is on methodological 
challenges, especially on how to deal with different scales. Special emphasis 
is put on different upscaling and downscaling methods and their impact on 
the composite indicator of well-being for the city of Cologne. By means of a 
sensitivity analysis, various uncertainty factors in the construction steps are 
investigated and quantified.
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2.	Data

This article combines INSPIRE conform3 Census 2011 grid cell data at 100 
metre resolution, OpenStreetMap data and Pan-European High-Resolution 
Layers (HRL). The impact of scaling methods is investigated using the 
example of the composite indicator of well-being for the city of Cologne, 
since the City of Cologne (2017, 2014) provides georeferenced and socio-
demographic data.

The composite indicator comprises socio-demographic and place-related 
data. Socio-demographic data are obtained from the Federal Statistical Office 
and the statistical offices of the Länder (2018) and the City of Cologne 
(2017). Data on single parents are available at 100 metre grid cell level from 
disaggregated census statistics. The 100 metre grid cell data do not contain 
values smaller than three due to disclosure control. In this study, empty cells 
are treated as zero, resulting in deviations of 2 percent (%) at city level for 
single parents. The City of Cologne (2017) offers a variety of statistical data at 
district and municipality level, including information on unemployment with 
time reference to December 2017 and single parents as of 31 December 2017.

Georeferenced data on schools, museums, play- and sports grounds, 
hospitals and libraries are published by the City of Cologne (2014) in their 
open data portal. These data together with OpenStreetMap data are used 
to conduct network analyses using the QNEAT3 (distance matrices) QGIS 
plugin (see Figure 1). Residential buildings are taken from OpenStreetMap 
and include all houses and apartments which are tagged as residential. In 
order to include distances from each address to primary schools, museums, 
hospitals, libraries and play- and sports grounds in the analysis of well-being, 
network analyses are conducted based on the shortest distance using streets 
tagged as highway4 from OpenStreetMap (OpenStreetMap contributors, 
2019). The OpenStreetMap data are taken from the QuickOSM Plugin in 
QGIS. Figure 1 shows the distance to primary schools in 250 metre intervals 
for a part of Cologne5. 

3	� INSPIRE conformity means that spatial data are harmonised across Europe and comply with international 
geomatics standards (European Commission, 2019).

4	 Highways include any type of road, street or path.
5	� The distances are determined using the QNEAT3 (Iso-Areas) QGIS plugin, which only accepts a projected co- 

ordinate system. Therefore, the street network is taken from Geofabrik GmbH and OpenStreetMap contributors 
(2018).
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Remote sensing data are also regarded as place-related data. HRL are 
obtained from satellite imagery by applying automatic processing and 
interactive rule based classification. Currently, HRL provide information 
on tree cover density and forest types, grasslands, wetness and water, small 
woody features and imperviousness (Copernicus, 2019a). In this study we 
integrate imperviousness data into the analysis of well-being at local level. 
The imperviousness product gives the percentage of impervious surfaces. 
Imperviousness data is available in the original 20 metre and 100 metre 
pixel size for the years 2006, 2009, 2012 and 2015 (Copernicus, 2019b). 
Furthermore, we consider data on vacant dwellings as place-related data 
in the broader sense. Results on vacant dwellings6 at 100 metre resolution 
are available from Federal Statistical Office and the statistical offices of the 

6	� The Census 2011 defines an apartment as vacant if it is neither rented out nor used by the owner on the date of the 
survey and if it is not a holiday and leisure apartment, diplomatic apartment, apartment of foreign armed forces 
and commercially used apartment.

Figure 1 - Distances to primary schools for a part of Cologne

Source: �Own illustration based on data from OpenStreetMap contributors (2019), Geofabrik GmbH and OpenStreetMap 
contributors (2018) and the City of Cologne (2014)
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Länder (2018). The treatment of empty cells as zero leads to a deviation of 
11.5 % at city level. Census 2011 results for the city of Cologne are published 
by Federal Statistical Office and the statistical offices of the Länder (2018). In 
this article, we analyse well-being at 100 metre grid cell and city district level.
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3.	�Theoretical framework for the construction of a composite 
indicator for well-being

3.1 Definition of composite indicators

Composite indicators are used to aggregate indicator information to a lower 
dimension. We refer to Münnich and Seger (2014) for a formal derivation. In 
the following, we restrict ourselves to a linearly weighted aggregation. Well-
being at local level is assessed by a composite indicator, comprising q = 1, ..., 
Q sub-indicators I, which is calculated as

	 (1)

with w denoting the weights and d the area of interest. Our composite indicator 
at district level includes twelve sub-indicators: (1) single parent households 
(%), (2) unemployment (%), (3) youth unemployment (%), (4) vacant 
dwellings (%), the average distance to (5) primary schools, (6) libraries, 
(7) museums, (8) play- and sports grounds and (9) hospitals, respectively, 
(10) parks, green areas and sport fields (%), (11) forest areas (%) and (12) 
water areas (%). At grid cell level the composite indicator comprises 10 sub-
indicators. Sub-indicators (1) to (9) are the same as at district level but as 
absolute numbers and sub-indicators (10) to (12) are summarised as natural 
areas approximated by the mirror image of impervious surfaces7.

The indicator is constructed using spatial and official data. In our case, 
unemployment data are only available at city district level and information 
about the number of vacant dwellings at 100 metre grid cell level. Both 
unemployment and vacancy data have to be re-scaled in order to analyse 
well-being at grid cell and district level, respectively. Therefore, methods for 
changing the scale are required. In addition, the construction of composite 
indicators requires normalisation and weighting of sub-indicators. In the 
following, different scaling methods from spatial research and small area 
estimation are presented in brief, following Rao and Molina (2015) and 
Zhang et al. (2014). Moreover, various normalisation and weighting methods 

7	� The imperviousness raster data are summarised within the 100 metre census grid cells using the zonal toolset 
from the spatial analysis toolbox of ArcGIS Pro.
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CId =

Q∑
q=1

wq · Iqd, (1)

with w denoting the weights and d the area of interest. Our composite indicator at district level
includes twelve sub-indicators: (1) single parent households (%) , (2) unemployment (%),
(3) youth unemployment (%), (4) vacant dwellings (%), the average distance to (5) primary
schools, (6) libraries, (7) museums, (8) play- and sports grounds and (9) hospitals, respec-
tively, (10) parks, green areas and sport fields (%), (11) forest areas (%) and (12) water areas
(%). At grid cell level the composite indicator comprises 10 sub-indicators. Sub-indicators
(1) to (9) are the same as at district level but as absolute numbers and sub-indicators (10)
to (12) are summarized as natural areas approximated by the mirror image of impervious
surfaces.8

The indicator is constructed using spatial and official data. In our case, unemployment
data are only available at city district level and information about the number of vacant
dwellings at 100 meter grid cell level. Both unemployment and vacancy data have to be
re-scaled in order to analyse well-being at grid cell and district level, respectively. Therefore,
methods for changing the scale are required. In addition, the construction of composite in-
dicators requires normalization and weighting of sub-indicators. In the following, different
scaling methods from spatial research and small area are presented in brief, following Rao
and Molina (2015) and Zhang et al. (2014). Moreover, various normalization and weight-
ing methods according to OECD et al. (2008) are introduced. In particular, possible sources
of uncertainty, which arise from scaling methods, selection of sub-indicators, data normal-
ization and weighting choices are considered. These sources of uncertainty are regarded as
construction steps of composite indicators with each step offering several selection choices,
also called triggers. Each possible combination results in a different composite indicator (see
Equation (1)).

3.2 Scaling of Data

As described above, the data come from different data sources. The disaggregated census
data on vacant dwellings and single parents are available at 100 meter grid cell level, HLR
imperviousness data at 20 meter resolution and socio-demographic data at city district level.
In addition, we have georeferenced data on schools, museums, play- and sports grounds,
hospitals and libraries. In order to conduct analyses at 100 meter grid cell level and city
district level, the scales have to be harmonized using up- or downscaling techniques. In the
following, several up- and downscaling methods from the field of geostatistics and small area
estimation are introduced.

8 The imperviousness raster data are summarized within the 100 meter census grid cells using the zonal toolset
from the spatial analysis toolbox of ArcGIS Pro.
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according to OECD et al. (2008) are introduced. In particular, possible sources 
of uncertainty, which arise from scaling methods, selection of sub-indicators, 
data normalisation and weighting choices are considered. These sources of 
uncertainty are regarded as construction steps of composite indicators with 
each step offering several selection choices, also called triggers. Each possible 
combination results in a different composite indicator (see equation (1)).

3.2 Scaling of data

As described above, the data come from different data sources. The 
disaggregated census data on vacant dwellings and single parents are available 
at 100 metre grid cell level, HLR imperviousness data at 20 metre resolution 
and socio-demographic data at city district level. In addition, we have 
georeferenced data on schools, museums, play- and sports grounds, hospitals 
and libraries. In order to conduct analyses at 100 metre grid cell level and 
city district level, the scales have to be harmonised using up- or downscaling 
techniques. In the following, several up- and downscaling methods from the 
fields of geostatistics and small area estimation are introduced.

3.2.1 Upscaling methods

Upscaling refers to the aggregation of fine-resolution input data to coarse-
resolution output data. Information on vacant dwellings is only available at 
100 metre grid cell level. In order to conduct an analysis of well-being at 
city district level, this information needs to be upscaled. The selection of the 
method is determined by characteristics of the input data. In the following, 
different upscaling methods are introduced.

Upscaling methods include aggregation using the (weighted mean), block-
kriging, the methods of random selection, median rule, mid-point rule, majority 
rule and reclassification of coarsened images are needed (Yang and Merchant, 
1997; Zhang et al., 2014, pp. 219ff.). Random selection assigns randomly a 
value from the fine-resolution grid to the aggregated coarse-resolution cell. 
The data at 100 metre census grid cells level are interpreted as point data, which 
are randomly assigned to represent the district. The selection probability of a 
fine-resolution grid cell to represent the aggregated coarse-resolution cell is 
proportional to its occurrence. Thus, the method of random selection is more 
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likely to preserve the structure than the majority rule, widely which is used. 
The majority rule chooses the most frequent value from the fine-resolution 
grid cells within the coarse-resolution area and qualifies the coarse-resolution 
output accordingly. If two or more classes occur with the same frequency, it 
is drawn randomly. The median rule attaches the (weighted) median value of 
the fine-resolution grids within the coarse-resolution area as aggregated value 
to the district. The degradation-reclassification approach applies an averaging 
degradation process and reclassifies the resulting images to obtain a coarse-
resolution image with the same characteristics as the input images except for 
the resolution (Yang and Merchant, 1997; Zhang et al., 2014, pp. 219ff.).

In this study the average vacancy rate is determined by calculating the 
weighted mean and applying block-kriging. In the first method, the vacancy 
rate is calculated by weighting the number of vacant dwelling and total 
dwelling in grid cells which are intersected by district boundaries with the 
high-resolution impervious data. Assuming that the number of dwellings 
correlates with the impervious surface and is evenly distributed, the dwellings 
are distributed proportionally to the impervious surface at 100 metre grid cell. 
The second method is based on Zhang et al. (2014, pp. 109ff.) and Zhang 
and Yao (2008). Block-kriging (or point-to-area kriging) utilises additional 
information, e.g. spatial dependence in the underlying distribution to estimate 
the mean value of a variable Z for a predefined large area, e.g. districts. Block 
kriging assumes that the mean value of a random variable over a block vx 
centred at location x is defined as the average of all np random variable points 
Z(xβ) which discretise the block
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Z(vx) =
1

np

np∑
β=1

Z(xβ).

The simplest form of kriging derives kriging weights based on the criteria of unbiasedness and
minimum variance of the estimator. Stationarity of the mean and covariance of the problem
domain is assumed. The estimator for Z over a block vx is a linear combination

ẑ(vx) = mZ +

np∑
β=1

λβ [z(xβ)−mZ ] (2)

holds, with mZ being the known stationary mean and λβ denoting kriging weights (see Zhang
and Yao, 2008). The average prediction error ẑ(vx)− z(vx) is set to be zero

E[ẑ(vx)− z(vx)] = mZ +

np∑
β=1

λβ{E[z(xβ)]−mZ} − E[z(xβ)] = 0.
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The simplest form of kriging derives kriging weights based on the criteria 
of unbiasedness and minimum variance of the estimator. Stationarity of the 
mean and covariance of the problem domain is assumed. The estimator for Z 
over a block vx is a linear combination

	 (2)

holds, with mZ being the known stationary mean and λβ denoting kriging 
weights (see Zhang and Yao, 2008). The average prediction error zˆ(vx) − z(vx) 
is set to be zero
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pp. 219ff.).
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applying block-kriging. In the first method, the vacancy rate is calculated by weighting the
number of vacant dwelling and total dwelling in grid cells which are intersected by district
boundaries with the high-resolution impervious data. Assuming that the number of dwellings
correlates with the impervious surface and is evenly distributed, the dwellings are distributed
proportionally to the impervious surface at 100 meter grid cell. The second method is based
on Zhang et al. (2014, pp. 109ff.) and Zhang and Yao (2008). Block-kriging (or point-to-area
kriging) utilizes additional information, e.g., spatial dependence in the underlying distribution
to estimate the mean value of a variable Z for a predefined large area, e.g., districts. Block
kriging assumes that the mean value of a random variable over a block vx centered at location
x is defined as the average of all np random variable points Z(xβ) which discretize the block

Z(vx) =
1

np

np∑
β=1

Z(xβ).

The simplest form of kriging derives kriging weights based on the criteria of unbiasedness and
minimum variance of the estimator. Stationarity of the mean and covariance of the problem
domain is assumed. The estimator for Z over a block vx is a linear combination

ẑ(vx) = mZ +

np∑
β=1

λβ [z(xβ)−mZ ] (2)

holds, with mZ being the known stationary mean and λβ denoting kriging weights (see Zhang
and Yao, 2008). The average prediction error ẑ(vx)− z(vx) is set to be zero

E[ẑ(vx)− z(vx)] = mZ +

np∑
β=1

λβ{E[z(xβ)]−mZ} − E[z(xβ)] = 0.
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the reduced form can be written as

var[λ∗TZ∗] =
[
λT −1

] [ cov(xβ) cov(xβ , vx)
cov(xβ , vx)

T var[z(vx)]

] [
λ
−1

]

= λT cov(xβ)λ− 2λT cov(xβ , vx) + var[z(vx)]

with cov(Xβ , vx) being the point-to-block covariance vector. The weight vector

λ = cov(xβ)
−1cov(xβ , vx)

minimizes the prediction variance and solves equation (2). Thus, the block kriging estimator
is given as

ẑ(vx) = mZ +

np∑
β=1

λβ(z(xβ)−mZ)

= mZ + λT (Z(xβ)−mZ)

and the kriging variance as

σ2
Z(x) = var[z(vx)]− λT cov(xβ , vx),

where var[z(vx)] denotes the average covariance within the block being predicted (Zhang and
Yao, 2008, p. 183; Zhang et al., 2014, pp. 109ff.).

3.2.2 Downscaling Methods

Downscaling is the inverse of upscaling and refers to the conversion of coarse-resolution
data to fine-resolution data. In our case, data on unemployment and youth unemployment
are available at district level. In order to conduct an analysis of well-being at 100 meter grid
cell level, this information needs to be downscaled. Several downscaling methods from the
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where var[z(vx)] denotes the average covariance within the block being 
predicted (Zhang and Yao, 2008, p. 183; Zhang et al., 2014, pp. 109ff.).

3.2.2 Downscaling methods

Downscaling is the inverse of upscaling and refers to the conversion 
of coarse-resolution data to fine-resolution data. In our case, data on 
unemployment and youth unemployment are available at district level. In 
order to conduct an analysis of well-being at 100 metre grid cell level, this 
information needs to be downscaled. Several downscaling methods from the 
small area literature and geospatial research are available, which are presented 
briefly in the following.

The method of area-to-point kriging is in contrast to block kriging as 
explained above. Assuming that the grid cell is represented by its centroid, 
point values for each grid cell are estimated based on available data at district 
level. For the derivation of area-to-point kriging, we refer to Zhang et al. 
(2014, pp. 120ff.) and Kyriakidis (2004). Area-to-point kriging is not used in 
this study as the quality of the results at 100 metre grid cell level is distorted 
as very coarse information is converted to very fine information.

Further examples of downscaling methods include geographic centroid 
assignment, areal weighting, dasymetric mapping and regression methods. 
Geographic centroid assignment assigns a representative value for the district 
to its centroid. The values for the large area are then assigned to the 100 
metre grid cell centroids using the distances between the large area centroid 
and small area centroids as weights. Grid cells that are uninhabited are not 
included in the analysis. Whether a grid cell is uninhabited is determined 
on the basis of the number of houses classified by OpenStreetMaps. Areal 
weighting approaches are based on cartographic techniques. Simple area-
weighted interpolation determines weights based on the percentage of the 
overlapping large area and small area assuming that the socio-demographic 
variable of interest (e.g. population, unemployment) is evenly distributed 
within the large area. Thus, areal weighting methods rely on the assumption 
of homogeneity within each large area (see e.g. Goodchild and Lam, 1980). 
Dasymetric mapping uses auxiliary data such as remote sensing data (e.g. 
high-resolution imperviousness data). High-resolution imperviousness data 
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are used to better depict the distribution of the socio-economic variable of 
interest in the large area and, thus, accounts for the fact that some parts of 
the area of interest might not be populated assuming that impervious surfaces 
approximate population and unemployment is evenly distributed across the 
population (see e.g. Eicher and Brewer, 2001). The downscaling methods 
described above rely on interpolation. Alternatively, the conversion of coarse-
resolution data to fine-resolution data can be achieved by regression methods, 
which establish a relationship between different scales (see e.g. Fernandes et 
al., 2004; Martinez et al., 2009; Wu and Li, 2009).

Alternatively to these methods from the geoscientific research, simple 
approaches from the discipline of small area estimation can be applied as 
downscaling techniques. Small area estimation (SAE) generally deals with 
situations in which survey data is to be evaluated on a highly disaggregated 
level. In this case, the sample size in some or many areas is typically so small, 
that traditional direct estimators that only rely on the sample data in a specific 
area lack accuracy. The strategy then is to use indirect estimation methods, 
that borrow information from other areas to stabilise estimation.

There is a broad range of different approaches to small area estimation. 
Which method is suitable, crucially depends on the availability of data, both 
with respect to the variable of interest and auxiliary information, and the type 
of the target information. An introduction into the field and a comprehensive 
overview can be found in the monograph of Rao and Molina (2015). Recent 
developments are also presented in Pfeffermann (2013). An introductory 
overview in German language is given by Münnich et al. (2013). We focus 
on approaches that might be of relevance in the context of measuring well-
being on a low aggregation level. We first look at some SAE approaches 
with minimal data requirements on the target resolution level and then present 
some relevant methods from the broader range of SAE techniques, that opens 
up if additional information is available. We finally focus on the SPREE-
estimator and related extensions because this might prove to be a relevant 
approach in the context of well-being indicators, which in many cases rely on 
categorical variables.

Before presenting the selected small area methods, note that small area 
estimation as a part of survey statistics generally deals with data that was 
obtained in a random sample in order to obtain reliable statistics for a 
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larger population from which the sample was taken. Most procedures and 
expressions presented below can however also be applied in cases where data 
for the entire target population, i.e. register data, is available for a larger area, 
for example obtained from administrative sources. In these cases the synthetic 
approaches (while not being estimators in the classical sense then) can still be 
suitable ways to deduce statistics on the level of smaller areas (see e.g. Rao 
and Molina, 2015, Chapter 3.2.3).

If no sample information for the variable of interest is available at the 
targeted fine-resolution level, the range of feasible approaches is largely 
restricted and only some very simple synthetic estimators can be considered. 
Generally, a synthetic estimator uses a reliable estimator for a larger area to 
derive an indirect estimator for smaller areas within this larger area, relying 
on the assumption that the small areas share the characteristics of the larger 
area (Rao and Molina, 2015). If no area information is available, a very simple 
naive synthetic estimator for the mean (or proportion) 
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procedures and expressions presented below can however also be applied in cases where data
for the entire target population, i.e., register data, is available for a larger area, for example
obtained from administrative sources. In these cases the synthetic approaches (while not
being estimators in the classical sense then) can still be suitable ways to deduce statistics on
the level of smaller areas (see e. g., Rao and Molina, 2015, Chapter 3.2.3).

If no sample information for the variable of interest is available at the targeted fine-
resolution level, the range of feasible approaches is largely restricted and only some very
simple synthetic estimators can be considered. Generally, a synthetic estimator uses a reli-
able estimator for a larger area to derive an indirect estimator for smaller areas within this
larger area, relying on the assumption that the small areas share the characteristics of the
larger area (Rao and Molina, 2015). If no area information is available, a very simple naive
synthetic estimator for the mean (or proportion) Ŷ d in a small area d is given by

Ŷ
syn

d = Ŷ d = 1, ..., D,

where Ŷ is the direct estimator of the large area. This naive synthetic estimator relies on the
implicit assumption that the small area means are equal to the large area mean. Obviously,
it is highly inadequate when this strong assumption is inappropriate. If a suitable auxiliary
variable x is available, the ratio-synthetic estimator for the domain total Yd can be obtained
as:

Ŷ rs
d = Xd

Ŷ

X̂
d = 1, ..., D,

where Xd is the known area-level total and X̂ is the population or larger-area total estimated
from the same sample as Ŷ . This estimator relies on the assumption that the rate Rd =
Yd/Xd is approximately equal to the overall ratio R = Y/X and the bias might be large if
this assumption is not fulfilled (see Rao and Molina, 2015, Section 3.2). We use the ratio-
synthetic estimator to obtain unemployment numbers at 100 meter grid cell. The known
area-level totals Xd, here inhabitants, come from the 100 meter census grid cells and Y and
X , inhabitants and unemployed people on the district level, from the City of Cologne (2017).
It has to be noted that some grid cells can not be allocated to one district only. In some cases,
the 100 meter grid cells are intersected by district borders. We assign the grid cells to the
district with the largest intersection.

So far, we presented methods with minimal data requirement on the targeted fine-
resolution level. Typically in SAE problems, a sub-sample (albeit small) is available in at
least most of the areas. The best-known and regularly applied methods use this informa-
tion. Synthetic approaches that use sample information on the target level are the regression
synthetic estimator and the GREG-synthetic estimator (Rao and Molina, 2015, Section 3.2).
More importantly, the most common small area models, which as special cases of a Gen-
eral Linear Mixed Model employ an explicit statistical model to obtain small area estimates,
become feasible. A large part of Rao and Molina (2015) is dedicated to these models.

A special problem of SAE is that of estimating cell counts (or proportions) of a cate-
gorical variable. Assume that the counts are arranged in a two-way table, where each row
contains a vector of frequencies for the p categories of the variable of interest in a given area.
Following Hernandez, we call this arrangement a population composition and denote it by Y
(Hernandez, 2016). Assume that a sample of the target population is available that – while
yielding reliable estimates for the margins of the compositions – is too small to obtain accu-
rate estimates of cell frequencies. Further, some proxy composition X is available. This can,
for example, be the result from a previous census that needs updating.
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Ŷ
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Ŷ rs
d = Xd

Ŷ
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So far, we presented methods with minimal data requirement on the 
targeted fine-resolution level. Typically in SAE problems, a sub-sample 
(albeit small) is available in at least most of the areas. The best-known and 
regularly applied methods use this information. Synthetic approaches that use 
sample information on the target level are the regression synthetic estimator 
and the GREG-synthetic estimator (Rao and Molina, 2015, Section 3.2). More 
importantly, the most common small area models, which as special cases of 
a General Linear Mixed Model employ an explicit statistical model to obtain 
small area estimates, become feasible. A large part of Rao and Molina (2015) 
is dedicated to these models.

A special problem of SAE is that of estimating cell counts (or proportions) 
of a categorical variable. Assume that the counts are arranged in a two-way 
table, where each row contains a vector of frequencies for the p categories 
of the variable of interest in a given area. Following Hernandez, we call this 
arrangement a population composition and denote it by Y (Hernandez, 2016). 
Assume that a sample of the target population is available that – while yielding 
reliable estimates for the margins of the compositions – is too small to obtain 
accurate estimates of cell frequencies. Further, some proxy composition X 
is available. This can, for example, be the result from a previous census that 
needs updating.

Generally, structure preserving estimators provide estimates of the cell 
frequencies by adjusting them to the known margins while at the same time 
in some way preserving the association structure, i.e. the relationship between 
rows and columns, observed in the proxy composition X. In this adjustment, 
several assumptions on the relationship between the association structure 
in X and Y can be used. For estimation, typically, the method of iterative 
proportional fitting (IPF) (Deming and Stephan, 1940) is employed. Note that 
calibration to known margins in these approaches is an inherent feature of the 
estimation process.

The basic structure preserving estimator (SPREE) was introduced by 
Purcell and Kish (1980). It makes the simple assumption that the association 
structure of X and Y is equal. Let Yd,a denote the count for area d, d = 1, . . . , D 
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adjusting them to the known margins while at the same time in some way preserving the as-
sociation structure, i.e., the relationship between rows and columns, observed in the proxy
composition X . In this adjustment, several assumptions on the relationship between the as-
sociation structure in X and Y can be used. For estimation, typically, the method of iterative
proportional fitting (IPF) (Deming and Stephan, 1940) is employed. Note that calibration to
known margins in these approaches is an inherent feature of the estimation process.

The basic structure preserving estimator (SPREE) was introduced by Purcell and Kish
(1980). It makes the simple assumption that the association structure of X and Y is equal.
Let Yd,a denote the count for area d, d = 1, . . . , D and category a, a = 1, . . . , p. Further, we
use Yd+ and Y+a to denote the known row- and column-margins, respectively. Assume that
a proxy composition X with the same dimensions as Y is available. The aim is, to obtain
estimates Ŷd,a that minimize the distance between the cell counts and fitted values under
constraints implied by the margins. As this optimization problem cannot be solved in closed
form, an estimate for Y is obtained iteratively by IPF, applying the following procedure (see
Hernandez, 2016; Agresti, 2013, Chapter 9.7.2):

Step 1: Ŷ
(1)
d,a = Xd,a

Y+a

X+a
(3)
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(2)
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(5)

Step 2 and 3 are repeated until convergence. The algorithm converges to the optimal solu-
tion, i.e., it minimizes the distance between cell counts and fitted values according to the
Kulback-Leibler discrimination information measure

∑
d

∑
a Yia log

Yd,a

Ŷd,a
(Ireland and Kull-

back, 1968).
A closely related approach is presented by Dostal et al. (2016), who suggest an extension

of the SPREE with an alternative distance function. This has proven to be a suitable approach
in the case of very small domains (Dostal et al., 2016). If sample estimates for the inner cells
are available, more elaborate methods become feasible. Zhang and Chambers (2004) propose
a Generalized SPREE (GSPREE), that assumes a proportional relationship between the asso-
ciation structure of the target compositions and its proxy. They further present a version of
this approach that allows for cell-specific random effects. Hernandez (2016) presents a Mul-
tivariate SPREE (MSPREE), an extension of the GSPREE that allows for further flexibility
regarding the structural assumption.

Due to restrictions in data availability on the very fine resolution level of districts and grid
cells, the more elaborate approaches presented here, cannot be applied in the study at hand.
As they open up the opportunity to account for the socio-demographic structure in downscal-
ing, we think that it is worth to pursue them further. This will require close cooperation with
Official Statistics.

3.3 Construction Steps of Composite Indicators

The data need to be normalized prior to any aggregation. Different methods, such as
normalized ranking, standardization or min-max methods, are available. Normalized ranking
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Ŷ
(2)
+a

(5)

Step 2 and 3 are repeated until convergence. The algorithm converges to the optimal solu-
tion, i.e., it minimizes the distance between cell counts and fitted values according to the
Kulback-Leibler discrimination information measure

∑
d

∑
a Yia log

Yd,a
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form, an estimate for Y is obtained iteratively by IPF, applying the following procedure (see
Hernandez, 2016; Agresti, 2013, Chapter 9.7.2):
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Step 2 and 3 are repeated until convergence. The algorithm converges to the optimal solu-
tion, i.e., it minimizes the distance between cell counts and fitted values according to the
Kulback-Leibler discrimination information measure

∑
d

∑
a Yia log

Yd,a

Ŷd,a
(Ireland and Kull-

back, 1968).
A closely related approach is presented by Dostal et al. (2016), who suggest an extension

of the SPREE with an alternative distance function. This has proven to be a suitable approach
in the case of very small domains (Dostal et al., 2016). If sample estimates for the inner cells
are available, more elaborate methods become feasible. Zhang and Chambers (2004) propose
a Generalized SPREE (GSPREE), that assumes a proportional relationship between the asso-
ciation structure of the target compositions and its proxy. They further present a version of
this approach that allows for cell-specific random effects. Hernandez (2016) presents a Mul-
tivariate SPREE (MSPREE), an extension of the GSPREE that allows for further flexibility
regarding the structural assumption.

Due to restrictions in data availability on the very fine resolution level of districts and grid
cells, the more elaborate approaches presented here, cannot be applied in the study at hand.
As they open up the opportunity to account for the socio-demographic structure in downscal-
ing, we think that it is worth to pursue them further. This will require close cooperation with
Official Statistics.

3.3 Construction Steps of Composite Indicators

The data need to be normalized prior to any aggregation. Different methods, such as
normalized ranking, standardization or min-max methods, are available. Normalized ranking
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3.3 Construction steps of composite indicators

The data need to be normalised prior to any aggregation. Different 
methods, such as normalised ranking, standardisation or min-max methods, 
are available. Normalised ranking is the simplest normalisation method. It 
evaluates the performance of the area of interest in the subsequent dimension 
according to its relative position
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is the simplest normalization method. It evaluates the performance of the area of interest in
the subsequent dimension according to its relative position

Iqd =
Rank(xqd)

D
,

where xqd is the value of sub-indicator q of area d and D the total number of areas.
Standardization ensures that the sub-indicators have zero mean and a standard deviation

equal to one, i.e.,

Iqd =
xqd − xqd=d̄

σqd=d̄

,

where xqd=d̄ and σqd=d̄ denote the average and standard deviation across countries, respec-
tively. Sometimes the composite indicator is adjusted, e.g., by weights, as outliers distort the
composite indicator.

The min-max methods subtracts the minimum value and divides the difference by the
range of the sub-indicator values

Iqd =
xqd −mind(xq)

maxd(xq)−mind(xq)

and, thus, sub-indicators range between zero and one (OECD et al., 2008).
The relative importance of the sub-indicators is determined by the attached weights. The

most frequently used weighting technique is equal weighting. It assigns the same weight
to all sub-indicators, implying that all sub-indicators are equally important. However, due
to potential correlation between sub-indicators, equal weighting does not guarantee an equal
contribution of the sub-indicators to the composite indicator. Alternatively, weights based on
statistical models such as the principal component analysis (PCA) or on expert opinions can
be applied. The goal of PCA is to determine how different variables change in relation to each
other and how these variables are associated. Correlated variables are converted into a new
set of uncorrelated variables using a covariance matrix or correlation matrix. PCA involves
finding the eigenvalues of this covariance matrix (OECD et al., 2008; Nardo et al., 2005).
Weights based on PCA are constructed following Nicoletti et al. (2000). The indicators with
the highest squared factor loading are grouped into intermediate composites with the squared
factor loadings summed to unity as weight. These intermediate indicators are aggregated by
assigning the proportion of explained variance as weights to the intermediate composites. An
exemplary application of the construction of weights based on PCA can be found in OECD
et al. (2008, p. 90f.). The PCA is conducted applying the 
�4�

 function in R.

4. Implementation of the Sensitivity Analysis

4.1 Theoretical Framework for Sensitivity Analyses

In order to assess the robustness of the resulting composite indicator with respect to the
scaling schemes, the normalization method and the choice of weights, a sensitivity analysis is
conducted. Sensitivity analyses aim at determining the effect of a change in the input factors
on the variable of interest. In this article, the output variation in the composite indicator
is caused by the choices in the construction steps. The sensitivity analysis is based on a
variance decomposition method as described by Saltelli et al. (2000, 2008) as an extension of
the original approach proposed by Sobol (1993) and Homma and Saltelli (1996).

The composite indicator for well-being is calculated according to equation (1). The dif-
ferent construction steps (triggers), i.e., scaling techniques, normalization methods and the
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is the simplest normalization method. It evaluates the performance of the area of interest in
the subsequent dimension according to its relative position

Iqd =
Rank(xqd)

D
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where xqd is the value of sub-indicator q of area d and D the total number of areas.
Standardization ensures that the sub-indicators have zero mean and a standard deviation
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and, thus, sub-indicators range between zero and one (OECD et al., 2008).
The relative importance of the sub-indicators is determined by the attached weights. The

most frequently used weighting technique is equal weighting. It assigns the same weight
to all sub-indicators, implying that all sub-indicators are equally important. However, due
to potential correlation between sub-indicators, equal weighting does not guarantee an equal
contribution of the sub-indicators to the composite indicator. Alternatively, weights based on
statistical models such as the principal component analysis (PCA) or on expert opinions can
be applied. The goal of PCA is to determine how different variables change in relation to each
other and how these variables are associated. Correlated variables are converted into a new
set of uncorrelated variables using a covariance matrix or correlation matrix. PCA involves
finding the eigenvalues of this covariance matrix (OECD et al., 2008; Nardo et al., 2005).
Weights based on PCA are constructed following Nicoletti et al. (2000). The indicators with
the highest squared factor loading are grouped into intermediate composites with the squared
factor loadings summed to unity as weight. These intermediate indicators are aggregated by
assigning the proportion of explained variance as weights to the intermediate composites. An
exemplary application of the construction of weights based on PCA can be found in OECD
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 function in R.
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In order to assess the robustness of the resulting composite indicator with respect to the
scaling schemes, the normalization method and the choice of weights, a sensitivity analysis is
conducted. Sensitivity analyses aim at determining the effect of a change in the input factors
on the variable of interest. In this article, the output variation in the composite indicator
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the original approach proposed by Sobol (1993) and Homma and Saltelli (1996).

The composite indicator for well-being is calculated according to equation (1). The dif-
ferent construction steps (triggers), i.e., scaling techniques, normalization methods and the

ISTITUTO NAZIONALE DI STATISTICA 25

 denote the average and standard deviation across 
countries, respectively. Sometimes the composite indicator is adjusted, e.g. 
by weights, as outliers distort the composite indicator.

The min-max methods subtracts the minimum value and divides the 
difference by the range of the sub-indicator values

RIVISTA DI STATISTICA UFFICIALE N. 11/2020

is the simplest normalization method. It evaluates the performance of the area of interest in
the subsequent dimension according to its relative position

Iqd =
Rank(xqd)

D
,

where xqd is the value of sub-indicator q of area d and D the total number of areas.
Standardization ensures that the sub-indicators have zero mean and a standard deviation

equal to one, i.e.,

Iqd =
xqd − xqd=d̄

σqd=d̄

,

where xqd=d̄ and σqd=d̄ denote the average and standard deviation across countries, respec-
tively. Sometimes the composite indicator is adjusted, e.g., by weights, as outliers distort the
composite indicator.

The min-max methods subtracts the minimum value and divides the difference by the
range of the sub-indicator values

Iqd =
xqd −mind(xq)

maxd(xq)−mind(xq)

and, thus, sub-indicators range between zero and one (OECD et al., 2008).
The relative importance of the sub-indicators is determined by the attached weights. The

most frequently used weighting technique is equal weighting. It assigns the same weight
to all sub-indicators, implying that all sub-indicators are equally important. However, due
to potential correlation between sub-indicators, equal weighting does not guarantee an equal
contribution of the sub-indicators to the composite indicator. Alternatively, weights based on
statistical models such as the principal component analysis (PCA) or on expert opinions can
be applied. The goal of PCA is to determine how different variables change in relation to each
other and how these variables are associated. Correlated variables are converted into a new
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and, thus, sub-indicators range between zero and one (OECD et al., 2008).

The relative importance of the sub-indicators is determined by the attached 
weights. The most frequently used weighting technique is equal weighting. It 
assigns the same weight to all sub-indicators, implying that all sub-indicators 
are equally important. However, due to potential correlation between sub-
indicators, equal weighting does not guarantee an equal contribution of 
the sub-indicators to the composite indicator. Alternatively, weights based 
on statistical models such as the principal component analysis (PCA) or 
on expert opinions can be applied. The goal of PCA is to determine how 
different variables change in relation to each other and how these variables are 
associated. Correlated variables are converted into a new set of uncorrelated 
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variables using a covariance matrix or correlation matrix. PCA involves 
finding the eigenvalues of this covariance matrix (OECD et al., 2008; Nardo 
et al., 2005). Weights based on PCA are constructed following Nicoletti et al. 
(2000). The indicators with the highest squared factor loading are grouped 
into intermediate composites with the squared factor loadings summed to 
unity as weight. These intermediate indicators are aggregated by assigning the 
proportion of explained variance as weights to the intermediate composites. 
An exemplary application of the construction of weights based on PCA can 
be found in OECD et al. (2008, p. 90f.). The PCA is conducted applying the 
prcomp function in R.
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4.	Implementation of the sensitivity analysis

4.1 Theoretical framework for sensitivity analyses

In order to assess the robustness of the resulting composite indicator with 
respect to the scaling schemes, the normalization method and the choice 
of weights, a sensitivity analysis is conducted. Sensitivity analyses aim at 
determining the effect of a change in the input factors on the variable of 
interest. In this article, the output variation in the composite indicator is caused 
by the choices in the construction steps. The sensitivity analysis is based on a 
variance decomposition method as described by Saltelli et al. (2000, 2008) as 
an extension of the original approach proposed by Sobol (1993) and Homma 
and Saltelli (1996).

The composite indicator for well-being is calculated according to equation 
(1). The different construction steps (triggers), i.e. scaling techniques, 
normalisation methods and the choice of weights, have a direct impact on the 
output of the composite indicator. Variance decomposition within the scope of 
sensitivity analyses indicates how much each construction step contributes to 
the total variance in the result. Following Saltelli et al. (2008), the composite 
indicator CI is understood as a function of the k uncertain construction 
alternatives T:
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choice of weights, have a direct impact on the output of the composite indicator. Variance
decomposition within the scope of sensitivity analyses indicates how much each construction
step contributes to the total variance in the result. Following Saltelli et al. (2008), the com-
posite indicator CI is understood as a function of the k uncertain construction alternatives
T :

CI = f(T1, ..., Tk).

For mutually independent input factors T , the total or unconditional variance of the output,
V (CI), can be decomposed into

V (CI) =
∑
i

Vi +
∑
i

∑
j>i

Vij + ...+ V12...k,

where

Vi = V (fi(Ti)) = V [E(CI|Ti)]

and

Vij = V (fij(Ti, Tj)) = V [E(Y |Ti, Tj)]− Vi − Vj .

Vi is the first-order or main effect of Ti on CI , i.e. the individual contribution of Ti to the
variance of the output. The second-order effect Vij represents the joint effect of Ti and Tj .
Setting these effects in relation to the total variance, a first-order sensitivity index of Ti on
CI is obtained:

Si =
V [E(CI|Ti)]

V (CI)
.

Si is in the interval [0, 1] with values close to 1 indicating input factors with a large effect on
the output. Correspondingly, higher order sensitivity indices, e.g. the second order effect Sij ,
are derived by setting the higher order effects in relation to the total variance. Additionally,
one might be interested in the total contribution of a specific input factor Ti to the output,
i.e. the sum of its main effect and all relevant higher-order effects. For T1 and three insecure
input factors a corresponding total sensitivity index is for example given by (Münnich and
Seger, 2014; Saltelli et al., 2008)

Stot1 = S1 + S1,2 + S1,3 + S1,2,3.

For detailed explanations we refer to Saltelli et al. (2008, pp. 20-21 and 155-174). The sensi-
tivity analysis is performed using the R-package 
�	������� (see Bidot et al., 2018).

4.2 Composite Indicator of Well-being at District Level

As explained above, the construction of composite indicators comprises scaling of the
data, selection and normalization of sub-indicators and the choice of weights. In the sen-
sitivity analysis, we consider two upscaling methods (weighted mean, block-kriging), three
normalization schemes (min-max method, ranking and standardization), two weighting pos-
sibilities (based on PCA and equal weighting) and exclusion of one indicator. Each of the
twelve indicators considered at district level is left out once and further all indicators are
taken into account, resulting in 13 exclusion options. This results in 156 possible combina-
tions per district.
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For mutually independent input factors T, the total or unconditional 
variance of the output, V (CI), can be decomposed into
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Vi is the first-order or main effect of Ti on CI, i.e. the individual contribution 
of Ti to the variance of the output. The second-order effect Vij represents the 
joint effect of Ti and Tj. Setting these effects in relation to the total variance, a 
first-order sensitivity index of Ti on CI is obtained:
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For detailed explanations we refer to Saltelli et al. (2008, pp. 20-21 
and 155-174). The sensitivity analysis is performed using the R-package 
multisensi (see Bidot et al., 2018).

4.2 Composite indicator of well-being at district level

As explained above, the construction of composite indicators comprises 
scaling of the data, selection and normalisation of sub-indicators and the 
choice of weights. In the sensitivity analysis, we consider two upscaling 
methods (weighted mean, block-kriging), three normalisation schemes (min-
max method, ranking and standardisation), two weighting possibilities (based 
on PCA and equal weighting) and exclusion of one indicator. Each of the 
twelve indicators considered at district level is left out once and further all 
indicators are taken into account, resulting in 13 exclusion options. This 
results in 156 possible combina- tions per district.

Figure 2 illustrates the composite well-being indicator for the City of 
Cologne at district level based on all twelve indicators and using the weighted 
mean as upscaling method, the min-max method for normalisation and 
weights resulting from PCA.
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The uncertainty in the construction of the composite indicator for well-
being is assessed by a sensitivity analysis. Sensitivity analyses study how 
much each source of uncertainty contributes to the output variance. Figure 
3 presents the total-order effect with scaling, selection of sub-indicators, 
normalisation and weighting as input factors. To set these results into relation, 
we also depicted the variation of indicator results between districts as a 
reference.

Figure 2 - Well-being indicator values at district level

Source: Own illustration
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From Figure 3 we observe that the scaling methods have the lowest impact 
on the output variance and that the construction decision with the largest effect 
is the choice of the weighting method. It can also be taken from this plot that 
most of the variability in results is still due to district identity, showing that 
there is an actual regional heterogeneity of well-being which is not offset by 
construction decisions.

The variance of the composite indicator depending on the construction is 
depicted in Figure 4.

Figure 3 - Total-order effects of the sensitivity analysis at district level

Source: Own illustration
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The results of the sensitivity analysis (Figure 3) suggest that the variance 
within the districts is largely caused by the weighting method. For this reason, 
the variance conditional on the weighting method (here: PCA) is shown in 
Figure 5.

Figure 4 - Conditional variance of the composite indicators at district level

Source: Own illustration
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As mentioned above, if various sub-indicator form a group, equal weighting 
might effectively result in unequal weights. For example, distances to primary 
schools, museums, hospitals, libraries and play- and sports grounds could 
be grouped into a single sub-indicator infrastructure. Assigning a weight of 
wq = 1/12 to each of the q sub-indicators, results in the infrastructure related 
sub-indicators having a weight of 5/12 in total. This might explain why the 
variance is particularly high in the north-western and central districts. The 
infrastructure in the city centre is usually better developed than in the rest 
of the city. The central distances have the shortest distances and the north-
western districts have the highest distances. It should be noted that the 
results might also be distorted as closer hospitals etc. can be located outside 
Cologne. However, in this study we concentrate exclusively on the urban 
area of Cologne. It would be desirable for future investigations to group the 
sub-indicators before weighting them. Furthermore, it would be sensible to 
include influential factors beyond the border of the region of interest in the 
analysis of well-being.

Figure 5 - �Conditional variance of the composite indicators using weights resulting 
from PCA at district level

Source: Own illustration
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4.3 Composite indicator of well-being at grid cell level

The composite indicator at 100 metre grid cell level is illustrated in Figure 
6 based on all sub-indicators normalised by standardisation and weights 
resulting from PCA. The unemployment numbers are downscaled by 
dasymetric mapping.

The composite indicator at 100 metre grid cell level has 264 different input 
combinations per grid cell. We consider four downscaling methods (centroid 
assignment, dasymetric mapping, areal weighting and the ratio-synthetic 
estimator), three normalisation schemes (min-max method, ranking and 
standardisation), two weighting possibilities (based on PCA and equal 
weighting) and the exclusion of one indicator in each step. This results in a 
decision matrix of size 2.589.048 5 (number of construction steps). Each row 
has a different composite indicator as result. In order to be able to handle the 
size, 2.000 construction possibilities were drawn based on LP-Tau quasi-

Figure 6 - Well-being indicator values at grid cell level

Source: Own illustration
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random numbers on the interval [0, 1] (Münnich and Seger, 2014; Saltelli et 
al., 2000). Figure 7 quantifies the impact of the normalisation scheme, 
weighting choice, downscaling method, exclusion of sub-indicators and the 
grid cell itself on the output variance. Note again that grid cell identity is not 
a trigger per se. It was included in the analysis to set the effect of construction 
decisions in relation to the regional heterogeneity in the results.

As expected, the sensitivity analysis of the well-being indicator at 100 
metre resolution reveals that grid cells have the largest impact on the output 
variance, followed by the weighting and normalisation methods. However, 
the results of the sensitivity analysis have to be treated with caution as it is 
based on 2.000 construction possibilities only.

At both district and grid cell level the differences between the areas of interest 
play a dominant role in the sensitivity analysis. This is even more pronounced 
on the very fine resolution level of grid cells. Altogether, the results indicate 
that there is a relevant heterogeneity of well-being at the regional level and, 
thus, confirm that efforts to measure this multidimensional concept at the local 
level are worth-wile. A second central conclusion is that, even if composite 
indicators are sensitive to construction decisions, the effect of these decisions 
does not “mask” the actual regional differences in indicator results.

Figure 7 - Total-order effects of the sensitivity analysis at grid cell level

Source: Own illustration
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5.	Concluding remarks

In this article, we explore the potentials of using remote sensing data for 
local level estimation of well-being. So far, the analysis of well-being is mainly 
focussed on the country-level. However, differences in central dimensions of 
well-being, such as material living conditions or the preconditions of social 
interaction and the quality of leisure time, often exist at street level. Therefore, 
we combine survey data and remote sensing data to enable an analysis on 
the very low aggregation level of city districts and 100 metre grid cells. We 
present different sources of remote sensing data and create infrastructure-
related sub-indicators in the composite well-being indicator using tools 
from the geosciences. Survey data are usually provided at administrative 
levels, whereas remote sensing data are available at small scale resolutions. 
Therefore, different upscaling and downscaling methods are introduced. We 
determine a composite indicator for well-being and quantify the impact of the 
different scaling techniques and other construction decisions by means of a 
sensitivity analysis with the scaling techniques, the normalisation scheme, the 
weighting methods and the exclusion of sub-indicators as uncertainty factors.

At district level, the incorporation of remote-sensing data is very promising. 
We can show that the upscaling methods only account for a minor proportion 
of the output variance. Following our application, the weighting scheme is 
the construction decision with the largest impact on indicator results. This can 
be attributed to the fact that, among other, equal weights are assigned to each 
sub-indicator resulting in an actual overweight of the infrastructure-related 
indicators. For future research, it would, therefore, be desirable to conduct the 
sensitivity analysis with grouped sub-indicators again.

The analysis at grid cell level is methodologically more challenging. 
The data at 100 metre resolution contain many empty cells as values lower 
than three are not published due to confidentiality reasons. Moreover, the 
change of resolution from district to 100 metre grid cell level is large, which 
comes at the cost of quality of the estimates at grid cell level. Generally, 
data availability on this very fine resolution level is largely restricted, so 
that more complex – and probably better – downscaling techniques could 
not be applied. For future research, we envisage a close collaboration with 
official statistics in order to build a data basis that will enable more elaborate 
approaches from the field of small area statistics. At both district and grid cell 
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level, the variation of well-being between the areas of interest was included 
in the analysis as a reference, i.e. to set the variability introduced through 
the construction decisions in relation to the actual heterogeneity between 
districts. At both levels, this variation between regional entities was the most 
relevant source of variability. There, thus, is a relevant heterogeneity on 
these low resolution levels which confirms our motivating notion that the 
micro-location matters. Further, even if composite indicators are sensitive to 
construction decisions, the actual differences between regional entities are not 
offset by these construction decision. This study can be seen as feasibility study 
showing that further research in this area could open up many possibilities. In 
particular, the downscaling methods have to be further developed. Moreover, 
alternative remote sensing data, such as land surface temperature, could be 
included as an environmental variable to describe human heat stress. All in 
all, the incorporation of remote sensing data has a huge potential for analyses 
of living conditions at local level and should be further investigated.
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