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The EUREDIT project: activities and results

Giulio Barcaroli 1

Abstract

The EUREDIT project was carried out from 2000 to 2003 under the 5th Framework 
Program of European Research, with the aim of developing and evaluating new 
methods for data editing in official statistics, in particular with respect to the phases 
of (i) error localisation and (ii) imputation of errors and missing values. Multi-Layer 
Perceptrons, Self-Organising Maps, Correlation Matrix Memories and Support 
Vector Machines have been considered as new methods for error localisation and 
imputation, together with robust methods for outlier identification and treatment. 
In addition, standard methods (edit rules based and model-based) have been taken 
into consideration as a benchmark to evaluate the performance of the new methods. 
For this purpose, a set of performance indicators were defined, together with an 
experimental plan making use of different datasets, covering the different typologies 
of data currently treated in official statistical production processes. Results of 
experiments are reported and discussed, together with methodological indications 
on how to optimally conduct evaluation tasks of this kind.

Keywords: statistical data editing, error localisation, imputation, outliers 
detection, quality evaluation.
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Introduction

The EUREDIT project (“The development and evaluation of new methods 
for editing and imputation”) was carried out under the 5th Framework Program of 
European Research from March 2000 to February 2003. To the project participated 
six national institutes, four universities and two private firms: ISTAT2, the UK Office 
for National Statistics (as coordinator of the project), Statistics Denmark, Statistics 
Netherlands, the Swiss Federal Statistical Office, Statistics Finland, the universities 
of Jyvaeskylae (Finland), Southampton, York, and Royal Holloway College (UK), 
Qantaris GmbH (Germany) and Numerical Algorithms Group (UK). Objective of 
the project was the application and evaluation of new approaches and algorithms to 
the problems of (i) error localisation in data, and (ii) imputation of errors and missing 
values. The most important new approach to be evaluated was identified basically 
in the family of techniques developed for pattern recognition and based, strictly 
or loosely, on artificial neural networks paradigm. But not only that: for particular 
problems, as robust estimation and treatment of time series, also ad hoc methods 
were ideated and evaluated.

For the evaluation of these new methods, it was necessary to consider and make 
available the following elements:

1.	 a set of standard methods, already defined and currently in use, whose 
performance might be considered as a benchmark for the evaluation of the 
new ones;

2.	 a conceptual framework (a set of indicators) for the compared evaluation of 
the quality of the different methods;

3.	 a set of different datasets, each of them representing a given typology of data, 
so as to cover the range of possible situations for a statistical user;

4.	 an experimental plan for the compared evaluation of all methods.
The basic output of the project is given by a set of reports containing the 

description and the evaluation of the methods, together with guidelines indicating 
the conditions for the optimal use of each of them. As additional output, a number of 
software tools were produced and made available to the project partners3.

In paragraph 1, a description of new methods that were investigated is given. They 
have been subdivided in those belonging to the class of neural network methods, and 
those classifiable as robust methods. Methods peculiar for time series are directly 
dealt with in paragraph 5.

2	� Members of the EUREDIT ISTAT project group are: Giulio Barcaroli, Giorgio Della Rocca, Marco Di Zio, Ugo 
Guarnera, Orietta Luzi, Antonia Manzari, Emanuela Scavalli, Angela Seeber.

3	� The results of the project are fully described in deliverable 6.1 (“Methods and Experimental Results from the 
Euredit Project”) and deliverable 6.2 (“Towards effective statistical editing and imputation strategies - Finding 
of the Euredit Project”).
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In paragraph 2, standard methods are described. Also these are distinguished in 
two classes, accordingly to their belonging to the Fellegi-Holt family (rules based 
methods), or to the model-based methods family.

In paragraph 3, the criteria for the evaluation of error localisation and imputation 
performance are introduced.

In paragraph 4 a description is given of the six datasets chosen for experimenting  
the various methods, together with the planned experiments.

In paragraph 5 results of experiments are analysed and evaluated for each dataset 
and, more synthetically, for best methods.

1.	The new methods

As already said, we can distinguish two main classes of new methods: those 
belonging to the wide class of pattern recognition computer intensive methods 
(mainly neural networks methods), and the others related to the particular problem 
of outlier detection and robust imputation.

1.1 Neural network methods

In general, a neural network is composed by a set of elementary units (neurones) 
linked by weighted connections (Bishop 1995, Ripley 1996). Neurons are organised 
in layers: at least one input layer and one output layer must be present in a net. 
One or more hidden layers are optional. Weights are determined by using training 
datasets, in case of supervised methods, or on the basis of available data in case of 
unsupervised methods.

Apart from any other possible characterisations, an important feature of neural 
networks is that they are non-parametric methods that can capture not only linear 
relationships between variables, but also non-linear. Another crucial element, very 
important in the phase of error localisation, is that they do not require the explicit 
knowledge represented by edit rules, but they rather need a set of cases (training 
datasets or available data) from which implicit knowledge required to operate is 
acquired: in other terms, these methods can learn.

This is the general approach. Actually, a variety of methods were considered 
in this class, each of them with relevant peculiarities. In the following, a synthetic 
description for each will be given.
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1.1.1 Multi-Layer Perceptrons (MLPs)

A Multi-Layer Perceptron is a neural network characterised by at least one hidden 
layer. One layer is composed by elementary units called neurons, each neuron is 
linked to others neurons by weighted connections. For any given neuron xj, the input 
is given by the weighted sum of the outputs of linked neurons, while its output is

the result of the application of a non-linear function f(xj) = f(aj + ∑ wijyi), where f is 

typically the sigmoid function (logistic or tangent hyperbolic).
Weights of the MLP, initially defined on a random basis, are sequentially adjusted 

by submitting a set of individual cases, with known values, for any of which 
predictions are made. The adjustment of weights, carried out so as to obtain best 
possible predictions, is based on different possible algorithms (all of the type feed 
forward), and proceeds until convergence, i.e. when the accuracy of predictions can no 
longer be significantly increased. To prevent over-fitting4 and ensure generalisation, 
during this process a validation set is also used.

A very important aspect of MLP construction is in the choice of input variables 
to the network. Redundant information may produce noise that limits predictive 
capability of the net. A number of techniques to select relevant variables were defined 
and tested in EUREDIT project (Scavalli,2002).

The application of MLP’s to the error localisation task can occur in two basic 
ways (Nordbotten 1995 and 1996):

•	 in a subset of cases where it is known when an error occurs in a given 
variable, and is therefore possible to define an error flag, a neural network 
is trained to predict the value (0 or 1) of the error flag. When applied to the 
complete set of cases, the neural net outputs (or in other terms, predicts) the 
values of the error flag. Values closest to ‘1’ indicate the presence of errors. 
It is necessary to define a threshold value above which corresponding values 
can be judged as erroneous: this is generally done by minimising the total 
amount of misclassifications (false positive and false negatives);

•	 in a subset of cases that can be reasonably judged as “error free”, a neural 
network is trained for each variable, so as to predict its values. When the 
neural  net is applied to the complete set of cases, predicted values of each 
variable become available. The distance between current value and predicted 
value is an indicator of the presence of errors. Also in this case, a threshold 
value should be defined in order to assess when a value is erroneous or not.

4	� When over-fitting occurs, a solution is found that minimises errors in prediction or classification of training data, 
but does not perform well on other datasets, i.e. it lacks in generalisation.

       

   

=





       

   

=


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With regard to the imputation task, a straightforward solution is the following: 
for each variable, the subset of cases with no missing errors are considered, and in 
this subset a neural network is trained to predict values for that variable. The neural 
net is then applied to the subset of cases with missing values for that variable, and 
predicted values are imputed to the variable.

This solution is acceptable when the missing mechanism is judged to be MCAR 
(missing completely at random) or at least MAR (missing at random). In case of 
NMAR (not missing at random) a different solution should be followed, based on the 
availability of a subset of cases in which, in correspondence of each missing value 
for a given variable, also its true value is available.

1.1.2 Tree-Structured Self-Organising Maps (TS-SOMs)

A Self-Organising Map (SOM) is a neural network that approximates a first 
principal curve, that is a low-dimensional representation (typically one or two 
dimensions) of a multivariate distribution (Kohonen1997).

The Tree-Structured Self-Organising Map (TS-SOM) algorithm combines the 
representation capability of the SOM and a tree-search of the best matching unit 
(Koikkalainen 1999).

When training TS-SOM, several SOMs with different resolution (i.e. with a 
different number of nodes or neurons or data clusters) are trained and are organised 
in a tree structure, starting from the simplest SOM at the root, ending to the most 
complex SOMs at the leaves. The more complex is a SOM, the higher is its capability 
to represent non-linear relationships in data.

As SOMs are unsupervised neural networks, the training does not require the 
availability of a subset of true data (as in the case of MLPs). To train a TS-SOM it is 
necessary to define the following parameters:

•	 the number of layers in the tree: this parameter defines the complexity of 
the net: the higher the number of the layers, the higher the complexity of the 
SOMs in the final layers;

•	 the robustness of the training algorithm: for continuous variables, the 
observations that are k times the value of the standard deviation in the 
nodes are considered to be outliers, while for categorical variables a “cut 
probability” is defined in order to mark the observation as an outlier.

Once a TS-SOM has been trained, it is possible to use it to localise errors in 
data. This is done by (i) searching in the tree the best matching SOM for the current 
unit, and (ii) by considering the differences between the SOM model projections and 
the observed values. Potential errors are those that show the largest differences. A 
threshold is defined in order to choose actual errors.
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To perform imputation, TS-SOM can be used in a similar way. For any observation 
with missing value, the best SOM is searched in the tree, and a conditional distribution 
is therefore available for the missing values. There are different possible imputation 
procedures:

•	 the mean in the cluster;
•	 a random draw from a probability density function;
•	 a random donor;
•	 a nearest neighbour donor;
•	 a MLP regression model specific for the node.
The differences between observations and predicted values are computed in 

terms of Euclidean distance between vectors of values. This requires that data are 
preventively pre-processed in order to perform equalisation of variable ranges, 
normalisation of scales, log-transformations and dummy coding of categorical 
variables.

1.1.3 Correlation Matrix Memories (CMMs)

A Correlation Matrix Memory is a particular type of neural network that is trained 
to associate pairs of patterns (an input pattern and an output pattern). It requires 
only a single cycle through the training data in order to learn the association of 
a pair of patterns, while the majority of neural networks require many training 
cycles, necessary to fit a non linear-regression model to data, where also implicit 
relationships between variables are represented. CMM create an explicit associative 
mapping between input and output patterns, instead of regression-type models.

The use of CMM for error localisation involves the following steps. First, a pre-
processing of data provides to convert them into binary format. A training of a CMM 
using the resulting binary representation of every record of data is performed. Then, 
for each record in the dataset, the trained CMM is applied to find the j best matches. 
Similarities between records (or “patterns”) are determined by considering their 
Hamming distance. For these j best matches, the k-NN (“k nearest neighbours”) 
subset is considered, and a DKN (the distance from the record from its k-th neighbour) 
value is computed in the following way:

•	 for each of the j matched records (neighbours), the Euclidean distance 
between them and the current record is computed;

•	 neighbours are sorted accordingly to their Euclidean distance;
•	 the DKN is retained for the current record.
All records are sorted accordingly to their DKN values. Given a threshold cut-off 

distance, all records exceeding this cut-off are considered as erroneous. The error- 
status of each variable in an erroneous record is determined on the basis of individual 
contribution to the DKN value.
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The use of CMM for imputation is quite straightforward: once the k-NN subset 
for a given record with missing values (or variables flagged for imputation), has been 
determined the values to be imputed are determined by using one of five possible 
methods: nearest-neighbour, random donor, median, mean and weighted mean.

In other words, both for error localisation and imputation, CMM is used only in a 
first step in order to find a set of closest records, that are used differently accordingly 
to the specific imputation method.

1.1.4 Support Vector Machines (SVMs)

A Support Vector Machine is an algorithm for defining a smoothing function that 
predicts the values of a set of target variables from a set of explanatory variables 
(Vapnik 1995). There are two forms of SVM, one for the prediction of continuous 
variables (SVM for regression, or SVR), the other for binary categorical variables 
(SVM for classification), both able to learn non-linear functions from data. SVM, 
originated in the so-called “machine-learning community”, can be grouped with 
other semi-parametric approaches like Multi-Layer Perceptrons and Radial-
Basis Functions: semi-parametric in the sense that they offer the efficient training 
characteristics of parametric techniques, but have the capability to learn non-linear 
dependencies as non-parametric methods do.

Another possible definition of SVM is the following: a non-linear generalisation 
of linear techniques (Cristianini and Shawe-Taylor 2000). Covariate data is projected 
onto a higher dimensional space (“features space”), and then inserted in a linear 
algorithm: the parameters of the linear model learned in the higher-dimensional space 
describe a non-linear model in the original space. The advantage of this approach 
is that the objective function minimised during training is convex quadratic, and 
therefore the problem of local minima is avoided. SVM learning also avoids over-
fitting by introducing a penalisation factor (regularisation) of over-complex models.

1.2 Robust methods

The problem of outliers identification and subsequent treatment is very important, 
especially in business data. Unidentified outliers can seriously compromise the 
accuracy of estimates and the validity of standard analyses of data. Not all outliers 
are errors: they can be characterised as representative outliers (corrects values) or 
non representative outliers (errors) (Chambers, 1986). The treatment subsequent 
to the identification should take into account this distinction, that conversely is 
not important in the phase of their detection: even if an outlier is not an error, it is 
nonetheless crucial to detect it in order to give it a special treatment.



THE EUREDIT PROJECT: ACTIVITIES AND RESULTS (Reprint)

14	 ISTITUTO NAZIONALE DI STATISTICA

Detection requires first of all a metric able to measure the “outlyingness” of a 
value. Metrics are usually derived by the adoption of models and measures of the 
discrepancy between real and predicted values (Barnett and Lewis 1994). A very 
common metric for continuous data is the Mahalanobis distance.

A problem to be dealt with is that the estimation of model parameters can be 
influenced by those outliers that should be detected by using the model. Robust 
methods for outlier detection are based in turn on robust estimation of models and 
distances.

In the following, a number of methods for outlier detection are synthetically 
illustrated. As for imputation, most of them make use of a particular software, 
POEM (imPutation for Outliers, Edit failures and Missing values), that is a robust 
nearest neighbour imputation algorithm, while the last one, WAID, has an embedded 
function that allows not only to detect but also to impute outliers.

1.2.1 �Outlier detection: Robust distance via Transformed Rank Correlation 
(TRC)

The basic idea of Transformed Rank Correlations (Gnanadesikan and Kettenring 
1972) is to compose a pseudo covariance matrix     using robust bivariate covariances.

This matrix is built by using the standardised Spearman rank correlation, multiplied 
by the standardised median absolute deviation of the variables involved. Data are 
then transformed into the space of principle axis derived from the pseudo covariance 
matrix: the transformation matrix B is defined by the equation                , with B 
orthogonal and L diagonal. The matrix of data X is transformed into Y=XB, and 
medians m’ and median absolute deviations s’ are transformed back to m=Bm’ and B 
diag(s’) BT. Finally, the Mahalanobis distance d2 = (xi -m)T S(xi -m) is computed for 
each point, and its ratio to the median of Mahalanobis distances is compared to an F 
distribution to determine outliers.

1.2.2 Outlier detection: Forward Search Algorithms (BACON)

Forward Search Algorithms start from an initial subset of data that is judged as 
being free of outliers (Hadi and Simonoff 1993; Riani and Atkinson 2000). In the 
case of BACON algorithm (“Blocked Adaptive Computationally Efficient Outlier 
Nominators”) (Billor et al 2000), this subset of data, of dimension cp, where p is the 
dimension of data (number of variables) and c is a constant chosen by the statistician 
(usually c=3), can be built in two different ways: by considering (i) observations with 
the smallest Mahalanobis distance to mean, or (ii) observations with the smallest 
Euclidean distance to the median point in the space; of course, the second alternative 
offers a more robust starting point. This initial subset is used to estimate a regression 

      

      
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model for the variables of interest. The algorithm then calculates Mahalanobis 
distances for all observations, based on mean and covariance estimated by the 
model. The next step is to redefine the “clean” subset by considering these new 
Mahalanobis distances. The procedure is iterated until (i) distances of observation 
outside the clean set are too large and the clean set does not vary anymore, or (ii) all 
observations are inside the clean set.

The BACON algorithm has been adapted in order to take into account missing 
values: in each iteration, the EM algorithm is applied before BACON, under the 
assumption of a multivariate normal distribution.

1.2.3 Outlier detection: Epidemic Algorithm (EA)

The Epidemic Algorithm (Beguin and Hulliger 2003) simulates an epidemic 
whose starting point is in the centre of a data scatter and spreads from it stepwise. 
As first step, Euclidean distances between all observations are calculated. The centre 
of the distribution (sample spatial median) is the point that has the least sum of 
distances from all other points. The epidemic is such that the probability that an 
“infected” point i transmits the “disease” to a non infected point j at the next step is 
inversely proportional to the distance:

P (j|i) =h(dij)
where dij is the distance between observations i and j, and h varies from 1 to 0). 

The form of the transmission function determines the behaviour of the algorithm: for 
the EUREDIT project, the inverse power function has been chosen:

{ }








   ≤ 
  
  
+

= 

where the constant d0 is called reach of the transmission, and can be determined over 
the observations as the maximum of the distances to the nearest neighbour. Given 
a subset I of infected points, the total infection probability of an observation j is 

 ∏
=



 
=    

The algorithm starts at the sample spatial median, and at each step the total 
infection probability of each uninfected point is evaluated. The expected number 
of new infected points is calculated, and points with the largest total infection 
probabilities are infected. The algorithm stops when no new infection occurs, or 
there are no more uninfected points. Infection times of observations are taken as a 
measure of outlyingness, and simple univariate decisions can be applied to identify 
outliers. Doubtless outliers are those observations that have never been infected.
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1.2.4 Outlier Reverse Calibration lmputation

We assume that a reliable population total estimate 






   ∑ =∑

∈∈

=  can be obtained 

by some outlier-resistant procedure: here, weights 
 are weights wi (inverses of 

inclusion probabilities, or calibration weights) that have been corrected in such a 
way so to ensure this resistance. We can also say that 







   ∑ =∑

∈∈

= 

In other terms, we can obtain the same outlier-resistant estimate by imputing 
values instead of modifying weights. Once outliers have been detected, let s2 be the 
subsample of outliers, and s1 the subsample of inliers. Then, the problem is to define 
a set of imputed values  


  ∈  under the constraint:


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The imputed values 
∈                should remain as close as possible to the original 

ones, subject to this constraints. This problem is equivalent to the calibration 
problem, where the survey variable Y plays the role of the sample weight and the 
sample weight plays the role of the survey variable. The distance here considered is:

      



∑
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where the qi ’s are constants that are chosen by the statistician. So, it follows (Deville 
and Sarndal, 1992):
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1.2.5 Outlier detection and imputation: Robust Tree Modelling (WAlD)

In the EUREDIT project, the regression tree modelling software WAID has been 
used5. The basic idea of regression tree models (Breiman et al 1984) is to sequentially 
divide the dataset into subgroups (nodes) that are more and more homogenous with 
respect to the values of a response variable.

5	� WAID regression tree modelling software operates under R (a public domain statistical software) and is an 
extension of WAID software for missing data imputation developed under the AUTIMP project (Chambers et al 
2001).
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The univariate version of WAID allows only one continuous response variable 
Y and p covariates X1, ..., Xp, all categorical. The tree modelling is robust in the 
sense that outliers are down-weighted when the measure of each internal node 
heterogeneity is calculated: weights are in this case based on outlier robust influence 
functions.

At any iteration, each node k is evaluated in order to decide if it should be split, 
on the basis of a measure of the heterogeneity given by the weighted sum of square 
residuals:
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 is the weighted mean of Y in node k, and the weight wi is calculated as 

the ratio 
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= , where    is a given influence function, whose default 

is the bi-weight influence function:
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So, each time a current node is split to create two children nodes, a new set of 
robust weights is created: outliers receive weights close to zero, while inliers receive 
weights close to one.

The algorithm defines as outliers those observations that in the overall process of 
nodes splitting are characterised by an average weight below a specified threshold. 
The optimal threshold is the one that allows to identify successfully outliers 
minimising the number of misclassifications.

The only difference of the multivariate version of WAID is in the evaluation 
of the heterogeneity. In particular, one of the possible options defines the weight  
associated to observation i in candidate node h at stage k as
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where yi is the p-vector of response values, 
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              



 is the variance within the candidate node h. Of course, in this case weights 
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have to be calculated iteratively.
Once a subset of observations have been declared as outliers, the robust tree 

structure generated by WAID can be used to impute them. There are two possible 
alternatives: (i) the outlier value is replaced by the weighted mean of the terminal 
node to which the observation belongs, or (ii) a random donor inside the terminal 
node is searched for.

2.	Standard methods

Standard methods have been considered in the EUREDIT project so as to offer a 
benchmark for the evaluation of new methods.

These standard methods can be grouped in two different classes:
•	 methods that are edit-rule based and, more specifically, follow the optimal 

editing approach defined by Fellegi and Holt (Fellegi and Holt, 1976);
•	 methods that are model-based.

2.1 Fellegi-Holt methods (F-H)

These methods are currently being used by a variety of National Statistical  
Institutes. The set of edit rules is used both for error localisation and for imputation. 
For error localisation, the subset of edits activated by a given record is processed 
in order to individuate the subset of variables most likely to contain the errors that 
caused the activation of those edits. The F-H error localisation algorithm is based on 
the minimum change principle, i.e. the number of variables judged to be erroneous 
must be the minimum under the constraint to explain all edit failures. A variant to 
this approach is given by the Nearest-neighbour Imputation Methodology (NIM). 
Accordingly to NIM, the error localisation is no longer based on the minimum 
change principle, but on the consideration of the differences between the current 
record (with edit failures) and a potential donor (a neighbour with no edit failures): 
this approach can be defined as data driven, while the F-H methodology is purely 
edits driven.

For imputation, a range of possible values to impute is first determined in order 
to avoid values that might cause additional failures of edit rules; then, actual values 
can be assigned by using a number of different methods, from nearest neighbour 
to regression imputation. In particular, we include in this category the imputation 
methods based on the donor search, as opposite to regression imputation considered 
in the model-based methods.

A number of systems incorporating F-H methods have been developed by 
Statistics Canada, Statistics Netherlands, ISTAT and ONS, and applied in the 
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EUREDIT project. In the following, a short description for each will be given.

2.1.1 CANCElS and SClA for editing and imputation of categorical variables

The CANadian Census Edit and Imputation System (CANCEIS) has been 
developed by Statistics Canada to be applied to the last Population Census. It fully  
incorporates the Nearest-neighbour Imputation Methodology (NIM) (Bankier et al 
2000).

The basic steps of NIM is (i) to search, for each record with edit failures, a set 
of nearest neighbours and, (ii) for each couple recipient-donor, to calculate the 
minimum number of imputation actions, so as to let the recipient failing no edits. As 
already said, this approach is not strictly adherent to the minimum change principle 
that characterises the Fellegi-Holt methodology, but has a number of advantages that 
makes it preferable in some applications. One of them is the editing and imputations 
of complex hierarchical structures, such as households. NIM allows to consider an 
entire household as the record to be edited, and experiences carried out made it clear 
that its performance is higher than that of pure F-H systems or other systems. The 
NIM approach also allows to handle contemporarily both continuous and categorical 
data, but so far the only applications we know refer to households categorical data, 
namely the variables that are linked by constraints that involve more than one 
member of the household.

On the contrary, SCIA (Sistema per il Controllo e l’Imputazione Automatici), 
developed by the Italian Statistical Institute, is a pure Fellegi-Holt system for the 
edit and imputation of categorical data (Riccini, 2002). Initially, the set of edit rules 
defined by the user is analysed and checked for contradictions and redundancies,  
and the complete set of rules, including implicit edits, is generated. These are applied 
to each record, and for those failing at least one edit, the minimal set of variables 
to be changed is determined, on the basis of the coverage of failed edits. Range of 
acceptable values are also determined for each variable. Then, the imputation step 
is performed, by searching first a unique donor for all imputations, on the basis of 
the values of the matching variables. If no such donor can be found, a sequential 
imputation is tried (one donor for each variable to be imputed). The final option is to 
impute values on the basis of the marginal distributions.

Experience showed that SCIA performs well for variables that are not subject to 
hierarchical constraints. Then, a typical edit and imputation application concerning a 
survey on households will consist firstly of an application of CANCEIS to variables whose 
edit rules mainly refer to the household composition and constraints (relation to head, sex, 
marital status and age), and secondly of an application of SCIA involving only individual 
variables (for instance, level of instruction, social condition, etc.) (Manzari, 2002).
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2.1.2 GElS for editing and imputation of continuous variables

The Generalised Edit and Imputation System (GEIS), developed by Statistics 
Canada (Kovar et al 1988), allows to apply the Fellegi-Holt methodology to 
continuous data. Only linear edits on non-negative variables are admissible. GEIS 
enables the user to analyse initial edits, identifying inconsistencies and redundancies. 
Error localisation is carried out on the basis of the minimum change principle: as in 
the case of categorical variables, for each record with edit failures the minimum set 
of variables covering all failed edits is identified and flagged for imputation. It is also 
possible to apply methods, as the Hidiroglou-Berthelot procedure (Hidiroglou and 
Berthelot, 1986), for outlier detection (Di Zio et al 2002a).

Imputation can be carried out in three different ways (Di Zio et al 2002b):
i.	 deterministic imputation, when for a given variable there exists one and only 

value that once assigned to the variable allows the record to pass the edits;
ii.	 nearest neighbour imputation: among all the units passing the edits, a 

potential donor with minimum distance is searched and its values, if 
acceptable, assigned to the recipient variables that require imputation;

iii.	 estimated value imputation: variables are imputed sequentially by using 
estimates based on different functions (means, ratios, historical trends).

2.1.3 �CHERRY-PlE and E-C system for editing and imputation of continuous 
variables

CHERRY-PIE is another implementation of Fellegi-Holt methodology, that 
allows the user to handle jointly both categorical and continuous data (De Waal 
2002). The output of CHERRY-PIE for each record that fails at least one edit is the 
list of variables that must be imputed as they have been flagged as erroneous.

The user can adopt whatever imputation method. In EUREDIT experiments a 
number of them have been used:

•	 deductive imputation (analogous to the GEIS deterministic imputation);
•	 multivariate simultaneous regression imputation: a multivariate regression 

model is estimated using fully observed predictors, and its predicted values 
assigned to missing/erroneous values;

•	 ratio hot-deck imputation: in case of balance edits, where many variables 
are sub-totals referred to a total, regression imputation is not adequate, since 
imputed variables are never zero and can be also negative; it is therefore 
better first to impute (by regression or deductively) the total, and then to 
search a donor (nearest neighbour with respect to the total), and allocate 
the differences between the variable total and the computed total (as sum of 
subtotals), by using ratios of subtotals to total in the donor (Pannekoek 2002).
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The imputations carried out as outlined above, can lead to additional edit failures, 
because these imputation methods do not take into account edits. A particular 
procedure is available, the EC System, that allows to adjust the final values in order 
to satisfy all rules. Adjustments are made by using the simplex method, so as to 
minimise the distance between imputed and final values, under the constraint that 
final values satisfy edits.

2.1.4 DlS for imputation of continuous and categorical variables

The Donor Imputation System (DIS) has been developed by the Office for 
National Statistics to be used in the 2001 UK Censuses. It implements the joint 
imputation method proposed by Fellegi and Holt in 1976. DIS searches for a donor 
in three different stages. First, a donor is searched having the same values of the 
recipient on a set of matching variables (exact match). If no such donor can be found, 
then categories of each categorical matching variable are collapsed, and the search 
is repeated. If a donor still cannot be found, less significant matching variables 
are removed until at least one donor is found. If more than one donor is found, a 
random selection can be performed. A penalty function is applied in order to avoid 
imputations of the same donor to many recipients (Yar 1988).

2.2 Model-based methods

The basic idea is to define and fit a (parametric and linear) model for every 
variable involved in the process of edit and imputation. This model will be used both 
for error localisation and imputation.

Error localisation is carried out with the following steps:
1.	 for each variable, an expected value is calculated, conditional on a set of 

covariates;
2.	 the actual value is compared to the expected value, and if the two values 

diverge too much, the actual value can be considered erroneous.
Obviously, problems arise when adopting this approach. Firstly, also covariates 

can contain errors (or missing values). Secondly, what metric should be adopted in 
evaluating closeness of actual and expected values, and how to define thresholds 
beyond which data have to be considered as errors?

As for the imputation, on the basis of a given model the expected value is 
assigned to missing and erroneous data. Also in this case we have to deal with some 
problems. First, as in the case of error localisation, we should consider the possibility 
that covariates may contain errors: if so, also the predicted value will be different 
from the true one. Second, imputation can be deterministic (the predicted value is 
directly imputed), and in this case first order estimates are generally best preserved, 
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but further data analysis can be biased by a reduced variability; or imputation can 
be stochastic (the imputed value is drawn by from a conditional distribution), with a 
reduced preservation of means and totals. Third, imputations carried out in this way 
generally do not take into account the coherence of imputed values with other values 
in the record, and edit failures are therefore possible after imputation.

2.2.1 Expectation-Maximisation Algorithm (EM)

EM algorithm is a method for estimating distribution parameters in the presence 
of missing data, under a specified super-population model and an ignorable non-
response mechanism (Dempster et al 1977) .

In the presence of missing data the complete data score function, i.e. the first 
derivative of the logarithm of L(θ ǀ Y), is not easily computable, so an iterative algorithm 
is preferred to the analytical solution. The algorithm consists in repeatedly applying 
standard complete data methods to incomplete data, by iterating the following steps:

1.	 impute missing data Ymiss using current estimates of unknown parameter θ 
(expectation step);

2.	 re-estimate θ using Yobs and imputed Ymiss (maximisation step).
The procedure is iterated until convergence to the unique maximum-likelihood 

estimate of θ.
Two methods of imputation can be used:
•	 each missing value is imputed with its best prediction E(YmissǀYobs, 

  

) (the 
conditional expectation given the observed data and the current estimates of 
the model parameters);

•	 the imputation is carried out by drawing randomly from the conditional 
distribution of missing data given the observed data P(YmissǀYobs, 

  

).
The first method should be chosen if primary estimates of interest are total or 

means, while the second is preferable to preserve variability in data.
The convergence of EM algorithm is not ensured if the assumption of multi- 

normality does not hold, and also imputation is performed on the basis of a multi- 
normal model. So, real applications do require (i) analysis of data to individuate strata 
in which multi-normality assumption holds and (ii) transformations of variables 
(usually, logarithmic transformations).

2.2.2 lntegrated Modelling Approach to lmputation (lMAl)

The IMAI approach has been developed at Statistics Finland, and can be used 
both for error localisation and for missing/erroneous data imputation. It is based on 
the following different steps:
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1.	 selection of training data and auxiliary variables for any given variable of 
interest;

2.	 construction of an error localisation model for the prediction of an error 
indicator for any given variable of interest, and/or an imputation model for 
the direct prediction of variables of interest;

3.	 choice of the criteria for error localisation: in particular, it is necessary to 
decide a proper cut-off probability for errors;

4.	 choice of the criteria for data imputation: if the predicted value (with or 
without an error term) is directly used to impute, then the imputation method 
is model-donor; on the contrary, if the predicted value is used to find a nearest 
neighbour, the method is real-donor (Regression Based Nearest Neighbour, 
RBNN, see Laaksonen 2000).

3.	The evaluation criteria

One of the most important objectives of the EUREDIT project was to individuate 
best methods for given typologies of data and errors. So, the determination of the 
evaluation criteria was a crucial task that engaged the first phase of the project.

Different sets of evaluation criteria were defined for error localisation and for 
imputation. All of them imply that knowledge concerning true values is entirely 
available. In other words, quality indicators, to be calculated, need to know the true 
value 

     of the j-th variable in the i-th unit in the dataset, the corresponding observed 
(or raw) value Yij, and the possibly imputed value. In the following we will introduce 
separately indicators for the evaluation of error localisation methods and indicators 
for the evaluation of imputation methods.

3.1 The evaluation criteria for error localisation

When considering an error localisation method, we are interested in evaluating 
two different performances, namely:

•	 the efficient error detection, i.e. the capability of a method to correctly 
classify errors and true values in data, or, conversely, its capability to 
minimise misclassifications (false negatives, errors judged as true values, 
and false positives, true values judged as errors);

•	 the influential error detection, i.e. the ability to detect the most influential 
errors, those with the highest impact on final estimates.
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3.1.1 Efficient error detection

After the application of a given method for error localisation, for every variable j 
of interest in the dataset, the following table can be defined:

E
ij = 1 (value 

judged as correct)
E

ij = 0 (value  
judged as erroneous)

Y
ij = 

     (correct value) n
aj

n
bj

Y
ij ≠ 

     (erroneous value) n
cj

n
dj

It is evident that frequencies on the main diagonal refer to correct classifications, 
while in the other two cells misclassifications are contained.

We can define the following indicators:

 




 




+

=                                                                     (1)

that is the false negative rate, i.e. the proportion of errors that have not been 
recognised as such by the method, and








 =
+

                                                                   (2)

that is the false positive rate, i.e. the proportion of true values that have been 
erroneously recognised as errors by the method.

Finally,


   


+

=





                                                                   (3)

is the total misclassification rate, i.e. an estimate of the probability of an incorrect 
outcome from the error localisation method.
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3.1.2 lnfluential error detection

It is worth while to measure not only the efficiency of the error localisation method 
in finding errors, but also its capability to find influential errors, in other words the 
errors that more than others could influence the estimates of interest.

To measure this capability, we introduce the concept of post-edited value 

    =   + −   . If the measured value Yij is erroneous, and the method can 

recognise it as an error, then the post-edited value is assumed to be set to the true 
value. On the contrary, if the method fails in recognising the error, the post-edited 
value remain erroneous.

For continuous variables an important quantity is      
 




         

            



        = = − ,  
i.e. the difference between the post-edited value and the true value. A desirable 
property of an error localisation method is that the two distributions of true values 
and post-edited values are as close as possible.

To measure this closeness, we can define the relative average error:

==

=





   





  ∑   ∑                            (4)

that indicates the mean difference between undetected errors and true values.Values 
wi indicates sampling weights, and are obviously used only in case of sample surveys. 
If variable j can assume also negative values, a more suitable indicator is the relative 
root average square error:



∑


∑
==

=


  


                                     (5)

A useful measure of how much differences between undetected errors and true 
values are spread, is given by the relative error range:

RERj = Rj (D)/IQj(Y
*)                                                      (6)

where Rj(D) is the range (maximum - minimum) of the non-zero Dij values, and IQj 
(Y*) is the inter-quartile distance of the true values.

For categorical (nominal or ordinal) variables, a different indicator has to be 
defined. Considering the joint distribution of post-edited and true values, we have to 
take into account the number of cases not lying in the principal diagonal (where Ŷij = a  
and 

     = b, with a ≠ b), each of them with an associated distance d(a,b). In case of 
nominal variables, d(a,a)=0, and d(a,b)=1 for any a,b. In case of ordinal variables, 
d(a,b) is given by the number of categories that lie between a and b, plus one. So, 
we can define the influential error detection performance for a categorical variable:

∑∑  ∑
=

 
≠ ∈

 

 
  


 =                              (7)
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Another useful measure of the performance of an error localisation method refers 
to the impact of remaining errors in post-edited data to the variance of the estimator 
in a sample survey. We can estimate this variance by means of the jackknife formula:






≠





 
   

 

∑ ∑ 
 

  


∑


∑
== =

−








=    (7)

where 










 

∑=  ∑
≠





=

 

  . In other words, variance is calculated from 

survey data each time excluding the i-th unit, and rescaling weights to take into 
account this exclusion.

Then the indicator

   


 
 ∑

=

=                                                     (8)

is a standardised measure of the effect of error localisation method on the variance  
of the estimator. Values of tj greater than 2 indicate a significant failure of the error 
localisation method.

Finally, we can compare the moments and the distributions of the outlier-free 
data value is retained, and values with corresponding moments and distributions 
of the true values, in order to evaluate the capability of a method to detect outliers. 
Remembering that Eij = 1 if the Eij = 0 otherwise, for positive continuous variables 
we can define the absolute relative error for the k-Mean:

∑ ∑

∑ ∑

= =

= =

= 
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





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






















                            (9)

where this indicator is typically calculated for k=1 and k=2 (to compare first and 
second moments of the two distributions).

3.2 The evaluation criteria for imputation

An imputation procedure should be evaluated with respect to the following 
properties:

i.	 predictive accuracy: an imputation method should preserve single values, 
i.e. imputed values should be the same than true values (for categorical 
variables), or as close as possible to the true values (for continuous variables);

ii.	 distributional accuracy: the imputation procedure should preserve the 
distribution of true data;
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iii.	 estimation accuracy: the imputation method should reproduce as much as 
possible the lower order moments of the distribution of true data (at least first 
and second moments).

An additional desirable property is that imputed values should be “plausible”, i.e. 
coherent with other data and not failing any edit rule.

3.2.1 �Performance measures for the preservation of true values (predictive 
accuracy)

Given a categorical nominal variable Y with c+1 categories, and be 
              its true 

value and Ŷi its imputed value, both in i-th observation, a measure of how well an 
imputation method preserves true vales is given by
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




 


                                                        (10)

that is the proportion of off-diagonal entries in the square table of order c+1 
obtained by cross-classifying true and imputed values.

In case of a categorical ordinal variable, we can define a more general version of 
D to take into account the distance between true and imputed values.

We can test whether D is significantly greater than a small positive constant s that 
is an acceptable proportion of incorrect imputation. If          +>  

      



, where   (D) 
is an estimate of the variance of D, we can say that the imputation method does not 
preserve true values. We can set

 
=  

       





                                                (11)

The smaller this value, the better is the performance of the method in preserving 
true values.

In case of a categorical ordinal variable, we can define a more general version 
of D to take into account the distanced (Ŷi , 


             ) between true and imputed values:
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In case of continuous variables, a completely different approach is followed. If 
an imputation methods preserves true values, Ŷi should be close to 

              for all cases 
where imputations have been made. A first measure of this closeness can be weighted 
Pearson moment correlation r between Ŷi and 

             . This measure is not recommended 
for highly skewed data.

Another approach is based on regression: first, a linear model of the form






+=    

  





                                                                  (13)
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is fitted to the subset of imputed data, and then a test is made whether the slope β is 
equal to 1. If the test does not reveal a significant difference (non significant p-value), 
then a measure of the regression mean square error can be computed:
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Another regression-based measure is the value R2, the proportion of the variance  
in Y* explained by the variation in Ŷ.

The preservation of values can also be directly evaluated by calculating the distance 
d(Ŷ,Y*) between the vector of imputed values and the vector of corresponding true 
values:
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                     (15)

where typical values of α are 1 and 2.

3.2.2 �Performance measures for the preservation of distributions (distributional 
accuracy)

For a categorical variable with c+1 categories, the distributional preservation 
capability of an imputation can be evaluated by calculating the following Wald-type 
statistic:

W=(R−S)t[diag(R+S)−T−Tt]−1(R−S)                           (16)
where R is the c-vector of frequencies of imputed values for the first c categories, S 
is the c-vector of frequencies of true values for these categories, and T is the square 
matrix of order c corresponding to the cross-classification of true and imputed values 
for these categories. Distribution of W is chi-square with c degrees of freedom, and 
statistical tests concerning distributional preservation can be carried out.

For continuous variables, we introduce the weighted empirical functions for true 
and imputed values:
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We can now measure the distance between the two functions using the 
Kolmogorov-Smirnoff distance:

     =                        (17)
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An alternative is the integrated distance

 ∑ −
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   (17b)

where t0 is the largest integer smaller than or equal to t1. Larger values of α give more 
importance to larger differences. Usual values of α are α = 1 and α = 2.

3.2.3 �Performance measures for the preservation of aggregates (estimation 
accuracy)

For continuous variables, we consider the problem of preserving the raw moments  
of the distribution. We can measure this preservation by using the indicator:
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                           (18)

with typical assignments of 1 and 2 to k.

4.	Datasets and planned experiments

Six different datasets were chosen in order to represent a variety of data 
(continuous and categorical) and surveys (census and sample surveys; enterprises 
and households; cross-section and panel) typologies. The characteristics of the 
datasets have been reported in the following table.

Dataset Type of dataset Type of variables Number of  
variables

Number of 
records

Danish Labour Force Survey 
(DLFS)

Administrative  
records

Continuous, nominal, 
ordinal 14 15,579

UK Annual Business Inquiry 
(ABI)

Quarterly Sample 
Survey Continuous 26 6,233

Sample (1%) of Anonymised 
Records of UK 1991  
Population Census
(SAR)

Population Census Nominal, ordinal 35 494,024

Swiss Environment  
Protection
Expenditures (SEPE)

Yearly Sample  
Survey Continuous 54 1,039

German Socio- 
EconomicPanel

Panel Sample  
Survey Nominal, ordinal, 30 5,383

Survey (GSOEP) Continuous

Time Series for Financial 
Instruments
(Shares and bonds, Options)

Time Series Continuous
87 daily time 

series from 1995 
to 1999
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For ABI, SARS, SEPE and time series , three different evaluation versions have 
been made available:

•	 Y* containing true data, i.e. the dataset assumed to be complete and without errors;
•	 Y2 containing data with missing values, but without errors;
•	 Y3 containing data with both missing values and errors.
For DLFS and GSOEP only Y* and Y2 were produced.
Only versions Y2 and Y3 were given to partners for carrying out experiments.
Versions Y*, considered as the “target” data, were not distributed by the project 

coordinator (ONS), with the exception of small subsets of data (near 10% of each 
dataset), necessary for some methods, as neural networks, that require “training” 
datasets to estimate internal parameters.

Together with datasets, also edit rules currently used by owners were disseminated 
to partners.

Versions Y2 and Y3 were produced by perturbing original Y* in the following way:
a.	 missing values were generated by adopting a missing completely at random 

(MCAR) non-response mechanism;
b.	 errors were generated trying to simulate the way they occur during the 

compilation of the questionnaire or the data entry operations.
The percentages of missing values and errors for each variable were determined 

as much as possible on the basis of real situations verified in previous experiences.
Also development datasets were given to partners, in order to let them produce 

by themselves perturbed versions (also perturbation software was available), apply 
methods and evaluate their performance, to get valuable experience before the 
application to the evaluation datasets.

Partners applied each suitable method to different dataset according to the 
following rules:

1.	 each error localisation method was to be applied only to versionsY3 of 
datasets (with both errors and missing values), while imputation methods 
were to be applied to both versions Y2 and Y3

6;
2.	 each partner could use the available subset of Y* to train neural networks, 

or to estimate the parameters of a statistical model; for imputation methods, 
partners could use the complete subset of Y2;

3.	 edit rules, given together datasets, could be (i) used by partners without 
modifications, (ii) with modifications, (iii) not used at all.

Once the different methods for error localisation and/or imputation of data were 
applied to the datasets, the corresponding outputs were given back to ONS, that 
provided to calculate the set of performance indicators illustrated in paragraph 3.

6	� The rationale for the application of imputation methods to both versions was to test their robustness in the 
presence of errors.
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5.	Evaluation results

The experiments that were carried out are analysed from a double point of view: 
(i) for each dataset, the performance of the various methods that were applied to it 
are compared, and (ii) methods that revealed to be the best are highlighted.

5.1 Evaluation results bydataset

For any dataset, the different performance indicators will be grouped so as to 
analyse the following quality indicators:

a.	 “pure” error localisation performance: indicators from (1) to (3);
b.	 influential error detection performance: indicators from (4) to (8);
c.	 difference between moments of true and edited data: indicator (9);
d.	 predictive accuracy: indicators from (10) to (15);
e.	 distributional accuracy: indicators from (16) to (17b);
f.	 estimation accuracy: indicator (18).

5.1.1 Evaluation results in Annual Business lnquiry (ABl)

ABI dataset contain 26 variables organised in a three-level hierarchy: at the top 
level there are six economic variables and one employment variable. Each of these 
variables breaks down in a number of elements; for some of the latter there is another 
level with component variables. Most of the analysis that was carried out refers to 
the first level, including the six most important economic variables. A high number 
of error localisation and/or imputation methods were applied to this dataset. Up to 
33 experiments involving Y3 version, and 24 related to Y2 version, were conducted 
by applying:

1.	 CHERRY-PIE plus multivariate regression and hot-deck imputation to Y3 
(CP-MRH);

2.	 multivariate regression and hot-deck imputation (MRH) to Y2;
3.	 MLP to both Y2 and Y3;
4.	 Integrated Modelling Approach to Imputation (IMAI) to both Y2 and Y3;
5.	 Generalised Edit and Imputation System (GEIS) to both Y2 and Y3;
6.	 Self-Organising Maps (SOM) plus random draw form normal Probability 

Density Function (PDF), or MLP, or nearest neighbour (NN), or mean 
(MEAN) to both Y2 and Y3;

7.	 Donor Imputation System (DIS) to both Y2 and Y3;
8.	 Epidemic Algorithm plus POEM (EA-POEM) to Y3;
9.	 Bacon plus EM algorithm plus POEM (BEM-POEM) to Y3;
10.	 Transformed Rank Correlation plus POEM (TRC-EM-POEM) to Y3;
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11.	 Univariate robust tree modelling (UWAID with node mean or node nearest 
neighbour imputation) to Y3;

12.	 Multivariate robust tree modelling (MWAID) to Y3;
13.	 Univariate Forward Search plus Reverse Calibration Imputation (UFS-RCI), 

or Nearest Neighbour Imputation (UFS-NNI), or Linear and Log-linear 
Imputation (UFS-REG and UFS-LREG) to Y3;

14.	 Correlation Matrix Memory (CMM) plus weighted mean or median to Y3;
15.	 Support Vector Machines (SVM) to Y2.
Once having standardised the quality indicators, if we consider the six most 

important economic variables in Y3, and the only error localisation experiments, three 
methods obtained good values in all the three error localisation groups of indicators 
(a), (b) and (c), namely MLP, GEIS and SOM. In particular, MLP experiments 
obtained best results in groups (a) and (c) (pure error localisation performance and 
differences between moments), while SOM was the best in group (c) (influential 
error detection). If we consider the only imputation experiments, best performance 
in groups (d) and (e), i.e. predictive and distributional accuracy, was revealed by 
MLP. Finally, considering both error localisation and imputation experiments, good 
values in all the five groups (a)-(e) were shown by CP-MRH, SOM, UWAID and 
the set of UFS methods with the various imputation methods (RCI, NNI, REG and 
LREG). This latest set seems to achieve the absolute best values.

If we consider the Y2 dataset, again for the six upper level economic variables, 
two methods rank above the others, namely MLP and MHR. In particular, MLP is the 
only method that achieves good results for all the considered indicators.

5.1.2 Evaluation results in UK Sample of Anonymised Records (SARs)

The evaluation here concentrated on six key variables, four concerning individuals 
(relation to head, marital status, sex and age), and two the households (number of  
rooms and presence of bathroom).

The methods that were applied to both Y2 and Y3 are CANCEIS-SCIA, MLP, 
SVM and, SOM, while DIS, CMM and IMAI were applied only to Y2.

Starting with Y3, if we consider individual variables and the first group of indicators 
related to the pure error localisation capability, for alpha values the best performance 
is shown by CANCEIS-SCIA and SOM; for beta values the best are CANCEIS-
SCIA and SVM, while for the overall delta the best is always CANCEIS-SCIA.

If we consider the other indicators for the only continuous variable (age), MLP is 
the best for the influential error detection (root average error, RAE), while CANCEIS-
SCIA shows the best performance for estimation accuracy (m1 and m2). Instead, 
Support Vector Machine (SVM) is the best for the preservation of true values (R2 and 
dL2), followed again by MLP and CANCEIS-SCIA.
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Considering now Y2, for variable age and indicator R2 the best method is SOM 
(with random draws from normal PDF), while for dL2 is SVM. Again, CANCEIS-
SCIA shows the best performance for estimation accuracy, together with IMAI.

5.1.3 Evaluation results in the Danish Labour Forces Survey (DLFS)

The peculiarity of the Danish Labour Forces Survey (15,579 observations) is that 
only the variable “income” contains missing values. The distributions of all other 
variables, categorical, are complete. This reflects a real situation, in which 27% of 
interviewees refused to respond to this question. The corresponding true values of 
non respondents can be found in administrative registers, so this is the only non 
simulated situation, in which it is possible to evaluate the imputation performance in 
the presence of a real non-response mechanism. The following methods have been 
applied:

1.	 MLP;
2.	 CMM (with different imputation methods: nearest neighbour, random 

neighbour, mean, weighted mean and median);
3.	 SOM (with nearest neighbour or random neighbour);
4.	 SVM (greedy or stratified);
5.	 IMAI (Regression Based Nearest Neighbour linear or log-linear, with or 

without noise);
6.	 Linear Regression;
7.	 Random Hot Decking;
8.	 DIS.
As for the predictive accuracy, MLP (with 20 neurons) shows the best values 

for slope (together with CMM and SVM), R2, dL1, dL2 and the MSE, followed by the 
Linear Regression.

In the distributional accuracy group of indicators, MLP is still among the best for 
KS(2), but SOM is the absolute winner for KS, KS(1) and KS(2).

As for aggregate preservation, SOM reveals to be the best for the preservation of  
the first moment (indicator m1 ), followed by MLP, while IMAI (log-linear without 
noise) is the best for the preservation of the second moment (indicator m 2).
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5.1.4 �Evaluation results in Swiss Environmental Protection Expenditures 
Survey (SEPE)

EPE data contains 1,039 observations and 54 variables. As in the case of ABI, 
there is a three-level hierarchy, where at the top level we can find the 4 most important 
key variables, that are totals of 20 variables, some of which are in turn totals of other 
30 variables. Evaluation was carried out concerning the four highest level variables. 
These methods were applied to the Y3 version:

1.	 CHERRYPIE plus multivariate regression plus ratio hot deck method (CP- 
MRH);

2.	 DIS;
3.	 Epidemic Algorithm plus POEM (EA-POEM);
4.	 Transformed Rank Correlation plus POEM (TRC-POEM);
5.	 Univariate WAID plus node mean imputation (UWAID);
6.	 CMM,

and these others to Y2:
1.	 Multivariate regression plus ratio hot deck method (MRH);
2.	 Censoring;
3.	 SOM plus deterministic imputation or mean or random draw from normal 

PDF;
4.	 DIS;
5.	 CMM.
Considering methods applied to Y3, there is no evidence of a method clearly 

doing better than the others in error localisation. On the contrary, the CP-MRH 
method ranks first with respect to the majority of imputation indicators.

Considering the Y2 version of dataset, the overall good performances belong to 
methods MHR and SOM.

5.1.5 �Evaluation results in German Socio-Economic Household Panel 
(GSOEP)

The GSOEP is a panel survey with six different waves, from 1991 to 1996. The 
dataset contains 30 variables, of which two can present missing values. Both are 
related to income: personal and household income. Because of the waves, we have 
up to 12 different variables to be imputed, six for personal income (from 91 to 96) 
and six for household income (again from 91 to 96). Imputation has been carried out 
by means of the following methods: SOM (with random draw from normal PDF), 
CMM (with 5 different imputation options: 2 real donor and 3 model donor), DIS and 
IMAI (using RBNN imputation method with a log-linear regression model without 
noise term).
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For all quality indicators, IMAI always results to outperform the other methods. 
To explain this, it is worth while to remark that IMAI is the only method that made 
use of the panel characteristics of the survey. In fact, while all the other methods 
modelled auxiliary information on a cross-section basis, wave by wave, IMAI did 
so only for the first wave (1991): for next waves, information on previous values of 
income (individual and household), actual and imputed, was considered as auxiliary 
information, and added to the set of explicative variables in the models. In any case, 
even if we consider only the first wave, where this advantage for IMAI is not present, 
values of indicators still are in favour of the method, though less markedly. CMM is the 
second best, at least for personal income, while SOM is better for household income.

5.1.6 Evaluation results in Financial Time Series

Two datasets have been considered: one containing information concerning 
shares and bonds (daily prices for 51 time series from 1995 to 1999), and the other 
one related to options (36 time series of daily prices over the same period). These are 
the methods used for imputation:

1.	 Last Value Carried Forward (LVCF);
2.	 Multivariate regression imputation (R1) using stock market indicators and 

exchange rats as covariates;
3.	 Non-parametric multivariate regression imputation using a moving window 

of length 100 (NP100), with the same covariates than R1;
4.	 Multivariate autoregression imputation of lag1 (MARX1), with the same 

covariates than R1;
5.	 Univariate autoregression imputation of lag1-lag5 (ARX5), with the same 

covariates than R1;
6.	 Univariate multi-layer perceptron (MLP) imputation, with the same input 

considered in R1;
7.	 Black-Scholes pricing with cross sectional average imputation of missing 

volatilities (BSBASE);
8.	 Black-Scholes pricing with LVCF imputation of missing volatilities 

(BSLVCF);
9.	 Black-Scholes pricing with EM imputation of missing volatilities (BSEM);
10.	 Black-Scholes pricing with MLP imputation of missing volatilities (BSMLP).
The first six were applied to bonds and shares dataset, while the last four were 

experimented on options dataset.
LVCF is a somehow naïve method consisting in replying for a missing value in 

the series the more recent value observed for the same unit.
Methods (2) and (6) are not peculiar of time series context. Methods (3) to (5), on 

the contrary, are based on time relationships among observations.
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Black-Scholes is a pricing formula, well known and widely used in financial 
institutions. The price of an asset at time t is dependent on a set of entities: all of them 
are usually available, with the exception of the so called volatility. When a price is 
missing in a time series, also volatility is: so, to be able to use the Black- Scholes 
formula, it is necessary first to estimate volatility. This can be done by using a variety 
of imputation methods: cross-sectional averaging, last value carried forward, EM 
algorithm imputation, univariate MLP imputation.

For each dataset, also in this case two versions were considered: one with only 
missing, and one with missing and errors.

As for shares and bonds, considering the dataset with only missing, LVCF is the 
worst method (essentially in terms of predictive accuracy), while NP100 is slightly 
better than the others. But if we consider the dataset version with also errors, we have 
exactly the opposite situation: LVCF becomes the best method (followed by ARX5), 
while NP100 results to be the worst.

Considering the options dataset, BSLVCF and BSMLP are best methods for 
imputing missing data. This is true for both versions of this dataset.

As a general conclusion, it can be said that methods that work on lagged variables 
are better than those exploiting cross-sectional information.

5.2 Best methods

On the basis of previous analyses, we tried to individuate best methods inside 
those selected to be investigated in the EUREDIT project. It is important to underline 
the fact that the concept of best is sometimes very relative, as performance for a 
given method may vary accordingly to the considered (groups of) indicators and 
subsets of variables. Very seldom a method outperforms all others in all possible 
situations.

Among standard methods, we can say that CANCEIS-SCIA revealed the 
best performance for categorical data, both for error localisation and imputation. 
CHERRY PIE was the best for error localisation in continuous data; for imputation, 
multivariate regression plus hot deck method showed the best results, followed by 
IMAI predictive mean matching method.

Among neural network based methods, MLP applications always stand in the 
first positions, both for error localisation and imputation, followed by TS-SOM.

In the class of robust methods, univariate forward search (BACON) for outlier 
detection outstands as the best. In association with imputation methods as reverse 
calibration and nearest neighbour, this method is the best also for imputation of both 
missing data and errors in continuous data. As second best, univariate WAID obtains 
comparable results in this class.
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6.	Conclusions

Experience made in the EUREDIT project led us to say that there is no “best” method, 
in the sense that no method works best in all situations. In addition, for a given situation, 
i.e. for a given typology of survey, the procedure for error localisation and imputation 
can hardly be constructed by utilising a simple method: very often, it will be a complex 
procedure, composed by different steps, possibly involving various methods, accordingly 
to the various nature of errors to be dealt with, and the different non-response mechanism.

Therefore, the value added of the EUREDIT project is not only (and not 
prevailingly) in the final indications concerning best methods to be used for different 
typologies of data (the winners). It is rather in the methodological path that was 
followed in its activities, that can be replied by anyone in order to continuously 
improve editing and imputation procedure. This path can be summarised as follows:

i.	 for any typology of data of interest, individuate candidate methods for error 
localisation and imputation;

ii.	 define a set of indicators useful to evaluate the performance of selected 
methods;

iii.	 adopt a simulation approach, by introducing missing values and errors in 
data in a controlled way so to replicate real situations;

iv.	 develop procedures containing selected methods and apply to data;
v.	 evaluate and compare results in order to choose best methods.
Another lesson learnt is in the fact that the more information related to (i) data 

structure, (ii) error nature and (iii) missing data patterns you can introduce in the 
procedure for error localisation and imputation, the more you can obtain in terms of 
accuracy of the results. This means that a lot of analysis of these three elements is 
needed. This job can be done only by expert statisticians, and cannot be delegated to 
naïve users: it is not just a matter of applying software to data.

Nevertheless, the availability of software is a crucial aspect: some of the 
investigated methods are so complex that a corresponding software is very costly 
to develop. So, a value added is also in the software that will be made available 
to EUREDIT partners and to external users: a software incorporating all robust 
methods and some of the neural network methods; and also a software useful for the 
evaluation process, to simulate missing and errors in data, and to produce evaluation 
indicators. Other software, especially rule-based standard software developed by 
national statistical institutes, is already available on demand.

The activity of the EUREDIT project will be hopefully continued in the VI 
Framework European Research Programme. One of the first objective of future work 
will be the creation of a knowledge base containing all the information related to 
the different methods and tools: methodological and operational aspects, suitable 
typologies of data, performance.
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