LABORATORIO NUMERACY

How Statistics changes In the BIG DATA era?

MAURIZIO VICHI | Sapienza Università di Roma
maurizio.vichi@uniroma1.it
Changes by means of Two R|evolutions
The internet Big Data Revolution

Strong Increase
USERS, WEB CONTENT, E-COMMERCE
COST SAVINGS

Internet of Things
From connecting Computer
To connect things

Statistics should promote a SEMANTIC WEB
that provides standards for sharing data
and reuse data for different applications,
for enterprises, for statistics purposes and
scientific communities
The Computer and Technology Revolutions

The speed of the computer would double every 18 months and the costs would decrease by half every 2 years.

Parallel computing directly included in the new CPUs increases the possibility to parallelize modern computer intensive statistical methodologies that use independence such as resampling.

Quantum computing with molecules that encode bits in multiple states. The QC naturally perform myriad operations in parallel, using only a single processing unit.

Quantum Computers and parallel computing very helpful for computer intensive statistical methods (simulation resampling).
STATISTICS BEFORE AND AFTER REVOLUTIONS

- Small samples vs Large samples or Populations
- Classical statistical Inference vs Computer-intensive statistical inference
- Phenomena Univariate and bivariate vs Multivariate Phenomena in space and time domains
Statistics before computer age

- Economic, social and other real phenomena described by one or few indicators
- Inference mainly on Univariate and Bivariate random variables
- Extensive use of parametric statistics especially under normality hypotheses

- Statistics based only on Mathematics and Probability
Statistics after computer-age

- Statistics based on Mathematics, Probability and Computer Science (Computational Statistics)
- Computer-intensive statistical Inference (Jackknifing, Bootstrapping, Cross-validation, permutation tests)
- Economic, social and other real phenomena described in their full complexity
- BIG DATA: interconnect data
Big Data Complexity. How Big Data are formed? Multivariate phenomena with their space & time domains

Integrated Data Cube (3-Way Array)

Variables (indicators) specifying a Multidimensional Phenomenon e.g., well-being indicators

Spatial Locations e.g. cities, regions, provinces, individual residence

Statistical Model

Variable j

Time T

Source L

Source 2

Source 1

Data Integration

Statistical Model

Text mining

Structured data

Time T

Occasion h

Unit i

Variables (indicators) specifying a Multidimensional Phenomenon e.g., well-being indicators

Spatial Locations e.g. cities, regions, provinces, individual residence
Big Data: information + noise (error)

From data to information

Data Compression (reduce data of a given factor)
- Soft Data Compression (robustification)
- Data Fusion

From information to knowledge

Statistical Modelling on compressed data
- Multivariate regression, VAR, SEM
- PCA, Factor Analysis, MCA, Composite Indicators
- Classification (Discriminant analysis, trees, SVM)
- Multidimensional scaling

- Hard Data Compression (Data mining)
- Taxonomy (science of classification)
- Clustering to identify typologies of objects, variables, occasions

$$X = AUar{Y}(W'C \otimes V'B) + E$$
L’attenzione è la forma più rara e più pura della generosità
Simone Weil
ESAC has suggested a PORTAL for Communication

PORTAL for USERS

(a) Identify the very broad community of users of statistics;
(b) Segment the users’ community into broadly homogeneous groups with similar interests

Tools for decision making

- Metadata;
- Data integrator
- Tools for Scenario Simulation (resampling for different scenarios)
- Tools to choose the best scenario (testing, cross-validation,...)

Groups of users
Homogeneous for interest
CLUSTER ANALYSIS
COMPUTER-AGE STATISTICAL INFERENCE

Resampling: Computing random sampling with replacement

Jackknifing: Estimating the precision of the sample *statistics* by using the observed data

Bootstrapping: Estimating the (empirical) *sample distribution* of the *statistics*.
Robust alternative to inference based on parametric assumptions when these are in doubt;

Utilization: compute standard errors, confidence interval, and also for testing;

Cross-validation: method for validating a predictive model. The goal is to estimate the expected level of fit of a model to a data set that is independent of the data that were used to train the model.
Divide the sample in validation and training sets

- Exhaustive cross-validation
- Leave-p-out cross-validation
- Leave-one-out cross-validation

Non-exhaustive cross-validation

- k-fold cross-validation
- 2-fold cross-validation

Utilization: compare performances of different predictive models
variable selection.

Permutation test (exact test):

MCMC methods