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Joint determination of optimal stratification and sample 
allocation using genetic algorithm 

Marco Ballin and Giulio Barcaroli1 

Abstract 

This paper offers a solution to the problem of finding the optimal stratification of the available population 
frame, so as to ensure the minimization of the cost of the sample required to satisfy precision constraints on a 
set of different target estimates. The solution is searched by exploring the universe of all possible stratifications 
obtainable by cross-classifying the categorical auxiliary variables available in the frame (continuous auxiliary 
variables can be transformed into categorical ones by means of suitable methods). Therefore, the followed 
approach is multivariate with respect to both target and auxiliary variables. The proposed algorithm is based on 
a non deterministic evolutionary approach, making use of the genetic algorithm paradigm. The key feature of 
the algorithm is in considering each possible stratification as an individual subject to evolution, whose fitness is 
given by the cost of the associated sample required to satisfy a set of precision constraints, the cost being 
calculated by applying the Bethel algorithm for multivariate allocation. This optimal stratification algorithm, 
implemented in an R package (SamplingStrata), has been so far applied to a number of current surveys in the 
Italian National Institute of Statistics: the obtained results always show significant improvements in the 
efficiency of the samples obtained, with respect to previously adopted stratifications. 

 
Key Words: Genetic algorithm; Optimal stratification; Sample design; Sample allocation; R package. 

 
 

1  Introduction 
 

The optimality of a sample can be defined in terms of costs (associated to fieldwork, especially in 
terms of the number of units to be interviewed) and accuracy (related to the sampling variance of target 
estimates). Stratified sampling is a widely adopted design that may ensure savings in costs and gains in 
accuracy of estimates, when stratification variables are available in the sampling frame.  

Many studies have been published on the problem of the optimization of stratified sample design. We 
can classify them accordingly to the object of the optimization: 
 

1. the allocation has to be optimized, while stratification is considered as given; 
2. stratification has to be optimized, while the allocation issue is postponed to a later stage; 
3. stratification and allocation are optimized in a single step. 

 

In the first group we can include Cochran (1977), Bethel (1985, 1989), Chromy (1987), Huddleston, 
Claypool and Hocking (1970), Kish (1976), Stokes and Plummer (2004), Day (2006, 2010), Díaz-García 
and Cortez (2008), Kozak, Zieliński and Singh (2008), Khan, Maiti and Ahsan (2010), Kozak and Wang 
(2010). Bethel (1985, 1989) and Chromy (1987) propose similar algorithms for the extension of the 
Neyman allocation to the multivariate case by using Convex Programming methods. Stokes and Plummer 
(2004) show how to make use of the Non Linear Programming tool available in Excel spreadsheets as a 
solver for the same problem. In Day (2006, 2010) the evolutionary algorithm approach is proposed to 
solve the multivariate allocation problem under the same setting indicated by Bethel and Chromy. In 
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Díaz-García and Cortez (2008), the optimum multivariate allocation problem is solved as a problem of 
multi-objective optimization of integers. Kozak et al. (2008) investigate the case of stratified two-stage 
sampling. 

In the second group, we can consider Dalenius and Hodges (1959), Singh (1971), Hidiroglou (1986), 
Lavallée and Hidiroglou (1988), Gunning and Horgan (2004), Khan, Nand and Ahmad (2008). In general, 
the problem dealt with is related to the optimization of the stratification obtainable by one or more 
continuous variables, correlated to one or more target variables.  

A number of papers deal with both problems (stratification and allocation) jointly. Kozak, Verma and 
Zieliński (2007) propose a method to obtain multivariate stratification while minimising the overall 
sample size. The method is defined only on a theoretical base, and the claim is that in the univariate case 
the optimization is not difficult, while in the multivariate case more research is needed. Keskintürk and Er 
(2007) make use of the genetic algorithm to solve jointly the allocation and strata boundaries problems, in 
the case of only one continuous stratification variable, and considering as given both the number of strata 
and the total sample size. The proposal of Benedetti, Espa and Lafratta (2008) is based on the use of a 
tree-based approach: their procedure defines a path from the null stratification towards the so called 
atomic stratification (characterised by the maximum number of strata, obtained by using all auxiliary 
variables, with the most detailed classifications), generally without reaching it, given that a number of 
stopping rules are used. Baillargeon and Rivest (2009, 2011) propose a method that can jointly optimise 
stratum boundaries and sample size, using an iterative algorithm: stratum boundaries (related to only one 
stratification variable) are obtained by minimising the anticipated sample size required for estimating the 
population total of only one survey variable (so this approach is univariate with respect to both 
stratification and target variables). In conclusion, most contributions in this group are dedicated to solving 
the problem of finding best strata boundaries for only one, continuous, auxiliary variable: only Benedetti 
et al. (2008) deal with the multivariate stratification case. 

In case of categorical stratification variables, we could consider the stratification given by their 
Cartesian product; but when the number of produced strata is high, this could determine a huge sample 
size, far beyond the one affordable, or the one necessary to ensure the required precision levels. So, a 
crucial task is to choose the “best” auxiliary variables cross product, i.e., the best partition of the frame, 
that takes the maximum advantage of the auxiliary information, but at the same time does not lead to an 
explosion of the number of the strata.  

This paper proposes a solution to the problem of jointly determining the optimal stratification of a 
sampling frame together with the optimal sample size and allocation, in the full multivariate case (i.e., 
with regard to both stratification and target variables). The only restriction is on the nature of the 
stratification variables that must be categorical (but we give indications on a suitable way to transform 
continuous ones into categorical ones). The proposed solution is based on the use of the genetic algorithm. 
The general procedure has been implemented in an R package, named SamplingStrata, available on 

the CRAN (Barcaroli, Pagliuca and Willighagen 2013a). This package makes use of a modified version of 
some functions of another R package, genalg (Willighagen 2012). 

The paper is structured as follows: Section 2 contains a formalization of the optimization problem. 
Section 3 details how the genetic algorithm is employed in order to optimally solve the problem of finding 
the best stratification that allows the minimal cost of the required sample. To better illustrate this, Section 
4 contains an example based on a well known dataset (the “iris flowers” data). Section 5 reports and 
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analyses the results of the application of the algorithm to a real survey, the Italian Farm Structure Survey, 
and these results are compared to the practical solution adopted by survey statisticians. A further 
application, to the Monthly Survey on milk and milk products, is reported in Section 6. Final conclusions 
are contained in Section 7. 

 
2  Formalization of the optimization problem  
 

Universe of alternative stratifications 

We define as sampling frame F  a set of N  records containing information (organised in variables) 
related to N  individuals of the reference population. Some variables are useful for the identification of 

units, while some other can be used in order to define the sampling strategy. The values of the latter (from 
now on: auxiliary variables) can be observed by means of a census, or from other sources as 
administrative registers. 

We assume that in the frame a set of M  auxiliary variables  1, ,mX m M   are available. This set 

may contain different typologies of variables (nominal, ordinal, or continuous). We assume also that 
continuous auxiliary variables are split into classes by applying suitable transformation algorithms. 

All such variables can potentially be used to stratify the units in the frame. 

Under these assumptions, we can associate to each auxiliary variable a vector  1 , ,
mm kd x x   of 

contiguous integer values, each of them representing an original value in the domain set.  

Then, the most detailed stratification of F  can be considered as the result of the Cartesian product 

1 2 .MCP X X X     

The maximum number of strata will be *

1
,

M

mm
K k I


   where *I  is the number of impossible or 

absent combinations of values in the frame. So, the most detailed stratification of the frame is such that it 
contains K  strata, corresponding to all possible combinations of values in the M  auxiliary variables. We 
call atomic strata the strata belonging to this particular stratification. Each atomic stratum is characterised 
by a unique combination of values of the M  auxiliary variables. We can assign a label  1, ,kl k K   

to each atomic stratum.  

If we consider the labelled set of atomic strata  1 2, , , ,KL l l l   we can define the set of all its 

possible partitions 1 2, , , ,BP P P  where B  can be calculated by using the Bell formula: 

 
1

0
0

1
    1

K

K i
i

K
B B B

i





 
   

 
  

We define the set  1 2, , , BP P P  of partitions of L  as the universe (or space) of stratifications. 

 
Assessment of a given stratification 
 

Given a partition iP  of ,L  characterized by H  strata, let hN  and 2
, , 1, , ,h gS h H  1, ,g G   be 

respectively the number of units and variances in stratum h  of the G  different survey target variables 
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1 , , .GY Y  Assuming a simple random sampling of hn  units without replacement in each stratum, the 

variance of the Horvitz-Thompson estimator of the total of the thg  target variable  ˆ
gT  is  

                                             
2
,2

1

ˆVar 1     1, ,
H

h gh
g h

h h h

Sn
T N g G

N n

 
   

 
   (2.1) 

Consider the following cost function  

                                                          1 0
1

, ,
H

H h h
h

C n n C C n


    (2.2) 

where 0C  indicates a fixed cost (not dependent on the sample size) and hC  represents the average cost of 

observing a unit in stratum .h  

Given  1, , ,gV g G   the upper bounds for the expected sampling variance for 1̂
ˆ, , ,GT T  the 

classical optimal multivariate allocation problem (Bethel 1985) can be defined as the search for the 
solution of the minimum (with respect to hn ) of the linear function C  under the convex constraints 

 ˆVar   1, , :g gT V g G    

                                       

 1 0
1

2
,2

1

min , ,

ˆVar( ) 1       1, ,

H

H h h
h

H
h gh

g h g
h h h

C n n C C n
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T N V g G

N n






 




        








 (2.3) 

Bethel (1989) suggested that the problem can be more easily solved by considering the following 
function of :hn  

                                                                 
1  if 1

otherwise
h h

h

n    n
x

        


 

 (2.4) 

Using hx  the cost function can be written as 

                                                              1 0
1

, ,
H

h
H

h h

C
C x x C

x

    (2.5) 

and the variances as 

                         2 2 2 2 2
, , ,

1 1

1ˆVar 1    1, ,
H H

g h h g h h h g h h h g
h hh h

T N S x N S x N S g G
x N 

 
     

 
    (2.6) 

Consequently, the multivariate allocation problem can be defined as the search for the minimum (with 
respect to hx ) of the convex function (2.5) under a set of linear constraints 

                                                 2 2 2
, ,

1

   1, ,
H

h h g h h h g g
h

N S x N S V g G


     (2.7) 

An algorithm, that is proved to converge to the solution (if it exists), was provided by Bethel by 
applying the Lagrangian multipliers method to this problem (an easier algorithm was previously proposed 
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by Chromy (1987); as Bethel pointed out, the Chromy algorithm works in most of the practical cases but 
there is no proof that it converges if a solution exists). 

The optimization approach here illustrated yields a continuous solution, which must be rounded to 
provide integer stratum sample sizes. The implementation we made of the Bethel algorithm provides the 

hn  values as the values 1 hx  rounded up to the upper integer. 

It should be noted that the same approach can be used to deal with the multidomain problem. Let us 
consider the usual transformation for the domain estimation problem: 

if the unit  belongs to domain  

0 otherwise
id

i

Y   i d
Y

    


 


 

If the quantities previously defined to describe the Bethel approach are computed using the variables 

 1, , ,dY d D   then the multivariate allocation solution is the solution for the multidomain case. 

 
Selection of the best stratification on the basis of a complete enumeration 
 

In order to choose the best stratification of a given frame, i.e., the one that ensures the minimum cost 

 1 , , HC n n  associated to a sample whose total size and allocation are compliant to precision 

constraints, it is possible to proceed as follows: 
 

 generate the most detailed stratification associated with ,F  that is the set L  of atomic strata; 

 enumerate all partitions iP  of ;L  

 for each partition ,iP  solve the corresponding allocation problem, that is equivalent to 

determine the vector  1 , , ,Hn n  and calculate the value  1 , ,i HC n n  associated to ;iP  

 choose the partition iP  for which  1 , ,i HC n n  is minimized. 

 
By so doing, the optimization of the solution is obtained by considering the whole universe of 

stratifications. 

Unfortunately, this procedure is applicable only in situations where the dimension K  of L  is low: in fact, 
the number of partitions (given by the Bell formula) grows very rapidly (for example, 4B  15, 10B 
115,975 and 115

100 4.76 10B   ). Therefore, in most cases, the complete enumeration of the space of the 

solutions is not feasible. The present proposal, based on the genetic algorithm, allows to explore the 
universe of stratifications and to identify the one that is expected not to be far from the optimal. 
 
The genetic algorithm  
 

A genetic algorithm  GA  is a search technique used in computing to find exact or approximate 

solutions to optimization and search problems. Genetic algorithms are a particular class of evolutionary 
algorithms that make use of techniques inspired by evolutionary biology, such as inheritance, mutation, 
selection and crossover (also called recombination) (Vose 1999) (Schmitt 2001 and 2004). 

A GA  is implemented as an iterative computer simulation, in which an initial set of individuals, each 

one being a potential solution to the current problem (represented by a vector called genome), evolves by 
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inheritance, mutation, selection and crossover, increasing the average fitness of next generations. Here, 
the fitness corresponds to the objective function defined in the optimization problem so that the evolution 
results into the maximization (or minimization) of the objective function.  

The set of individuals treated in each iteration of the GA  is called generation. The evolution is the set 

of changes that occurs in producing consecutive generations by iterating the process. 

At each iteration of the ,GA  after having evaluated the fitness of every individual in the generation, a 

set of individuals are stochastically selected (privileging those with higher fitness), and modified 
(recombined and sometimes randomly mutated) to form a new generation. This new generation is then 
evaluated in the next iteration of the algorithm. As individuals with the best fitness are more likely to be 
selected for generating individuals for the next generation, the GA  produces an increase of average fitness 

in the course of the evolution. 

The parameter mutation rate is expressed as the rate of chromosomes (the genome elements) that can 
be mutated for each individual at the moment of the generation of children for the next generation. A high 
value guarantees large differences between successive generations. It should be noted that a high mutation 
rate makes the GA  more likely to avoid stagnating at local optima, at the price of a slower convergence to 

the optimal solution; whilst a low value accelerates the convergence speed, increasing the risk of local 
optima. 

Usually, the algorithm terminates when either a maximum number of iterations has been reached, or 
the current solution is not improved by continuing the iteration. In both cases, the optimal solution may or 
may not have been reached. 

 
3  Application of the genetic algorithm to the optimal stratification 

problem 
 

On the basis of the GA  setting, the stratification allocation problem can be represented as follows: 
 

 a given stratification is considered as an individual; 

 the genome of an individual is a vector whose dimension is given by the number K  of atomic 
strata; 

 each position  1, ,i i K   in the vector is associated to a given atomic stratum, and contains 

an integer value  1i iv v U   with ,U K  where U  is defined as the maximum number 

of strata in the final solution: if some elements of the vector have the same value, it means that 
the corresponding atomic strata collapse into a new stratum identified by this value; 

 in this way, a stratification  P   can be identified by a vector 1 , , ,v Kv   v     where each 

value iv  is positionally associated to the atomic stratum identified by the label il  and can 

assume an integer value internal to an interval 1, .U    The space of all potential stratifications 

(or partitions)  P   (space of solutions) is given by all possible vectors ;v  
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 the fitness function of an individual  P   is the value of the cost function 

    
1 0 1
, , ,P v

P v

H

H h hh
C n n C C n


    where the terms 0C  and hC  are given constants, and 

the 
 1 , ,

P vHn n  are calculated by applying the Bethel algorithm to the stratification, under 

precision constraints set on the target variables.  

 

It is worth while noting that, if we set 0 0,C   and 1hC   for all the atomic strata, then the value of 

the cost function simply coincides with the sample size required to satisfy precision constraints.  

Having defined a suitable representation of the domain of all possible solutions, and the fitness 
function to be calculated for each solution, in the following it is reported how GA  operates. 

 
Step 0: Creation of the initial generation of individuals  
 

The first step consists in forming an initial set of different stratifications (the initial generation of 
individuals): on the basis of the value of the parameter size of the generations, p  different individuals are 

generated. This means that, for the thj  individual, K  integer values (one for each element of the vector 

representing the genome) are randomly generated from a uniform distribution in the interval 1, .U    

Fixing U K  we can set an upper limit to the maximum number of distinct aggregate strata. 

 
Step 1: Evaluation of fitness for each individual in the population 
 

For each individual in the population (that is for each one of p  stratifications), its related fitness is 

evaluated by calculating the total cost required to satisfy precision constraints on the G  different ˆ
gT  

estimates (in order to remove the dependence on the scale (or range) of the values associated with the G  

target variables, instead of considering the constraints expressed in the (2.7) as an upper limit to the 

variance of the target variables, we set constraints on their coefficient of variation ˆ ˆCV var( )G GT T ). 

The evaluation is carried out by applying the Bethel algorithm, that requires as input, for each stratum of 
the current solution: 
 

 means and standard deviations of target variables; 

 cost of interviewing per unit; 

 population (number of units). 
 

Each one of the above items is computed on the basis of corresponding values in the atomic strata.  

Let us consider a particular partition  P   of L  determined by a given solution 1 , , .v Kv   v     Let 

  1, 2, ,i P v
D i Q   be one stratum in this partition. There are two possibilities: 

 

1.  iD  coincides with an atomic stratum ;kl  

2.  , ,i i
i j lD l l   is the result of the aggregation of a subset  , ,i i

j ll l  of the atomic strata. 
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In the first case, means and variances of target variables in the stratum are known. In the second case, 
means and variances in iD  may be calculated by using the following formulas:  

                                                                   
,

,

k k

k i

i

k

k i

g l l
l D

g D
l

l D

Y N

Y
N









 (3.1) 

                             212 2
, , , ,1 1

i k k k k k i

k i k i k i

g D l l g l l g l g D
l D l D l D

S N N S N Y Y


  

        
  

    (3.2) 

where: 

, ig DY  and , kg lY  are the mean values in aggregated stratum iD  and atomic strata ;kl  

kl
N  is the number of units in atomic stratum ;kl  

2
, ig DS  and 2

, kg lS  are the variances in aggregated stratum iD  and atomic strata .kl  

The expected cost of observing a unit in a given aggregate stratum is calculated by averaging the costs 
in each contributing atomic stratum, weighted by their population: 

                                                                     
k k

k i

i

k

k i

l l
l D

D
l

l D

C N

C
N









 (3.3) 

Finally, we can compute the population in any aggregate stratum as the sum of the units in the 
contributing atomic strata: 

                                                                        
i k

k i

D l
l D

N N


   (3.4) 

So, in correspondence of each potential solution, we are able to calculate dynamically all the 
information required to apply the optimal allocation algorithm, that produces the total cost 

  
 

1 0
1

, ,
P

H
P

H

h h
h

C n n C C n


  



 

that is the fitness of the individual. 
 
Step 2: Breeding a new generation  
 

Once the fitness of each individual is evaluated, a proportion of them are selected to breed a new 
generation. Individuals are selected through this fitness-based process, where fitter individuals are more 
likely to be selected, while only a small proportion of less fit individuals are selected. The presence of this 
second component helps to keep the diversity of the generation large enough, preventing premature 
convergence on poor solutions. There is also the option of indicating the number of the best individuals 
(expressed as a percentage of the p  size of the generation) that in any case must be present also in the 

next generation (parameter elitism). 

The next generation will thus be composed by a number of individuals from the previous generation 
(the best ones), plus a number of “children”, obtained by selecting and crossing “parents” from the current 
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generation. In the GA  approach, the genome of a “child” individual is formed using the crossover and 

mutation operators: 
 

 crossover: many crossover techniques exist for ,GA  which use different data structures and 

different criteria of chromosomes selection, but the general approach is to exchange a subset of 
chromosomes between two parents. In our implementation, once two parents have been selected 
with probability proportional to their fitness, a crossover-point is generated, still on a random 
basis. This crossover-point is an integer belonging to the interval 1, ,K    Let c  be this 

generated crossover-point: then, the child individual will be formed by inheriting the first c  
chromosomes from the first parent, and the remaining  K c  chromosomes from the second 

parent; 

 mutation: given the probability that an arbitrary value in a genetic sequence will be changed 
from its original state (mutation chance), GA  proceeds to draw, for each chromosome in the 

genome, a random value to decide if the value will be changed or not.  
 

By applying the above methods of crossover and mutation, a new individual is created which typically 
shares many of the characteristics of its “parents”. New parents are selected to produce new children, and 
the process continues until a new generation of individuals (stratifications) of appropriate size is 
generated. 
 
Step 3: Iteration and stopping criteria 
 

Usually, the average fitness is increased moving from one generation to the next. Steps 1 and 2 are 
repeated until a termination condition has been reached. Common terminating conditions are: 
 

1. the maximum number of iterations has been reached; 
2. a “plateau” has been reached, such that successive iterations no longer produce better results; 
3. a combination of the above. 

 

In our case, the terminating condition can be considered as a combination of the above. Actually, the 
used rule is the maximum number of iterations, but this number is determined by analysing previous runs, 
in order to detect the “plateau” and be sure that additional iterations are not likely to improve the final 
solution. 
 
Critical parameters of the optimal stratification algorithm 
 

Here a distinction is made between the parameters that are common to genetic algorithm, and the ones 
that are peculiar to the particular problem to which it is applied, i.e., the optimal stratification of a 
population frame (the names of the parameters are those used in the R package SamplingStrata). 

Among the first we list: 
 

 size of generation of individuals (pop); 

 number of iterations (iterations); 

 mutation chance (mut_chance); 

 elitism (elitism_rate). 
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Instead, the context parameters are: 
 

 minimum number of units per stratum (minnumstrat) (the Bethel algorithm is forced to allocate 
in each stratum at least the number of units indicated by this parameter); 

 initial number of strata (initialStrata); 

 possibility to increase the maximum number of strata (addStrataFactor). 
 

As for the first group, there are no strict rules to assign values to these parameters. Given a particular 
problem, it is suggested to carry out a number of trials in order to assess the sensitivity of the solutions to 
the values of the parameters.  

It is important to take into account that parameters as size of generation and elitism are in general 
influent on the rapidity of convergence, and not so much on the final solution, given that a “reasonable” 
number of iterations is given.  

The reasonability of the parameter number of iterations can be assessed by analysing the behaviour of 
the fitness function: if the values of this function are no longer decreasing after a certain number of 
iterations, it is reasonable to expect that to increase the number of iterations will not produce better results. 

On the contrary, the value of mutation chance has effects on both rapidity of convergence and the 
goodness of the final solution: a high mutation chance allows to avoid local minima, at the cost of a 
slower convergence. 

Conversely, parameters of the second group should be given on the basis of practical considerations, 
related to the characteristics and requirements of the survey that is under design.  

As for the parameter minimum number of units per stratum, if an adequate number of observations in 
all strata is to be ensured (in order to take into account the expected non response, the need of calculating 
sampling variance, fieldwork reasons, etc.), a value can be set higher than the default one (which is set to 
2).  

The parameter initial number of strata is very important. First of all, its value, if associated with a 
value of the parameter addStrataFactor equal to zero, determines the maximum acceptable number of 
strata in the final solution. This possibility may be useful not only for fieldwork reasons (if, for example, 
for organizational considerations the number of strata is to be limited), but especially because the final 
solution is very sensitive to the value of this parameter. We have experimented that if the algorithm with 
different values of initialStrata is run, from low values up to the maximum given by the number of atomic 
strata, solutions can be very different. It is possible to let the algorithm to choose for us, in this way: we 
set initialStrata by assigning a low value to it, together with a high value of parameter addStrataFactor 
(the parameter addStrataFactor is used to increase dynamically the value set by parameter initialStrata: 
each time a mutation takes place, a random number between 0 and 1 is generated, and if it is greater than 
the quantity (1-addStrataFactor), the maximum number of strata is increased of one unit) (by default, it is 
equal to 0). Manoeuvring these two parameters, there are different possibilities:  
 

1. for any given value of initialStrata, if addStrataFactor is set equal to 0, then the algorithm has to 
consider that value as a fixed limit, and all solutions to be explored will be characterised by that 
maximum number of strata; 
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2. otherwise, if addStrataFactor is set to a value greater then 0, then the algorithm may explore 
solutions varying the number of strata, from an initial value given by initialStrata, up to a 
maximum number given by the number of atomic strata. 

 
4  An example based on the Iris flowers dataset 
 

To show how to apply the algorithm for finding the optimal stratification, the well known Iris flowers 
dataset can be considered. This dataset consists of a total of 150 observations, equally distributed by the 
three species of Iris flowers (setosa, virginica and versicolor). Four features are measured for each 
observation (i.e., the length and the width of sepal and petal, in centimetres). 

We will consider this dataset as a possible sampling frame from which to draw a sample, under a 
stratified design, in order to estimate two target variables: 
 

 1Y : Petal.Length; 

 2Y : Petal.Width. 
 

For sake of simplicity, we suppose there are only two auxiliary variables available in the frame: 
 

 1X : Sepal.Length; 

 2X : Species. 
 

While the second auxiliary variable is categorical, the first one is continuous, and needs to be 
transformed into a categorical ordered variable. To this aim, we make use of the k- means univariate 

clustering method (Hartigan and Wong 1979), obtaining the following ranges: [4.3; 5.5], (5.5; 6.5], 
(6.5; 7.9]. 

The Cartesian product of the two auxiliary variables should produce 3 3 9   different strata. 

Actually, one of these contains no units, the one related to Species   “setosa” and Sepal.Length  
(6.5; 7.9]. So the one reported in table 4.1 will be considered as the initial atomic stratification. 

 

 

Table 4.1 
Information concerning atomic strata 
 

stratum 1X  Sepal.Length 2X  Species N  1Y  Petal.Length 2Y  Petal.Width 
cost

Mean Standard deviation Mean Standard deviation

1 [4.3; 5.5] (1) Setosa (1) 45 1,47 0,17 0,24 0,11 1 

2 [4.3; 5.5] (1) Versicora (2) 6 3,58 0,49 1,17 0,21 1 

3 [4.3; 5.5] (1) Virginica (3) 1 4,50 0,00 1,70 0,00 1 

4 [5.5; 6.5] (2) Setosa (1) 5 1,42 0,17 0,26 0,08 1 

5 [5.5; 6.5] (2) Versicora (2) 35 4,27 0,37 1,32 0,19 1 

6 [5.5; 6.5] (2) Virginica (3) 23 5,23 0,32 1,95 0,29 1 

7 [6.5; 7.9] (3) Versicora (2) 9 4,68 0,19 1,46 0,11 1 

8 [6.5; 7.9] (3) Virginica (3) 26 5,88 0,49 2,11 0,23 1 
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For sake of simplicity, we assume that the fixed cost 0C  is null, and all hC  are set equal to 1: by so 

doing, the cost of a solution coincides with the sum of sampling units allocated in the strata, i.e., with the 

total sample size  1
.

H

hh
C n n


    

We set as precision constraints to the estimates of both target variables an upper limit of 0.05 (5%) to 
their expected coefficient of variation. 

Finally, we set a minimum number of units to be selected in each stratum equal to 2 (the minimum 
required in order to calculate sampling variance).  

Under these assumptions, and using the atomic stratification, the Bethel algorithm solves the optimal 
allocation problem by defining a minimum sample size of 17 units, with an allocation vector 

 2, 2,1, 2, 3, 3, 2, 2 .a   

If we proceed to partition the set of atomic strata, the resulting number of all possible stratifications 
(given by the Bell formula) is 8B  4,140. This number is such that we can afford to enumerate all 

partitions of atomic strata, and for each of them we are able to calculate the minimum sample size by 
applying the Bethel algorithm (to enumerate all the partitions in this example, we made use of the function 
setparts(), contained in the R package partitions (Hankin 2011)). 

The range of sample sizes steps from a minimum of 11 to a maximum of 78 (this latter corresponds to 
the “no stratification solution”) (see figure 4.1). 

We notice that the minimum value  11n   that has been found is considerably lower than the one 

calculated in correspondence with the atomic stratification  17 .n   This minimum value characterizes 

only 8 partitions out of 4,140. 

Now, the genetic algorithm is applied in order to evaluate its capability to find the optimal solution (or 
at least one that is not far from it), without being obliged to explore all solutions, but only a strict subset of 
them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Space of partitions 

 

   Space of partitions                                      Histogram of partitions 

     0    1,000           3,000                                     10         30        50         70 
                   Partitions                                                  Sample size required 

S
am

pl
e 

si
ze

 r
eq

ui
re

d 
10

   
  2

0 
   

  3
0 

   
 4

0 
   

 5
0 

   
  6

0 
   

 7
0 

   
 8

0 
 

F
re

qu
en

cy
 o

f 
pa

rt
it

io
ns

 
  1

0 
   

   
10

0 
   

   
20

0 
   

   
30

0 
   

  4
00

   
   

50
0 



Survey Methodology, December 2013 381 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Step 0: Creation of the initial generation 
 

First, we set 8U   (we can accept a number of final strata that is equal to the number of atomic strata, 
so U K ). The generation size parameter pop is set equal to 10. So, an initial set containing 10 different 

individuals (stratifications) is generated. Each of them is represented by a vector of 8 elements, i.e., the 
number of different atomic strata. An individual  1, 2, 3, 4, 5, 6, 7, 8v   or, equivalently, 

 3, 6, 4, 2,1, 8, 7, 5v   corresponds to the most detailed stratification (as all strata are labelled with 

different labels), while  1,1,1,1,1,1,1,1v   or equivalently  4, 4, 4, 4, 4, 4, 4, 4v   corresponds to 

“null stratification” (as atomic strata are labelled with identical labels). 
 
Step 1: Evaluation of fitness for each individual in the generation 
 

To each one of the 10 individuals in the current generation, the Bethel algorithm is applied in order to 
find the cost of the sample required to comply with fixed precision constraints.  

To do this, first of all related strata and information are calculated for each individual. For example, for 
a generated individual  4,1,1, 4, 8, 7, 8,1v   the information is derived by the one available from atomic 

strata, by applying (3.1) and (3.2) (see table 4.2). 

 

 

 

Table 4.2 
Information concerning generated aggregated strata 
 

Aggregated  
stratum 

Original atomic  
strata 

 1 2,X X  N
1Y   2Y  

Mean 
Standard  
deviation Mean 

Standard  
deviation 

1 2,3,8 (1,2) or (1,3) or (3,3) 33 5.41 1.01 1.92 0.44 

2 1,4 (1,1) or (2,1) 50 1.46 0.17 0.25 0.10 

3 6 (2,3) 23 5.23 0.31 1.95 0.28 

4 5,7 (2,2) or (3,2) 44 4.35 0.37 1.35 0.18 

 

 

 

The fitness of this individual is measured by the corresponding required sample size, that results to be 
14, with an allocation vector  6, 2, 3, 3 .a   

All individuals are sorted accordingly with their performance: the individual in the first position is the 
one supporting the minimum sample size, the 10th individual is the one requiring the maximum sample 
size. 
 
Step 2: Breeding a new generation 
 

By setting the elitism parameter to 20% (a common default value) we always take the best 2 
individuals in the current generation and directly move them to the next generation, without any change of 
their genome. 
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Then, we proceed in generating new individuals in the following way: 
 

1. we select couples of individuals of the current generation with probability proportional to their 
fitness: for instance, assume to select  v 1,1, 3, 4, 3, 2, 2, 2k   and  v 2, 2, 2, 2, 2,1,1,1 ;j   

2. a crossover point is randomly generated, i.e., an integer internal to the interval 1, 8 :    suppose to 

set it equal to 3; 
3. the crossover is performed by assigning to the child the first three elements of parent v k and the 

last five elements of parent v ,j  obtaining in this way  newv 1,1, 3, 2, 2,1,1,1 ;  

4. having set a mutation rate parameter equal to 0.05, for each element of the child a random number 
is generated in the interval 0,1 :    if it is less than 0.05, the value of the element is changed (by 

generating a new value comprised between 1 and 9), otherwise it is not changed. 
 
Step 3: Iteration and stopping criteria 
 

The number of iterations has been set equal to 25. So, steps 1 and 2 are repeated 25 times. The 
individual with the best fitness alongside all the generations is retained as the best solution. 

The graph in figure 4.2, obtained during the execution of the program, shows the convergence of the 
algorithm. In the graph, two different curves are reported: the lower one is related to the best solution 
found until the thk  iteration (as the best solution is memorised, it can only decrease as the algorithm 

proceeds); the upper one reports the mean of the 10 solutions evaluated in each iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 4.2  Best and mean evaluation values during GA execution 

 

 

The resulting best solution is  4,1, 3, 4,1, 3, 3, 2 .v   It corresponds to the stratification reported in 

table 4.3, with an allocation vector  3, 2, 4, 2 .a   
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Table 4.3 
Information concerning final strata 
 

Aggregated  
stratum 

Original  
atomic strata 

 1 2,X X  N
1Y  2Y  

Mean Standard  
deviation 

Mean Standard  
deviation 

1 2,5 (1,2) or (2,2)  41 4.16 0.45 1.30 0.19 

2 8 (3,3) 26 5.88 0.49 2.10 0.22 

3 3,6,7 (1,3) or (2,3) or (3,2) 33 5.06 0.38 1.80 0.33 

4 1,4 (1,1) or (2,1) 50 1.46 0.17 0.25 0.10 

 

 

In conclusion, by applying the genetic algorithm, we succeeded in finding the optimal solution by 
exploring only 25 10 250   alternative stratifications instead of the 4,140 belonging to the universe of 

partitions.  

In order to verify that this result is not due to a “lucky strike”, we perform different executions of the 
algorithm: each execution iterates 10 times the application of the genetic algorithm, varying the values of 
the parameter “number of iterations”. Results are reported in table 4.4. 

 

 

Table 4.4 
Capability of GA to find the optimal solution 
 

Execution  
of the GA  

(10 times each) 

Value of parameter 
“number of 

iterations” in the GA 

Solutions with  
n = 11 

(optimal) 

Solutions  
with  

n = 12 

Solutions  
with  

n = 14 

(a) 25 5 4 1 

(b) 50 7 3 - 

(c) 100 9 1 - 

(d) 200 10 - - 

 

 

In execution (a), we discover that, with only 25 iterations, to succeed in finding the optimal solution is 
actually a “lucky strike”, as in half of the trials the found solution is higher than the optimal. But 
increasing the number of the iterations up to 200 (execution (d)), the genetic algorithm proves to be 
reliable with respect to its capability to reach optimality, as in all the trials the optimal solution is found. 

As for the number of the strata corresponding to the found optimal solutions, on average it is 4, with a 
range of 3, 5 .    

Finally, we also want to verify that the found solutions are compliant with the precision constraints 
(maximum CV equal to 5% for both target variables). So, in execution (d) (iterations 200 ), for each 

one of the 10 produced solutions we proceed to draw 1,000 samples from the frame and to calculate the 
related CV’s. Corresponding results are shown in figure 4.3: the average of CV’s for the first target 
variable (Petal.Lenght) is around 3%, while for the second one is around 5%. So, we can say that, on 
average, precision constraints have not been violated. 
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Figure 4.3  Distributions of CV’s for target variables in the simulation 

 

 

A more complete example involving the use of all the functions in the package SamplingStrata is 

reported in Barcaroli (2013b). 

 
5  An application: the Italian Farm Structure Survey (FSS) 
 

The sampling frame used for the selection of 2003 Italian Farm Structure Survey (FSS) sample 
contains 2,153,710 farms. For the purposes of FSS sample design, the auxiliary variables considered are 
the following: 
 

1. regions (21 different values);  
2. provinces (103 different values); 
3. legal status (2 classes); 
4. sector of economic activity (9 classes); 
5. economic size unit (3 classes); 
6. agricultural area utilized (3 classes); 
7. livestock unit (3 classes); 
8. altimetry of the headquarter of the holding (5 classes). 
 

Fourteen different target variables have been considered as the main target of FSS, on which the 
required precision levels (in terms of maximum coefficient of variations) have been fixed at regional level 
(domains of interest). The list of variables and related precision constraints are reported in table 5.1. 
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Both the 8 auxiliary and the 14 target variables have been observed during the previous 2000 
Agricultural Census, so their values are available for each unit in the frame. This gives the possibility to 
calculate means and standard deviations related to whichever defined stratum.  

Firstly, the current “manual” procedure followed in 2003 to choose the most suitable stratification for 
sample selection is described. 
 
2003 manual configuration of strata to select the FSS sample 
 

In the first step, a take-all stratum was defined in each region on the basis of local characteristics. The 
thresholds for defining the take-all strata were determined using the Hidiroglou method (1986). 

In the second step, a choice between a stratification based on provinces or on the region as a whole, 
was chosen region by region, on the basis of local organizational considerations. 

In the third step, the other six variables were alternatively used in each region or provinces (depending 
on the result obtained in the second step) as stratification variables. For each of such alternative 
stratifications, the optimal sample size was computed (the minimum sample size in each stratum had been 
fixed to 50) (in the cost function, fixed cost has been set to zero, and variable costs were set equal to 1 in 
each atomic stratum: so the cost function coincides with the total sample size). The stratification 
supporting the overall minimum sample size in each region (usually defined on different variables) was 
considered as the output of this step. 

In the fourth step, the remaining five variables were used separately to refine the stratification 
previously obtained. For each of these refined stratifications the optimal sample size was computed 
considering the same constraints used in the third step. 

This stepwise procedure was repeated on a regional basis, by refining the best stratification obtained in 
each step, using the remaining available variables until the obtained stratification revealed to be less 
efficient than the stratification in the previous step.  

By so doing, the total amount of planned sample size was fixed to 42,465 units (actually, the sample 
size used for 2003 FSS was increased to 52,713 in order to obtain better estimates at national level. Here 
we consider the number of 42,465 to correctly compare the results obtained with the genetic algorithm). 
 
Use of the genetic algorithm to identify optimal strata and best allocation 
 

The most detailed available stratification of the frame, obtained as a Cartesian product of all the 
auxiliary variables, consists of 24,454 different strata, 1,787 of which have been defined as take-all strata. 
So, the atomic strata are given by the 22,667 sampling strata obtained by subtracting the 1,787 take-all 
strata. The latter are collapsed in only one stratum, whose 6,971 units will always be selected for whatever 
sample. 

Actually, one of the auxiliary variables, region, is considered as the domain variable. So, our task 
consists in optimising the frame stratification and the sample allocation distinctly for each one of the 
different 21 Italian regions. For instance, the first region (Piemonte) is characterised by 105,074 units in 
1,646 sampling strata, and 597 units in 129 take-all strata. 

Precision constraints (once again expressed in terms of upper limits on coefficients of variation) have 
been set, for each one of the 14 different target variables, at the same values chosen on the occasion of 
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manual configuration of strata carried out for the 2003 survey: they are 5%, 6% or 10% for the most 
important variables in each region. Table 5.1 reports the complete set of the coefficient of variations used 
in planning the 2003 FSS. 

Table 5.2 reports the results of the two solutions in terms of required sample size: the one planned in 
2003 by the expert sample designer of the FSS (column 6), and the one obtained by applying the genetic 
algorithm (column 7). 

As the determination of the best stratification has been carried out separately for each region, 21 
independent results can certify the great convenience of the algorithm in most domains. A dramatic 
decrease of the required overall sample size can be observed, as shown by a 38.17 % saving on the 
previous total. This result is differentiated region by region, with a maximum decrease for Sardegna 
(-57.85%) and a minimum for Sicilia (-20.61%). Also in terms of strata, from the initial number of atomic 
strata (22,667), a huge reduction occurs to the final stratification, characterised by only 213 different strata 
(ranging from a minimum of 6 strata in region Friuli, up to 22 strata in Sicilia). 
 
 
Table 5.1 
Maximum expected coefficients of variation (%) used in the 2003 FSS 
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Piemonte 5.0 10.0   5.0    5.0   5.0 6.0 6.0 

Val d’Aosta         5.0   5.0 6.0 6.0 

Lombardia 5.0 10.0       5.0 5.0  5.0 6.0 6.0 

Bolzano        5.0    5.0 6.0 6.0 

Trento        5.0    5.0 6.0 6.0 

Veneto 5.0 10.0   5.0     5.0  5.0 6.0 6.0 

Friuli V.G. 5.0 10.0          5.0 6.0 6.0 

Liguria    5.0        5.0 6.0 6.0 

Emilia R. 5.0 10.0   5.0   5.0 5.0 5.0  5.0 6.0 6.0 

Toscana 5.0 10.0   5.0       5.0 6.0 6.0 

Umbria      5.0      5.0 6.0 6.0 

Marche            5.0 6.0 6.0 

Lazio 5.0  5.0  5.0 5.0      5.0 6.0 6.0 

Abruzzi      5.0      5.0 6.0 6.0 

Molise      5.0      5.0 6.0 6.0 

Campania 5.0 10.0 5.0   5.0  5.0    5.0 6.0 6.0 

Puglia 5.0  5.0  5.0 5.0      5.0 6.0 6.0 

Basilicata 5.0           5.0 6.0 6.0 

Calabria 5.0     5.0 5.0     5.0 6.0 6.0 

Sicilia 5.0  5.0  5.0 5.0 5.0    5.0 5.0 6.0 6.0 

Sardegna 5.0          5.0 5.0 6.0 6.0 
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As for the setting of the parameters used to obtain the above result, the most important revealed to be 
the following: 
 

1. number of iterations (or generations); 
2. generation size (number of individuals, or solutions, evaluated at each iteration); 
3. mutation chance; 
4. initial number of strata; 
5. factor for increasing the initial number of strata. 

 
 
Table 5.2 
2003 FSS sample size determination: Comparison of results 
 

(1)  
Domain 
(region) 

(2) 
Total 

number of 
units in 

the frame 

(3) 
Number  

of atomic 
sampling 
strata in 

the frame 

(4)
Number 

of units in 
the 

sampling 
strata

(5)
Number 

of units in 
take-all 

strata

(6)
Sample 
size by 

2003 
stratification

(7) 
Sample 
size by 

Genetic 
Algorithm 

solution  

(8) 
Number  

of strata in 
GA 

solution 

(9)
% relative 
difference 

(7) vs (6)

Piemonte 105,671 1,646 105,074 597 2,687 1,497 9 -44.29

Valle d’Aosta 6,125 65 6,074 51 408 317 7 -22.30

Lombardia 71,257 1,902 69,495 1,762 3,428 2,151 7 -37.25

Bolzano 23,362 127 23,202 160 692 430 7 -37.86

Trento 30,021 124 29,908 113 676 523 7 -22.63

Veneto 176,999 1,450 176,064 935 3,531 1,868 11 -47.10

Friuli  32,981 638 32,805 176 807 498 6 -38.29

Liguria 29,992 584 29,967 25 766 485 7 -36.68

Emilia R. 103,702 2,157 102,922 780 2,584 2,022 11 -21.75

Toscana 107,288 1,959 106,964 324 2,099 1,337 16 -36.30

Umbria 46,074 435 45,897 177 1,354 751 7 -44.53

Marche 60,439 1,005 60,271 168 918 488 8 -46.84

Lazio 162,109 1,304 161,801 308 3,233 2,216 14 -31.46

Abruzzi 67,117 888 66,941 176 1,035 743 10 -28.21

Molise 28,890 375 28,834 56 1,190 630 6 -47.06

Campania 212,145 1,271 211,833 312 2,559 1,883 13 -26.42

Puglia 288,087 1,026 287,877 210 4,712 2,009 14 -57.36

Basilicata 68,470 504 68,355 115 703 493 7 -29.87

Calabria 145,812 1,624 145,654 158 2,798 1,792 17 -35.95

Sicilia 295,637 2,345 295,472 165 3,955 3,140 22 -20.61

Sardegna 91,532 1,238 91,329 203 2,330 982 7 -57.85

Italia 2,153,710 22,667 2,146,739 6,971 42,465 26,255 213 -38.17
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Their final values have been determined, after numerous trials, on the basis of the analysis of the runs 
for each region.  

In particular, by inspecting the convergence plot, it is possible to understand if the number of iterations 
is sufficient to ensure that the final solution is definitely the best obtainable, or if otherwise a higher 
number of iterations is needed. This can be done by analysing the behaviour of the two curves in the plot: 
the lower one reports the best evaluation value, while the upper one refers to the mean evaluation value. 
When the mean evaluation value is still decreasing, together with the best evaluation value, it is 
worthwhile to go on iterating. When the best value line becomes stably constant (and typically the mean 
value line begins to fluctuate up and down), no further gain can be expected by new iterations. This is the 
case, for instance, of the convergence plot for Trento region, shown in figure 5.1.  

A convenient value for iterations parameter was found to be 5,000. As for the mutation chance, a 
suitable value was found to be 0.001: this means that, for any chromosome in the genome (any value in 
vector v ), a mutation occurred on average only once out of a thousand. A critical point is in fixing the 

initial number of strata. Since the final solution is very sensitive on the number of strata, we decided to let 
the algorithm to choose it. This can be done, as already said in section 4, by assigning a low value to 
initialStrata, and by giving a value greater than zero to addStrataFactor: this enables the algorithm to 
explore solutions characterized by a wide range of number of strata. In our experiment, we set the initial 
number of strata to the value 5, while assigning a value 0.01 to the factor for increasing the initial number 
of strata (this means that, any time a mutation occurs, there is a probability of 1% to increase by 1 the 
current number of strata). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1  Best and mean evaluation value for the Trento region  

 

 

From a computational point of view, the overall task required an elapsed time of 641,820 seconds 
(more than 178 hours, nearly one week) (the job was run on a desktop AMD Athlon 64 2  (2.90 Ghz, 

3 GB RAM)). 
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6  A further application: the Monthly survey on milk and milk products 
 

A further application of our algorithm concerned the 2010 Monthly survey on milk and milk products. 
This is a sample survey that depends strictly on the “Annual survey on milk and milk products”, which is 
a census of all Italian farms producing milk and milk products. Both surveys collect the same information: 
the amount of milk collected at the national level and its use (in processing dairy products: milk, cheese, 
butter, etc.); the purpose of the monthly sample survey is to obtain timely information before the results of 
the annual survey (carried out in the year before) become available. The sample for 2010 has been planned 
in this way: 
 

1. the information collected on the 2,250 respondent units in the 2008 round of the Annual survey 
were organised as a frame: in particular, four of the target variables of the Annual survey, which 
are continuous, were transformed into categorical variables (ordered factors) by using the k- means 

clustering method, and considered as auxiliary information in the frame;  
2. the cross-product of the obtained categorical variables, produced a stratification of the frame 

consisting in 152 (atomic) strata; 
3. the information related to means and standard deviations of the four target variables of the monthly 

survey were calculated for each one of the atomic strata by using Annual survey data. 
 

Constraints on the coefficients of variation of the estimates of the totals are reported in table 6.1. 

 

 

Table 6.1 
Coefficients of variation (%) used in planning the 2010 Monthly Survey on Milk 
 

Variable Maximum acceptable CV on total estimates (%)

Collected milk 1
Milk 15
Butter 3.8
Cow’s milk cheeses 3
 

 

 

After this, the Bethel algorithm was applied in order to verify the sample size required with the initial 
(atomic) stratification available for the frame (also in this application, the function cost coincides with the 
total sample size, as the fixed cost was set to zero, and variable costs were set equal to 1 in each atomic 
stratum): it resulted in 290 units to be interviewed, allocated in the 152 different strata. The usual 
procedure terminates here: at this point, the 290 units would be selected from the frame represented by the 
Annual Survey, and the Monthly Survey would start.  

Instead, the application of the genetic algorithm suggested a collapsing of the 152 initial atomic strata 
into 88 aggregate strata, requiring a sample size of only 247 to satisfy the same constraints, with a 
consequent decrease of about 15%. 
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After a considerable amount of attempts, the following values were given to the most important 
parameters: 
 

1. generation size was set equal to 50; 
2. the number of iterations was set equal to 4,000; 
3. a minimum of 2 units per stratum was required; 
4. the initial number of strata (coinciding with the maximum number of them, as parameter 

addStrataFactor was set to 0) was set equal to the number of atomic strata (152); 
5. the mutation chance was set to 0.0005. 

 

The combination of parameter “generation size” and “number of iterations” determined the evaluation 
of 200,000  50 4,000  solutions. The convergence plot reported in figure 6.1 shows that after 

2,700/2,800 there has been no further improvement of the identified best solution. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.1  Best and mean evaluation value in the optimization of Monthly Survey on Milk 

 
7  Conclusions and future work 
 

For any given multipurpose and multidomain sample survey, the optimal stratification of the sampling 
frame can be determined together with the optimal sample size and allocation of units among strata, by 
means of a combined use of the Bethel algorithm (or, more generally, of a NLP solver) for the 
determination of the minimum sample size required to satisfy precision constraints, and of the genetic 
algorithm for the exploration of the universe of potential stratifications, rigorously generated accordingly 
to the theory of partitions. The information required is nearly the same as the one required by the 
allocation problem: desired precision on estimates of total (or means) of target variables, and information 
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regarding the distributions of each target variable in population strata. Initial stratification should be 
considered at the most detailed level (atomic stratification), i.e. the one determined by the Cartesian 
product of values of all available stratification variables. 

The complete exploration of the set of all possible stratifications is in practical cases computationally 
prohibitive. The use of the genetic algorithm permits to explore the space of solutions in a very efficient 
manner. By carefully tuning the execution parameters, it is possible to determine the optimal solution, or 
at least a solution likely to be not far from the optimal one. 

The application of this algorithm to two different surveys (the 2003 Italian Farm Structure Survey and 
the 2010 Monthly milk and milk products) shows that the obtained solutions are much better, in terms of 
sample efficiency, than the ones manually produced by expert methodologists (in Istat, the algorithm has 
been applied to three more surveys: “Economic outcomes of agricultural holdings”, “Structure and 
production of main wooden cultivations”, “Survey on forecasting of some herbal crops sowing”). 

In all the cases reported, it has been possible to calculate the values required as input to our algorithm 
(in particular: means and standard deviations of the target variables in the different atomic strata), because 
of the availability of related values for each unit in the frames. In more realistic situations, this kind of 
information is not directly available. Instead, we could use estimates produced by alternative sources: 
administrative data, other surveys, or previous rounds of the same survey, or even hypothesis (usually 
conservative) on the variability of target variables within the strata. Accordingly to Rivest (2002) it is also 
possible to model target variables assuming auxiliary variables ’X s as explanatory variables, in order to 
estimate means and standard deviations on the basis of predicted values of ’Y s. Of course, the less 
“direct” is the information on the target variables, the less robust is the proposed method, because of the 
uncertainty caused by the use of proxy information, or model-based predictions. 

Another limit affecting this approach still lies in the handling of continuous auxiliary variables. In our 
approach, we simply suggest to transform them into categorical ones, in order to be considered in the 
determination of the universe of all possible stratifications of the sampling frame. A first element for 
future work is in giving indications on how to transform these variables in order to get the best from them. 
A second one is in the fact that some of the strata contained in the optimal solution may be characterized 
by non contiguous values of the transformed continuous variables, or of the categorical ordinal variables, 
which is something odd that should not be allowed: this could be prevented by imposing constraints on the 
generation of candidate solutions. 
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