
Optimization of sampling strata with the
SamplingStrata package
Giulio Barcaroli

2018-10-07

Introduction
Let us suppose we need to design a sample survey, having a complete frame containing information on
the target population (identifiers plus auxiliary information). If our sample design is a stratified one, we
need to choose how to form strata in the population, in order to get the maximum advantage by the
available auxiliary information. In other words, we have to decide in which way to combine the values of
the auxiliary variables (from now on, the ‘X’ variables) in order to determine a new variable, called
‘stratum’. To do so, we have to take into consideration the target variables of our sample survey (from
now on, the ‘Y’ variables): if, to form strata, we choose the X variables most correlated to the Y’s, the
efficiency of the samples drawn by the resulting stratified frame may be greatly increased. In order to
handle the whole auxiliary information in a homogenous way, we have to reduce continuous data to
categorical (by mean of a k-means clustering technique, for example). Then, for every set of candidate
auxiliary variables X’s, we have to decide (i) what variables to consider as active variables in strata
determination, and (ii) for each active variable, what set of values (in general, what aggregation of atomic
values) have to be considered. Every combination of values of each active variable determine a
particular stratification of the target population, i.e. a possible solution to the problem of ‘best’
stratification. Here, by best stratification, we mean the stratification that ensures the minimum sample
cost, sufficient to satisfy a set of precision constraints, set on the accuracy of the estimates of the survey
target variables Y’s (constraints expressed as maximum allowable sampling variance on estimates in
different domains of interest). When the cost of data collection is uniform over the strata, then the total
cost is directly proportional to the overall sample size, and the convenience of a particular stratification
can be measured by the associated size of the sample, whose estimates are expected to satisfy given
accuracy levels. This minimum size can be determined by applying the Bethel algorithm, with its Chromy
variant. In general, the number of possible alternative stratifications for a given population may be very
high, depending on the number of variables and on the number of their values, and in these cases it is
not possible to enumerate them in order to assess the best one. A very convenient solution to this, is the
adoption of the evolutionary approach, consisting in applying a genetic algorithm that may converge
towards a near-optimal solution after a finite number of iterations. The methodology is fully described in
M. Ballin and Barcaroli (2013), and a complete illustration of the package, together with a comparison
with the stratification package, is in Barcaroli (2014). Also a complete application in a case of network
data is reported in Marco Ballin and Barcaroli (2016). The implementation of the genetic algorithm is
based on a modification of the functions in the genalg package (see Willighagen 2005). In particular, the
crossover operator ha been modified on the basis of the indications given by O’Luing, Prestwich, and
Tarim (2017).

Procedural steps
The optimization of the sampling design starts by making the sampling frame available, defining the
target estimates of the survey and establishing the precision constraints on them. It is then possible to
determine the best stratification and the optimal allocation. Finally, we proceed with the selection of the
sample. Formalizing, these are the required steps:

analysis of the frame data: identification of available auxiliary information;
manipulation of auxiliary information: in case auxiliary variables are of the continuous type, they
must be transformed into a categorical form;

construction of atomic strata: on the basis of the categorical auxiliary variables available in the
sampling frame, a set of strata can be constructed by calculating the Cartesian product of the
values of all the auxiliary variables;
characterization of each atomic stratum with the information related to the target variables: in order
to optimise both strata and allocation of sampling units in strata, we need information on the
distributions of the target variables (means and standard deviations) inside the different strata;
choice of the precision constraints for each target estimate, possibly differentiated by domain;
optimization of stratification and determination of required sample size and allocation in order to
satisfy precision constraints on target estimates;
analysis of the resulting optimized strata;
association of new labels to sampling frame units, each of them indicating the new strata resulting
by the optimal aggregation of the atomic strata;
selection of units from the sampling frame with a selection scheme;
evaluation of the found optimal solution in terms of expected precision and bias.

In the following, we will illustrate each step starting from a real sampling frame, the one that comes with
the R package sampling (the dataframe swissmunicipalities).

Analysis of the frame data and manipulation of auxiliary information

As a first step, we have to define a frame dataframe containing the following information:

a unique identifier of the unit (no restriction on the name, may be ‘cod’);
the values of m auxiliary variables (named from X1 to Xm);
the (optional) values of p target variables (named from Y1 to Yp);
the value of the domain of interest for which we want to produce estimates (named ‘domainvalue’).

By typing the following statements in the R environment:

library(SamplingStrata)
#> Loading required package: memoise
#> Loading required package: doParallel
#> Loading required package: foreach
#> Loading required package: iterators
#> Loading required package: parallel
#> Loading required package: pbapply
require(memoise)
data(swissmunicipalities)

we get the swissmunicipalities dataframe, that contains 2896 observations (each observation refers to a
Swiss municipality). Among the others, there are the following variables (data are referred to 2003):

REG: Swiss region
Nom: municipality name
Surfacesbois: wood area
Surfacescult: area under cultivation
Alp: mountain pasture area
Airbat: area with buildings
Airind: industrial area
Pop020: number of men and women aged between 0 and 19
Pop2040: number of men and women aged between 20 and 39
Pop4065: number of men and women aged between 40 and 64
Pop65P: number of men and women aged between 65 and over
POPTOT: total population

Let us suppose we want to plan a survey whose target estimates are the totals of population by age class
in each Swiss region. In this case, our Y variables will be:

Y1: number of men and women aged between 0 and 19
Y2: number of men and women aged between 20 and 39
Y3: number of men and women aged between 40 and 64
Y4: number of men and women aged between 65 and over

As for the auxiliary variables (X’s), we can use all of those characterising the area use (wood, mountain
or pasture, cultivated, industrial, with buildings).

Finally, we want to produce estimates not only for the whole country, but also for each one of the seven
different regions.

Function buildFrameDF permits to organize data in a suitable mode for next processing:

swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissframe <- buildFrameDF(df = swissmunicipalities,
 id = "id",
 X = c("POPTOT",
 "Surfacesbois",
 "Surfacescult",
 "Alp",
 "Airbat",
 "Airind"),
 Y = c("Pop020",
 "Pop2040",
 "Pop4065",
 "Pop65P"),
 domainvalue = "REG")
str(swissframe)
#> 'data.frame': 2896 obs. of 12 variables:
#> $ id : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ X1 : int 363273 177964 166558 128634 124914 90483 72626 59496 48655 40377
...
#> $ X2 : int 2326 67 97 1726 1635 2807 1139 408 976 425 ...
#> $ X3 : int 967 31 93 1041 714 1827 1222 183 196 694 ...
#> $ X4 : int 0 0 0 0 0 0 0 0 18 0 ...
#> $ X5 : int 2884 773 1023 1070 856 972 812 524 463 523 ...
#> $ X6 : int 260 60 213 212 64 238 134 27 108 137 ...
#> $ Y1 : int 57324 32429 28161 19399 24291 18942 14337 9533 9127 8128 ...
#> $ Y2 : int 131422 60074 50349 44263 44202 28958 24309 18843 14825 11265 ...
#> $ Y3 : int 108178 57063 53734 39397 35421 27696 21334 18177 15140 13301 ...
#> $ Y4 : int 66349 28398 34314 25575 21000 14887 12646 12943 9563 7683 ...
#> $ domainvalue: int 4 1 3 2 1 4 5 6 2 2 ...

As the X variables are of the continuous type, first we have to reduce them in a categorical (ordinal) form.

A suitable way to do so, is to apply a k-means clustering method (see Hartigan and Wong 1979) by using
the function var.bin:

library(SamplingStrata)
swissframe$X1 <- var.bin(swissmunicipalities$POPTOT, bins=18)
swissframe$X2 <- var.bin(swissmunicipalities$Surfacesbois, bins=3)
swissframe$X3 <- var.bin(swissmunicipalities$Surfacescult, bins=3)
swissframe$X4 <- var.bin(swissmunicipalities$Alp, bins=3)
swissframe$X5 <- var.bin(swissmunicipalities$Airbat, bins=3)
swissframe$X6 <- var.bin(swissmunicipalities$Airind, bins=3)

Now, we have six different auxiliary variables of the categorical type, the first with 18 different modalities,
the others with 3 modalities.

In any case, this dataframe comes with the package SamplingStrata: it can be made available by
executing:

library(SamplingStrata)
data(swissframe)
head(swissframe)
#> progr REG X1 X2 X3 X4 X5 X6 id Y1 Y2 Y3 Y4
#> 1 1 4 18 3 2 1 3 3 Zurich 57324 131422 108178 66349
#> 2 2 1 17 1 1 1 3 2 Geneve 32429 60074 57063 28398
#> 3 3 3 17 1 1 1 3 3 Basel 28161 50349 53734 34314
#> 4 4 2 17 2 3 1 3 3 Bern 19399 44263 39397 25575
#> 5 5 1 17 2 2 1 3 2 Lausanne 24291 44202 35421 21000
#> 6 6 4 16 3 3 1 3 3 Winterthur 18942 28958 27696 14887
#> domainvalue
#> 1 4
#> 2 1
#> 3 3
#> 4 2
#> 5 1
#> 6 4

We could also not indicate substantive X variables, if we want that each unit in the sampling frame be
considered as an atomic stratum, and let to the optimization step to aggregate them on the basis of the
values of the Y variable. In any case, as we have to indicate at least one X variable, we can use to this
purpose the unique identifier in the frame:

swissmunicipalities$id <- c(1:nrow(swissframe))
newframe <- buildFrameDF(df = swissmunicipalities,
 id = "id",
 X = "id",
 Y = c("Pop020",
 "Pop2040",
 "Pop4065",
 "Pop65P"),
 domainvalue = "REG")
str(newframe)
#> 'data.frame': 2896 obs. of 7 variables:
#> $ id : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ X1 : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ Y1 : int 57324 32429 28161 19399 24291 18942 14337 9533 9127 8128 ...
#> $ Y2 : int 131422 60074 50349 44263 44202 28958 24309 18843 14825 11265 ...
#> $ Y3 : int 108178 57063 53734 39397 35421 27696 21334 18177 15140 13301 ...
#> $ Y4 : int 66349 28398 34314 25575 21000 14887 12646 12943 9563 7683 ...
#> $ domainvalue: int 4 1 3 2 1 4 5 6 2 2 ...

Construction of atomic strata and association of the information
related to target variables

The strata dataframe reports information regarding each atomic stratum in the population. There is one
row for each stratum. The total number of strata is given by the number of different combinations of X’s
values in the frame. For each stratum, the following information is required:

the identifier of the stratum (named ‘stratum’ or ‘strato’), concatenation of the values of the X
variables;

the values of the m auxiliary variables (named from X1 to Xm) corresponding to those in the frame;
the total number of units in the population (named ‘N’);
a flag (named ‘cens’) indicating if the stratum is to be censused (=1) or sampled (=0);
a variable indicating the cost of interviewing per unit in the stratum (named ‘cost’);
for each target variable y, its mean and standard deviation, named respectively ‘Mi’ and ‘Si’);
the value of the domain of interest to which the stratum belongs (‘DOM1’).

For example:

data(strata)
head(strata)
#> stratum N X1 X2 X3 M1 M2 S1 S2 cens cost
#> 1 1 2246 x11 x21 x31 148.1598 443.0137 95.41435 202.4569 0 1
#> 2 2 2972 x11 x21 x32 184.2041 513.8995 81.26956 214.9999 0 1
#> 3 3 1905 x11 x22 x31 193.8927 488.8046 79.66667 261.1876 0 1
#> 4 4 3125 x11 x22 x32 181.3437 597.1925 82.77032 226.5086 0 1
#> 5 5 1733 x12 x21 x31 109.9850 418.2234 88.20289 179.1571 0 1
#> 6 6 1060 x12 x21 x32 114.7943 489.8292 52.71574 166.0292 0 1
#> DOM1
#> 1 tot
#> 2 tot
#> 3 tot
#> 4 tot
#> 5 tot
#> 6 tot

If in the frame dataframe are also present the values of the target Y variables (from a census, or from
administrative data), it is possible to automatically generate the strata dataframe by invoking the
buildStrataDF function. Let us consider again the swissframe dataset that we have built in previous
steps. To this dataset we can apply the function buildStrataDF:

 swissstrata <- buildStrataDF(swissframe, progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 641
#> ... of which with only one unit: 389

This is the structure of the created dataframe:

head(swissstrata)
#> STRATO N M1 M2 M3 M4 S1 S2
#> 1 1*1*1*1*1*1 184 48.31522 49.40217 61.44022 28.40761 26.81536 28.49831
#> 2 1*1*1*1*1*2 1 98.00000 106.00000 116.00000 43.00000 0.00000 0.00000
#> 3 1*1*1*2*1*1 2 57.00000 64.00000 70.00000 50.00000 4.00000 0.00000
#> 4 1*1*2*1*1*1 11 77.72727 81.18182 92.36364 47.00000 15.24998 18.69768
#> 5 1*2*1*1*1*1 9 58.22222 61.55556 66.77778 36.22222 25.46360 20.27100
#> 6 1*2*1*2*1*1 8 61.00000 68.00000 84.62500 58.37500 24.56624 19.48076
#> S3 S4 COST CENS DOM1 X1 X2 X3 X4 X5 X6
#> 1 32.63062 14.63922 1 0 1 1 1 1 1 1 1
#> 2 0.00000 0.00000 1 0 1 1 1 1 1 1 2
#> 3 1.00000 15.00000 1 0 1 1 1 1 2 1 1
#> 4 17.03084 11.12736 1 0 1 1 1 2 1 1 1
#> 5 24.89881 15.49751 1 0 1 1 2 1 1 1 1
#> 6 26.35307 26.55625 1 0 1 1 2 1 2 1 1

It is worth while noting that the total number of different atomic strata is 641, lower than the dimension of
the Cartesian product of the X’s (which is 4374): this is due to the fact that not all combinations of the
value of the auxiliary variables are present in the sampling frame. Variables ‘cost’ and ‘cens’ are
initialised respectively to 1 and 0 for all strata. It is possible to give them different values:

for variable ‘cost’, it is possible to differentiate the cost of interviewing per unit by assigning real
values;
for variable ‘cens’, it is possible to set it equal to 1 for all strata that are of the ‘take-all’ type (i.e. all
units in that strata must be selected).

The swissstrata dataframe comes together with SamplingStrata package, it can be made available by
typing:

data(swissstrata)

On the contrary, if there is no information in the frame regarding the target variables, it is necessary to
build the strata dataframe starting from other sources, for instance a previous round of the same survey,
or from other surveys. In this case, we need to read sample data by executing:

samp <- read.delim("samplePrev.txt")

The only difference is that computed mean and variances of the Y’s are sampling estimates, whose
reliability should be evaluated by carefully considering their sampling variances. In addition to the naming
constraints previously introduced, this case requires that a variable named ‘WEIGHT’ is present in the
samp dataframe. Then we can execute this function in this way:

strata <- buildStrataDF(samp)

The result is much the same than in the previous case: the function creates a new dataframe, strata, and
writes out in the working directory the strata file, named ‘strata.txt’.

Choice of the precision constraints for each target estimate

The errors dataframe contains the accuracy constraints that are set on target estimates. This means to
define a maximum coefficient of variation for each variable and for each domain value. Each row of this
frame is related to accuracy constraints in a particular subdomain of interest, identified by the
domainvalue value. In the case of the Swiss municipalities, we have chosen to define the following
constraints:

data(swisserrors)
swisserrors
#> DOM CV1 CV2 CV3 CV4 domainvalue
#> 1 DOM1 0.08 0.12 0.08 0.12 1
#> 2 DOM1 0.08 0.12 0.08 0.12 2
#> 3 DOM1 0.08 0.12 0.08 0.12 3
#> 4 DOM1 0.08 0.12 0.08 0.12 4
#> 5 DOM1 0.08 0.12 0.08 0.12 5
#> 6 DOM1 0.08 0.12 0.08 0.12 6
#> 7 DOM1 0.08 0.12 0.08 0.12 7

This example reports accuracy constraints on variables Y1, Y2, Y3 and Y4 that are the same for all the 7
different subdomains (Swiss regions) of domain level DOM1. Of course we can differentiate the precision
constraints region by region. It is important to underline that the values of ‘domainvalue’ are the same
than those in the frame dataframe, and correspond to the values of variable ‘DOM1’ in the strata

dataframe. Once having defined dataframes containing frame data, strata information and precision
constraints, it is worth while to check their internal and reciprocal coherence. It is possible to do that by
using the function checkInput:

checkInput(errors = checkInput(errors = swisserrors,
 strata = swissstrata,
 sampframe = swissframe))
#>
#> Input data have been checked and are compliant with requirements
#>
#> No input data indicated

For instance, this function controls that the number of auxiliary variables is the same in the frame and in
the strata dataframes; that the number of target variables indicated in the frame dataframe is the same
than the number of means and standard deviations in the strata dataframe, and the same than the
number of coefficient of variations indicated in the errors dataframe.

If we try to determine the total size of the sample required to satisfy these precision constraints,
considering the current stratification of the frame (the 641 atomic strata), we can do it by simply using the
function bethel. This function requires a slightly different specification of the constraints dataframe:

cv <- swisserrors[1,]
cv
#> DOM CV1 CV2 CV3 CV4 domainvalue
#> 1 DOM1 0.08 0.12 0.08 0.12 1

because the bethel function does not permit to differentiate precision constraints by subdomain. In any
case, the result of the application of the Bethel algorithm [see bethel:1989] is:

allocation <- bethel(swissstrata,cv)
sum(allocation)
#> [1] 893

That is, the required amount of units to be selected, with no optimization of sampling strata. In general,
after the optimization, this number is sensibly reduced.

Optimization of frame stratification

Once the strata and the constraints dataframes have been prepared, it is possible to apply the function
that optimises the stratification of the frame, that is optimizeStrata. This function operates on all
subdomains, identifying the best solution for each one of them. The fundamental parameters to be
passed to optimizeStrata are:

errors: the (mandatory) dataframe containing the precision levels expressed in terms of maximum
allowable coefficients of variation that regard the estimates on target variables of the survey;
strata: the (mandatory) dataframe containing the information related to ‘atomic’ strata, i.e. the
strata obtained by the Cartesian product of all auxiliary variables X’s. Information concerns the
identifiability of strata (values of X’s) and variability of Y’s (for each Y, mean and standard deviation
in strata);
cens: the (optional) dataframe containing the ‘take-all’ strata, those strata whose units must be
selected in whatever sample. It has same structure than *strata} dataframe;
strcens: flag (TRUE/FALSE) to indicate if ‘take-all’ strata do exist or not. Default is FALSE;
initialStrata: the initial limit on the number of strata for each solution. Default is NA, and in this case
it is set equal to the number of atomic strata in each domain. If the parameter addStrataFactor is

equal to zero, then initialStrata is equivalent to the maximum number of strata to be obtained in the
final solution;
addStrataFactor: indicates the probability that at each mutation the number of strata may increase
with respect to the current value. Default is 0.0;
minnumstr: indicates the minimum number of units that must be allocated in each stratum. Default
is 2;
iter: indicates the maximum number of iterations (= generations) of the genetic algorithm. Default is
50
pops: dimension of each generations in terms of number 0f individuals to be generated. Default is
20;
mut_chance (mutation chance): for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter allow a deeper
exploration of the solution space, but a slower convergence, while low values permit a faster
convergence, but the final solution can be distant from the optimal one. Default is NA, in
correspondence of which it is computed as 1/(vars+1) where vars is the length of elements in the
solution;
elitism_rate: indicates the rate of better solutions that must be preserved from one generation to
another. Default is 0.2;
suggestions: indicates one possible solution (from kmeans clustering or from previous runs) that
will be introduced in the initial population. Default is NULL;
realAllocation : if FALSE, the allocation is based on INTEGER values; if TRUE, the allocation is
based on REAL values. Default is TRUE;
writeFiles : indicates if the various dataframes and plots produced during the execution have to be
written in the working directory /output. Default is FALSE;
showPlot : indicates if the plot showing the trend in the value of the objective function has to be
shown or not. In parallel = TRUE, this defaults to FALSE, otherwise default is TRUE.
parallel : Should the analysis be run in parallel. Default is TRUE
cores : if the analysis is run in parallel, how many cores should be used. If not specified n-1 of total
available cores are used OR if number of domains < (n-1) cores, then number of cores equal to
number of domains are used

In the case of the Swiss municipalities, we can use almost all of default values for parameters with the
exception of the errors and strata dataframes, and for the option ‘writeFiles’:

solution1 <- optimizeStrata(
 errors = swisserrors,
 strata = swissstrata,
 parallel = TRUE,
 writeFiles = FALSE,
 showPlot = FALSE)

sum(solution1$aggr_strata$SOLUZ)
#> [1] 192.9996

Note that by so doing the initialStrata parameter is set equal to the number of atomic strata in each
domain . Another possibility is to set a pre-determined value for each domain, for instance equal in each
domain, as c(5,5,5,5,5,5,5,5).

The execution of optimizeStrata produces the solution of 7 different optimization problems, one for each
domain.

The graphs (we report here the one related to domain 3) illustrate the convergence of the solution to the
final one starting from the initial one (i.e. the one related to the atomic strata). Along the x-axis are
reported the executed iterations, from 1 to the maximum, while on the y-axis are reported the size of the
sample required to satisfy precision constraints. The upper (red) line represent the average sample size
for each iteration, while the lower (black) line represents the best solution found until the i-th iteration.

The results of the execution are contained in the list ‘solution’, composed by two elements:

1. solution1$indices: the vector of the indices that indicates to what aggregated stratum each atomic
stratum belongs;

2. solution1$aggr_strata: the dataframe containing information on the optimal aggregated strata.

Initial solution with kmeans clustering of
atomic strata
In order to speed up the convergence towards the optimal solution, an initial one can be given as a
“suggestion” to ‘optimizeStrata’ function. The function KmeansSolution produces this initial solution by
clustering atomic strata considering the values of the means of all the target variables Y.

Also, the optimal number of clusters is determined inside each domain. If the default value for nstrata is
used, then the number of aggregate strata is optimized by varying the number of cluster from 2 to
number of atomic strata in each domain, divided by 2. Otherwise, it is possible to indicate a fixed number
of aggregate strata to be obtained.

Other parameters are:

minnumstrat: the minimum number of units to be allocated in each stratum(default is 2);
maxcluster: the maximum number of clusters to be considered in the execution of kmeans
algorithm;
showPlot: if TRUE, allows to visualise the optimization.

For any given number of clusters, the correspondent aggregation of atomic strata is considered as input
to the function ‘bethel’. The number of clusters for which the value of the sample size necessary to fulfil

precision constraints is the minimum one, is retained as the optimal one.

The overall solution is obtained by concatenating optimal clusters obtained in domains. The result is a
dataframe with two columns: the first indicates the clusters, the second the domains:

solutionKmeans1 <- KmeansSolution(swissstrata,
 swisserrors,
 nstrata=NA,
 minnumstrat=2,
 maxclusters=NA,
 showPlot=FALSE)
#>
#> -----------------
#> Kmeans solution
#> -----------------
#> *** Domain: 1 ***
#> Number of strata: 8
#> Sample size : 18
#> *** Domain: 2 ***
#> Number of strata: 9
#> Sample size : 17
#> *** Domain: 3 ***
#> Number of strata: 7
#> Sample size : 13
#> *** Domain: 4 ***
#> Number of strata: 6
#> Sample size : 10
#> *** Domain: 5 ***
#> Number of strata: 8
#> Sample size : 15
#> *** Domain: 6 ***
#> Number of strata: 8
#> Sample size : 15
#> *** Domain: 7 ***
#> Number of strata: 9
#> Sample size : 17
head(solutionKmeans1)
#> suggestions domainvalue
#> 1 2 1
#> 2 2 1
#> 3 2 1
#> 4 2 1
#> 5 2 1
#> 6 2 1

This solution can be given as argument to the parameter suggestion in the optimizeStrata function:

solution_with_kmeans <- optimizeStrata(
 errors = swisserrors,
 strata = swissstrata,
 suggestions = solutionKmeans1,
 parallel = TRUE,
 writeFiles = FALSE,
 showPlot = FALSE)

sum(ceiling(solution_with_kmeans$aggr_strata$SOLUZ))
#> [1] 97

thus obtaining a much more conventient solution than the one without the kmeans suggestion, with the
same number of iterations.

Adjustment of the final sampling size
After the optimization step, the final sample size is the result of the allocation of units in final strata. This
allocation is such that the precision constraints are expected to be satisfied. Actually, three possible
situations may occur:

the resulting sample size is acceptable;
the resulting sample size is to high, it is not affordable with respect to the available budget;
the resulting sample size is too low, the available budget permits to increase the number of units.

In the first case, no action is required. In the second case, it is necessary to reduce the number of units,
by equally applying the same reduction rate in each stratum. In the third case, we could either to set
more tight precision constraints, or proceed to increase the sample size by applying the same increase
rate in each stratum. This increase/reduction process is iterative, as by applying the same rate we could
find that in some strata there are not enough units to increase or to reduce. The function adjustSize
permits to obtain the desired final sample size. Let us suppose that the obtained sample size is not
affordable. We can reduce it by executing the following code:

adjustedStrata <- adjustSize(size=150,strata=solution1$aggr_strata,cens=NULL)
#>
#> 162
#> 162
#> Final adjusted size: 162
sum(adjustedStrata$SOLUZ)
#> [1] 162

Instead, if we want to increase the size because the budget allows to do this, then this is the code:

adjustedStrata <- adjustSize(size=250,strata=solution1$aggr_strata,cens=NULL)
#>
#> 257
#> 257
#> Final adjusted size: 257
sum(adjustedStrata$SOLUZ)
#> [1] 257

The difference between the desired sample size and the actual adjusted size depends on the number of
strata in the optimized solution. Consider that the adjustment is performed in each stratum by taking into
account the relative difference between the current sample size and the desired one: this produces an
allocation that is expressed by a real number, that must be rounded. The higher the number of strata, the
higher the impact of the rounding in all strata on the final adjusted sample size.

Analysis of results
This function has two purposes:

1. instrumental to the processing of the sampling frame (attribution of the labels of the optimized
strata to the population units);

2. analysis of the aggregation of the atomic strata obtained in the optimized solution.

The function updateStrata assigns the labels of the new strata to the initial one in the dataframe strata,
and produces:

a new dataframe named newstrata containing all the information in the strata dataframe, plus the
labels of the new optimized strata;
a table, contained in the dataset strata_aggregation.txt, showing in which way each optimized
stratum aggregates the auxiliary variables X’s.

The function is invoked in this way:

newstrata <- updateStrata(swissstrata,
 solution1,
 writeFiles = TRUE)

Now, the atomic strata are associated to the aggregate strata defined in the optimal solution, by means of
the variable LABEL. If we want to analyse in detail the new structure of the stratification, we can look at
the strata_aggregation.txt file:

strata_aggregation <- read.delim("strata_aggregation.txt")
head(strata_aggregation)
#> DOM1 AGGR_STRATUM X1 X2 X3 X4 X5 X6
#> 1 1 1 1 1 1 1 1 1
#> 2 1 1 3 2 2 2 1 1
#> 3 1 2 1 1 1 1 1 2
#> 4 1 2 1 2 1 2 1 1
#> 5 1 2 2 1 1 1 1 1
#> 6 1 2 2 1 1 2 1 1

In this structure, for each aggregate stratum the values of the X’s variables in each contributing atomic
stratum are reported. It is then possible to understand the meaning of each aggregate stratum produced
by the optimization.

Updating the frame and selecting the
sample
Once the optimal stratification has been obtained, to be operational we need to accomplish the following
two steps:

to update the frame units with new stratum labels (combination of the new values of the auxiliary
variables X’s);
to select the sample from the frame.

As for the first, we execute the following command:

framenew <- updateFrame(swissframe, newstrata, writeFiles=FALSE)

The function updateFrame receives as arguments the indication of the dataframe in which the frame
information is memorised, and of the dataframe produced by the execution of the updateStrata function.
The execution of this function produces a dataframe framenew, and also a file (named framenew.txt) with
the labels of the new strata produced by the optimisation step. The allocation of units is contained in the
SOLUZ column of the dataset outstrata.txt. At this point it is possible to select the sample from the new
version of the frame:

sample <- selectSample(framenew, solution1$aggr_strata, writeFiles=FALSE)
#>
#> *** Sample has been drawn successfully ***
#> 191 units have been selected from 71 strata
#>
#> ==> There have been 10 take-all strata
#> from which have been selected 20 units

that produces two .csv files:

sample.csv containing the units of the frame that have been selected, together with the weight that
has been calculated for each one of them;
sample.chk.csv containing information on the selection: for each stratum, the number of units in
the population, the planned sample, the number of selected units, the sum of their weights that
must equalise the number of units in the population.

The selectSample operates by drawing a simple random sampling in each stratum.

A variant of this function is selectSampleSystematic. The only difference is in the method used for
selecting units in each strata, that is by executing the following steps:

1. a selection interval is determined by considering the inverse of the sampling rate in the stratum;
2. a starting point is determined by selecting a value in this interval;
3. the selection proceeds by selecting as first unit the one corresponding to the above value, and

then selecting all the units individuated by adding the selection interval.

This selection method can be useful if associated to a particular ordering of the selection frame, where
the ordering variable(s) can be considered as additional stratum variable(s). For instance, we could
decide that it could be important to consider the overall population in municipalities when selecting units.
Here is the code:

adding POPTOT to framenew
data("swissmunicipalities")
framenew <- merge(framenew,swissmunicipalities[,c("REG","Nom","POPTOT")],
 by.x=c("REG","ID"),by.y=c("REG","Nom"))
selection of sample with systematic method
sample <- selectSampleSystematic(frame=framenew,
 outstrata=solution1$aggr_strata,
 sortvariable = c("POPTOT"))
#>
#> *** Sample has been drawn successfully ***
#> 191 units have been selected from 71 strata
#>
#> ==> There have been 10 take-all strata
#> from which have been selected 20 units
head(sample,3)
#> DOMAINVALUE STRATO REG ID STRATUM PROGR X1 X2 X3
#> 1 1 1 1 Chesalles-sur-Moudon 1*1*1*1*1*1 2593 1 1 1
#> 2 1 1 1 Villars-Tiercelin 1*1*1*1*1*1 2176 1 1 1
#> 3 1 10 1 Concise 2*2*1*1*1*1 1630 2 2 1
#> X4 X5 X6 Y1 Y2 Y3 Y4 LABEL POPTOT WEIGHTS FPC
#> 1 1 1 1 54 40 45 20 1 159 92.50000 0.01081081
#> 2 1 1 1 76 92 136 39 1 343 92.50000 0.01081081
#> 3 1 1 1 155 195 231 103 10 684 25.33333 0.03947368

Evaluation of the found solution

In order to be confident about the quality of the found solution, the function evalSolution allows to run a
simulation, based on the selection of a desired number of samples from the frame to which the
stratification, identified as the best, has been applied. The user can invoke this function also indicating
the number of samples to be drawn:

eval <- evalSolution(framenew,
 solution1$aggr_strata,
 nsampl=100,
 writeFiles=FALSE,
 progress=FALSE)

For each drawn sample, the estimates related to the Y’s are calculated. Their mean and standard
deviation are also computed, in order to produce the CV related to each variable in every domain. These
CV’s can be inspected and compared to the constraints:

eval$coeff_var
#> CV1 CV2 CV3 CV4 dom
#> 1 0.07419901 0.07521375 0.07226064 0.08668406 DOM1
#> 2 0.07900759 0.07977563 0.08246782 0.08605109 DOM2
#> 3 0.06870326 0.06975793 0.07778861 0.08843159 DOM3
#> 4 0.07843063 0.07366349 0.07433401 0.07095334 DOM4
#> 5 0.09630069 0.09452957 0.09051767 0.08707496 DOM5
#> 6 0.07873707 0.07964042 0.08364721 0.07916796 DOM6
#> 7 0.07502415 0.07132590 0.07182810 0.07672917 DOM7
swisserrors
#> DOM CV1 CV2 CV3 CV4 domainvalue
#> 1 DOM1 0.08 0.12 0.08 0.12 1
#> 2 DOM1 0.08 0.12 0.08 0.12 2
#> 3 DOM1 0.08 0.12 0.08 0.12 3
#> 4 DOM1 0.08 0.12 0.08 0.12 4
#> 5 DOM1 0.08 0.12 0.08 0.12 5
#> 6 DOM1 0.08 0.12 0.08 0.12 6
#> 7 DOM1 0.08 0.12 0.08 0.12 7

Handling ‘take-all’ strata in the
optimization step

As input to the optimization step, together with proper sampling strata, it is also possible to provide take-
all strata. These strata will not be subject to optimisation as the proper strata, but they will contribute to
the determination of the best stratification, as their presence in a given domain will permit to satisfy
precision constraint with a lower number of units belonging to proper sampling strata.

In order to correctly execute the optimization and further steps, it is necessary to perform a pre-
processing of the overall input. The first step to be executed consists in the bi-partition of units to be
censused and of units to be sampled, in order to build two different frames:

data(swisserrors)
data(swissstrata)
data(swissframe)
#----Selection of units to be censused from the frame
framecens <- swissframe[(swissframe$domainvalue == 1 |
 swissframe$domainvalue == 4) &
 (swissframe$X2 == 1 &
 swissframe$X3 == 1 &
 swissframe$X4 == 1 &
 swissframe$X5 == 1 &
 swissframe$X6 == 1) ,]
#----Selection of units to be sampled from the frame
(complement to the previous)
framesamp <- swissframe[!((swissframe$domainvalue == 1 |
 swissframe$domainvalue == 4) &
 (swissframe$X2 == 1 &
 swissframe$X3 == 1 &
 swissframe$X4 == 1 &
 swissframe$X5 == 1 &
 swissframe$X6 == 1)) ,]

In this way, we have included all units belonging to ‘take-all’ strata in ‘framecens’, and the remaining in
‘framesamp’. At the end of the process, the sample will be selected from ‘framesamp’, while the units in
‘framecens’ will be simply added to the sample.

We can obtain census strata and sampling strata by applying buildStrataDF respectively to to framecens
and framesamp:

Build strata to be censused and sampled
cens <- buildStrataDF(framecens,progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 18
#> ... of which with only one unit: 2
sum(cens$N)
#> [1] 405
strata <- buildStrataDF(framesamp,progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 623
#> ... of which with only one unit: 387
sum(strata$N)
#> [1] 2491

and

sum(cens$N)
#> [1] 405
sum(strata$N)
#> [1] 2491

Now we have all required inputs to run ‘optimizeStrata’ in presence of the ‘take-all’ strata:

solution2 <- optimizeStrata(
 errors = swisserrors,
 strata = strata,
 cens = cens,
 strcens = TRUE,
 parallel = TRUE,
 writeFiles = TRUE,
 showPlot = FALSE
)

Once the optimized solution has been produced, the next steps are executed by considering only the
sampling part of the frame:

newstrata <- updateStrata(strata, solution2)
updating sampling frame with new strata labels
framenew <- updateFrame(frame=framesamp,newstrata=newstrata)
selection of sample from sampling strata
sample <- selectSample(frame=framenew,outstrata=solution2$aggr_strata)
#>
#> *** Sample has been drawn successfully ***
#> 209 units have been selected from 75 strata
#>
#> ==> There have been 9 take-all strata
#> from which have been selected 16 units

Finally, the units in the ‘take-all’ strata can be added to sampled ones. First, the census frame needs to
be made homogeneous to the sample frame in order to permit the ‘rbind’ step:

addition of necessary variables to
colnames(framesamp) <- toupper(colnames(framesamp))
colnames(framecens) <- toupper(colnames(framecens))
framecens$WEIGHTS <- rep(1,nrow(framecens))
framecens$FPC <- rep(1,nrow(framecens))
framecens$LABEL <- rep("999999",nrow(framecens))
framecens$STRATUM <- rep("999999",nrow(framecens))
framecens$STRATO <- rep("999999",nrow(framecens))

The overall set of units to be surveyed is obtainable in this way:

survey <- rbind(sample,framecens)

and this is the proportion of sampling and censused units:

survey$cens <- ifelse(survey$LABEL == "999999",1,0)
table(survey$cens)
#>

#> 0 1
#> 209 405

Handling Anticipated Variance
In the previous sections it has been assumed that, when optimizing the stratification of a sampling frame,
values of the target variables Y’s are available for the generality of the units in the frame, or at least for a
sample of them by means of which it is possible to estimate means and standard deviation of Y’s in
atomic strata. Of course, this assumption is seldom expected to hold. The situation in which some proxy
variables are available in the frame is much more likely to happen. In these situations, instead of directly
indicating the real target variables, proxy ones are named as Y’s. By so doing, there is no guarantee that
the final stratification and allocation can ensure the compliance to the set of precision constraints.
In order to take into account this problem, and to limit the risk of overestimating the expected precision
levels of the optimized solution, it is possible to carry out the optimization by considering, instead of the
expected coefficients of variation related to proxy variables, the anticipated coefficients of variation (ACV)
that depend on the model that is possile to fit on couples of real target variables and proxy ones. In the
current implementation, only models linking continuous variables can be considered. The definition and
the use of these models is the same that has been implemented in the package stratification (see
Baillargeon and Rivest 2014). In particular, the reference here is to two different models, the linear model
with heteroscedasticity:

where

(in case gamma = 0, then the model is homoscedastic)

and the loglinear model:

where

In order to make evident the importance of the above, consider the following example, based on the
dataset nations available in the package.

data(nations)
head(nations)
#> Country TFR contraception infant.mortality GDP region
#> 1 Afghanistan 6.90 63 154 2848 Asia
#> 2 Albania 2.60 47 32 863 Europe
#> 3 Algeria 3.81 52 44 1531 Africa
#> 4 American-Samoa 1.35 71 11 2433 Oceania
#> 5 Andorra 1.61 71 7 19121 Europe
#> 6 Angola 6.69 19 124 355 Africa
#> Continent
#> 1 2
#> 2 1
#> 3 4
#> 4 5
#> 5 1
#> 6 4

Y = beta × X + epsilon

epsilon ∼ N(0, sig2)Xgamma

Y = exp(beta × log(X) + epsilon)

epsilon ∼ N(0, sig2)

Let us assume that in the sampling frame only variable GDP (Gross Domestic Product) is available for all
countries, while contraception rates and infant mortality rates are available only on a subset of countries
(about one third).

set.seed(1234)
nations_sample <- nations[sample(c(1:207),70),]

In this subset we can fit models between GDP and the two variables that we assume are the target of our
survey.

One model for infant mortality and GDP:

mod_logGDP_INFMORT <- lm(log(nations_sample$infant.mortality) ~ log(nations_sample$GDP))
summary(mod_logGDP_INFMORT)
#>
#> Call:
#> lm(formula = log(nations_sample$infant.mortality) ~ log(nations_sample$GDP))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.1292 -0.3765 -0.1455 0.3316 2.6345
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.86295 0.33620 20.41 < 0.0000000000000002
#> log(nations_sample$GDP) -0.46580 0.04389 -10.61 0.000000000000000452
#>
#> (Intercept) ***
#> log(nations_sample$GDP) ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.6158 on 68 degrees of freedom
#> Multiple R-squared: 0.6236, Adjusted R-squared: 0.6181
#> F-statistic: 112.7 on 1 and 68 DF, p-value: 0.0000000000000004523

and one model for contraception and GDP:

mod_logGDP_CONTRA <- lm(log(nations_sample$contraception) ~ log(nations_sample$GDP))
summary(mod_logGDP_CONTRA)
#>
#> Call:
#> lm(formula = log(nations_sample$contraception) ~ log(nations_sample$GDP))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.96139 -0.27360 -0.01435 0.45058 1.25143
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.98318 0.30538 3.220 0.00197 **
#> log(nations_sample$GDP) 0.34649 0.03986 8.692 0.00000000000122 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.5593 on 68 degrees of freedom

#> Multiple R-squared: 0.5263, Adjusted R-squared: 0.5193
#> F-statistic: 75.55 on 1 and 68 DF, p-value: 0.000000000001217

We define the sampling frame in this way:

nations$progr <- c(1:nrow(nations))
nations$dom <- 1
frame <- buildFrameDF(nations,
 id="Country",
 X="progr",
 Y=c("GDP","GDP"),
 domainvalue = "dom")

that is, we replicate twice the variable GDP because it will be used once for infant mortality and once for
contraception.

We set 10% and 5% precision constraints on these two variables:

cv <- as.data.frame(list(DOM=rep("DOM1",1),
 CV1=rep(0.10,1),
 CV2=rep(0.05,1),
 domainvalue=c(1:1)
))
cv
#> DOM CV1 CV2 domainvalue
#> 1 DOM1 0.1 0.05 1

We build the strata without any assumption on the variability of the two target variables, and proceed in
the optimization:

strata1 <- buildStrataDF(frame, progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 207
#> ... of which with only one unit: 207
solutionKmeans2 <- KmeansSolution(strata1,cv)

#>
#> -----------------
#> Kmeans solution
#> -----------------
#> *** Domain: 1 ***
#> Number of strata: 7
#> Sample size : 17
solution3 <- optimizeStrata(cv,
 strata1,
 iter = 50,
 pops = 20,
 parallel = FALSE,
 suggestions = solutionKmeans2,
 writeFiles = FALSE,
 showPlot = FALSE)
#>
#> *** Domain : 1 1
#> Number of strata : 207
#> ---
#> Optimal stratification with Genetic Algorithm
#> ---
#> *** Parameters ***
#> ---------------------------
#> Domain: 1
#> Maximum number of strata: 207
#> Minimum number of units per stratum: 2
#> Take-all strata (TRUE/FALSE): FALSE
#> number of sampling strata : 207
#> Number of target variables: 2
#> Number of domains: 1
#> Number of GA iterations: 50
#> Dimension of GA population: 20
#> Mutation chance in GA generation: NA
#> Elitism rate in GA generation: 0.2
#> Chance to add strata to maximum: 0
#> Allocation with real numbers instead of integers: TRUE
#> Suggestion: 5 3 3 6 6 7 5 6 7 4 2 7 2 2 2 7 6 6 5 7 6 1 7 6 1 6 5 5 7 6 2 6 7 6 1 5 7 6
2 1 3 3 6 6 6 1 2 2 4 6 4 5 7 7 5 7 6 5 1 1 1 1 7 5 6 4 5 4 7 3 6 4 6 4 6 2 5 1 7 6 6 5 1 6
5 6 7 7 2 2 2 5 6 6 5 6 7 5 7 5 5 6 3 6 6 3 3 2 4 6 7 6 6 5 6 5 5 6 7 6 6 6 6 6 5 5 3 7 6 6
7 6 6 3 7 6 6 4 6 7 6 5 7 4 5 5 7 1 5 6 2 6 3 5 7 3 7 7 7 6 6 5 6 6 5 3 2 3 3 4 6 7 6 2 4 6
1 5 1 3 7 6 6 6 6 4 6 3 5 2 6 7 7 1 3 3 6 3 6 7 2 7 7 6 6 6 1
#> *** Sample cost: 16.62586
#> *** Number of strata: 6

#>
#> *** Sample size : 16
#> *** Number of strata : 6
#> ---------------------------

sum(solution3$aggr_strata$SOLUZ)
#> [1] 16.62586

Then, we evaluate the expected CV’s on the three variables:

newstrata <- updateStrata(strata1,solution3)
framenew1 <- updateFrame(frame,newstrata)
framenew1 <- framenew1[order(framenew1$ID),]
framenew1$Y2 <- nations$infant.mortality
framenew1$Y3 <- nations$contraception
results1 <- evalSolution(framenew1, solution3$aggr_strata, 50, progress = FALSE)
results1$coeff_var
#> CV1 CV2 CV3 dom
#> 1 0.05332022 0.2326833 0.1431669 DOM1

Clearly, the CV’s on infant mortality and contraception are not compliant with the corresponding precision
constraints.

We now proceed in building the strata dataframe using the models:

model <- NULL
model$beta[1] <- mod_logGDP_INFMORT$coefficients[2]
model$sig2[1] <- summary(mod_logGDP_INFMORT)$sigma
model$type[1] <- "loglinear"
model$gamma[1] <- 0
model$beta[2] <- mod_logGDP_CONTRA$coefficients[2]
model$sig2[2] <- summary(mod_logGDP_CONTRA)$sigma
model$type[2] <- "loglinear"
model$gamma[2] <- 0
model <- as.data.frame(model)
model
#> beta sig2 type gamma

#> 1 -0.4658038 0.6157600 loglinear 0
#> 2 0.3464857 0.5593031 loglinear 0

strata2 <- buildStrataDF(frame, model = model, progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 207
#> ... of which with only one unit: 207
head(strata2)
#> STRATO N M1 M2 S1 S2 COST CENS DOM1 X1
#> 1 1 1 0.024595860 15.737965 0.022690436 13.624506 1 0 1 1
#> 2 10 1 0.009910578 30.945032 0.009142812 26.789408 1 0 1 10
#> 3 100 1 0.011086660 28.468488 0.010227784 24.645441 1 0 1 100
#> 4 101 1 0.067027720 7.465936 0.061835128 6.463332 1 0 1 101
#> 5 102 1 0.064539738 7.678981 0.059539888 6.647767 1 0 1 102
#> 6 103 1 0.030744575 13.331076 0.028362814 11.540840 1 0 1 103

We proceed with the optimization

solutionKmeans3 = KmeansSolution(strata2,cv)

#>
#> -----------------
#> Kmeans solution
#> -----------------
#> *** Domain: 1 ***
#> Number of strata: 12
#> Sample size : 113
strata2 <- buildStrataDF(frame, model = model, progress = FALSE)
#>
#> Computations are being done on population data
#>
#> Number of strata: 207
#> ... of which with only one unit: 207
solution4 <-
 optimizeStrata(
 errors = cv ,

 strata = strata2,
 iter = 50,
 pops = 20,
 parallel = FALSE,
 suggestions = solutionKmeans3,
 showPlot = FALSE,
 writeFiles = FALSE)
#>
#> *** Domain : 1 1
#> Number of strata : 207
#> ---
#> Optimal stratification with Genetic Algorithm
#> ---
#> *** Parameters ***
#> ---------------------------
#> Domain: 1
#> Maximum number of strata: 207
#> Minimum number of units per stratum: 2
#> Take-all strata (TRUE/FALSE): FALSE
#> number of sampling strata : 207
#> Number of target variables: 2
#> Number of domains: 1
#> Number of GA iterations: 50
#> Dimension of GA population: 20
#> Mutation chance in GA generation: NA
#> Elitism rate in GA generation: 0.2
#> Chance to add strata to maximum: 0
#> Allocation with real numbers instead of integers: TRUE
#> Suggestion: 12 3 3 4 4 1 12 4 9 6 8 1 8 8 8 1 7 11 6 9 7 5 1 4 5 4 12 12 1 4 8 4 9 2 5
12 1 7 8 5 3 3 4 7 10 5 8 8 6 4 6 12 9 1 12 9 7 12 5 5 3 5 1 12 7 6 12 6 9 3 2 6 10 6 7 8
12 5 9 10 11 12 3 10 12 2 9 1 8 8 8 12 11 11 12 4 1 6 1 12 12 4 3 4 10 3 3 8 6 4 9 9 4 12 7
12 12 10 1 4 10 11 9 7 12 6 3 1 11 7 1 11 10 3 9 4 7 6 10 12 4 12 9 6 12 6 1 5 6 11 8 9 3
12 1 3 1 9 1 4 11 12 11 4 12 8 8 8 3 6 4 1 4 8 6 4 5 12 5 3 1 4 11 10 4 5 10 3 6 8 4 9 1 5
3 3 4 3 10 1 8 9 9 4 10 7 5
#> *** Sample cost: 108.3405
#> *** Number of strata: 12

#>
#> *** Sample size : 108

#> *** Number of strata : 12
#> ---------------------------

sum(solution4$aggr_strata$SOLUZ)
#> [1] 108.3405

This time the sample size is much higher.

What about the expected CV’s?

newstrata <- updateStrata(strata2,solution4)
framenew2 <- updateFrame(frame,newstrata)
framenew2 <- framenew2[order(framenew2$ID),]
framenew2$Y2 <- nations$infant.mortality
framenew2$Y3 <- nations$contraception
results2 <- evalSolution(framenew2, solution4$aggr_strata, 50, progress = FALSE)
results2$coeff_var
#> CV1 CV2 CV3 dom
#> 1 0.00566401 0.05020429 0.02625483 DOM1

This time the expected CV’s of all variables are more than compliant with the precision constraints.

Appendix - Methodological approach
In a stratified sampling design with one or more stages, a sample is selected from a frame containing the
units of the population of interest, stratified according to the values of one or more auxiliary variables (X)
available for all units in the population.

For a given stratification, the overall size of the sample and the allocation in the different strata can be
determined on the basis of constraints placed on the expected accuracy of the various estimates
regarding the survey variables (Y).

If the target survey variables are more than one the optimization problem is said to be multivariate;
otherwise it is univariate.

For a given stratification, in the univariate case the optimization of the allocation is in general based on
the Neyman allocation. In the univariate case it is possible to make use of the Bethel algorithm.

The criteria according to which stratification is defined are crucial for the efficiency of the sample.

With the same precision constraints, the overall size of the sample required to satisfy them may be
significantly affected by the particular stratification chosen for the population of interest.

Given G survey variables, their sampling variance is:

If we introduce the following cost function:

the optimization problem can be formalized in this way:

V ar() = (1 −) g = 1, . . . , GYĝ ∑
h=1

H

N 2
h

nh

Nh

S2
h,g

nh

C(, . . . ,) = +n1 nH C0 ∑
h=1

H

Chnh

min = +C0 ∑
h=1

H

Chnh

under the constraints

where

Given a population frame with m auxiliary variables we define as atomic stratification the
one that can be obtained considering the cartesian product of the definition domains of the m variables.

Starting from the atomic stratification, it is possible to generate all the different stratifications that belong
to the universe of stratifications. For example:

The number of feasible stratifications is exponential with respect to the number of initial atomic strata:

In concrete cases, it is therefore impossible to examine all the different possible alternative stratifications.
The Genetic Algorithm allows to explore the universe of stratification in a very efficient way in order to
find the optimal (or close to optimal) solution.

In planning a strafied sampling for a given survey, proceed as follows:

given the survey variables , set precision constraints on their estimates in the
different domains, expressed in terms of CVs (coefficients of variation);

in the available sampling frame build the atomic stratification, obtained as cartesian product of the
domains of the auxiliary variables ;

in each atomic stratum report the distributional characteristics of the survey variables by
calculating their means and standard deviations calculate the values of the population (directly or
by using proxy variables);

on the basis of these inputs, the Genetic Algorithm determines the best solution in terms of both
frame stratification, sample size and allocation in optimized strata.

The application of the genetic algorithm is based on the following steps:

a given stratification is considered as an individual in a population (= generation) subject to
evolution;

each individual is characterized by a genome represented by a vector of dimension equal to the
number of atomic strata: the position of each element in the vector identifies an atomic stratum;

each element in the vector is assigned a random value between 1 and K (maximum acceptable
number of strata): the vector therefore indicates the way in which the individual atomic strata are
aggregated together;

for each individual (stratification) its fitness is calculated by solving the corresponding problem of
optimal allocation by means of Bethel’s algorithm;

in passing from one generation to the next, individuals with higher fitness are favored;

⎧

⎩
⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

CV () <Y1̂ U1

CV () <Y2̂ U2

. . .

CV () <YĜ UG

CV () =Yĝ

V ar()Yĝ

− −−−−−−
√

mean()Yĝ

, . . . ,X1 XM

L = {(), (), . . . , ()}l1 l2 lk

= {(, ,)}P1 l1 l2 l3

= {(), (,)}P2 l2 l1 l3

= {(), (), ()}P5 l1 l2 lk

= {(), (,)}P2 l1 l2 l3

= {(), (,)}P4 l31 l1 l2

= 15B4 = 115975B10 ≈ 4.76 ×B100 10115

, , . . . ,Y1 Y2 Yp

, . . . ,X1 XM

at the end of the process of evolution, the individual with the overall best fitness represents the
optimal solution.

References
Baillargeon, Sophie, and Louis-Paul Rivest. 2014. Stratification: Univariate Stratification of Survey
Populations. https://CRAN.R-project.org/package=stratification.

Ballin, M., and G. Barcaroli. 2013. “Joint Determination of Optimal Stratification and Sample Allocation
Using Genetic Algorithm.” Survey Methodology 39: 369–93.

Ballin, Marco, and Giulio Barcaroli. 2016. “Optimization of Stratified Sampling with the R Package
SamplingStrata: Applications to Network Data.” Computational Network Analysis with R: Applications in
Biology, Medicine and Chemistry. John Wiley & Sons.

Barcaroli, G. 2014. “SamplingStrata: An R Package for the Optimization of Stratified Sampling.” Journal
of Statistical Software 61 (4): 1–24. https://www.jstatsoft.org/article/view/v061i04.

Hartigan, J. A., and M. A. Wong. 1979. “A K-Means Clustering Algorithm.” Applied Statistics 28: 100–108.

O’Luing, M., S. Prestwich, and S. Armagan Tarim. 2017. “Constructing Strata to Solve Sample Allocation
Problems by Grouping Genetic Algorithm.” arXiv:1709.03076.

Willighagen, E. 2005. Genalg: R Based Genetic Algorithm. https://CRAN.R-project.org/package=genalg.

https://cran.r-project.org/package=stratification
https://www.jstatsoft.org/article/view/v061i04
https://cran.r-project.org/package=genalg

