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Non-Probability Survey Samples

@ What is a non-probability sample?

A sample with unknown participation/inclusion/selection
mechanisms and an unknown sampled population

@ Examples of non-probability samples

e Samples selected from web- or phone-panels
e Volunteer based samples

e Convenient samples

o Incomplete administrative records
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Non-Probability Survey Samples

@ Probability survey samples with large nonresponse rates are
essentially non-probability samples

@ Xiao-Li Meng: in the discussion of Wu (2022)

There is no such thing as probability sample in real life!

@ Responses from Wu (2022):

For human populations, this is probably a defendable statement
since any rigorous rules and precise procedures are almost
surely as aspiration, not prescription.

Probability samples, however, do exist in other fields such as
business and establishment surveys, agricultural surveys, and
natural resource inventory surveys.
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Non-Probability Survey Samples

@ We heard of people talking ...

Non-probability samples are biased samples. They are difficult to
handle.

@ All non-iid samples are biased. Even probability samples are
biased (unless it is a simple random sample).

@ We are not worried about the biased nature of probability
samples since the biases can be corrected by suitable weighting
using the known sample inclusions probabilities.

The HT Estimator!

J.N.K. Rao (2005): The NHT estimator. (Narain, 1951; Horvitz
and Thompson, 1952)
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Non-Probability Survey Samples

@ Three major challenges in dealing with non-probability samples:

o the unknown sample participation/inclusion/selection
mechanisms

o the unknown sampled population

o the dearth of auxiliary population information required for valid
estimation and inference

@ Where do we start? Assumptions, assumptions, ... ...

All models are wrong, but some are useful. — George Box
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The Two-Sample Framework

@ The finite population i = {1,2,--- , N} consists of N labelled
units; associated with unit ; are

e auxiliary variables x;
e study variable y; (the variable of interest)

The goal is to estimate py, = N -1 Z‘:‘;l y; for the study variable y

@ S,: A non-probability sample of size n, from U with data

{(xi, i), i € Si}

@ An existing reference probability sample S; containing
information on x (but not on y) from the same target population

{(Ig,df),f S SB}?

where d! are the design weights for the sample S,
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Two Statistical Models

@ A model g for participation probabilities (propensity scores)

o Let R; = I(i € S,) be the indicator variable for unit i being
included in the non-probability sample S,

o The participation probabilities (propensity scores) are defined as

TT%:P(RI;ZIIII;}}’I;)} I = 1}2}"' }N

!

e The model g determines the joint distribution of
{(R;,x;,y;),i=1,2,..., N} over the target finite population

@ A model ¢ for the outcome regression of y given x
o The first two moments of the model
nt; :Eg(y,: I I,‘) ., Vi = Vg;*(y,' Ixf)? | = 1}2}...}N

o A semiparametric model with specified form m; = m(x;, 3)
o A linear regression model: m; = x; 3
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Two Key Assumptions for the participation Mechanism

A1l The participation indicator R; and the study variable y; are
independent given the set of covariates x;:

(Ri 1L yi) | xi

(The 1gnorability assumption: similar to “missing-at-random”
(MAR) for missing data)

A2 All units have non-zero participation probabilities:
>0, i=12,---,N

(The positivity assumption)
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A Data Integration Problem

@ A non-probability sample with information on (x, y)

{(xi,y1), 1 € Si}
@ An existing reference probability sample with information on x
{(xi,di) i € Sy}

@ The requirement that x is observed for both S, and S, can be
problematic

@ Data integration for valid statistical inference:

e Each of §, and S, alone does not lead to valid inference on

o Combine information from S, and &, for valid inference on p,
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Inverse Probability Weighted (IPW) Estimators

o Let 7/, i € S, be the estimated participation probabilities

@ The IPW estimator of y is given by

i 1 Yi
, ,ﬂ.
N €Sy !

where N = >ics, ()

@ The IPW estimator is an application of the HT estimator and the
Héjek estimator from survey sampling

@ The performance of /iy, depends on the behaviour of the
estimated participation probabilities 7/
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Methods for Estimating Participation Probabilities

@ Parametric methods

e The pooled sample method (Valliant and Dever, 2011)

o The pseudo maximum likelihood method
(Chen, L1 and Wu, 2020)

e The two-step method (Wang, Valliant and Li, 2021)
@ Nonparametric methods (Wu, 2022)

@ Tree-based methods (Chu and Beaumont, 2019)
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The Method of Chen, Li and Wu (2020)

o Consider a parametric model 7! = 7(x;, )
@ An example: the logistic regression model

r(x;, 00) = exp(xia) 1 1
K 1 + exp(x’cx) 1 +exp(x’ax)
@ The full-likelihood function
N

i=1
@ The full log-likelihood function
N

l(a) = Z {Rf logm! + (1 —R;)log (1 — :fr;")}

15748



Settings Participation Probabilities Calibration Poststratification Undercoverage Additional Remarks
000000000 00008000000 00000000 00000 elelslelale] slelelslelale]

The Method of Chen, Li and Wu (2020)

@ The pseudo log-likelihood function

fl(a)zzlog{l—(?irz } D> dilog {1 —7(xi,a)}

EESB

@ Under the probability sampling design, p, for sample S,:

E, {El(a)} =l()

@ The pseudo log-likelihood function ¢, («x) is valid replacement of
the true log-likelihood function /()
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The Method of Chen, Li and Wu (2020)

@ The pseudo score functions, defined as U () = 9/;(ax) /0cx,
are given by

/

B i (o) ;o)
U](a)—z {1 — 7(x, Zdl—ﬂ'xh )

i€S4 TT(.I';,

where 7/ () = Om(x;, ) /O
@ The pseudo score functions are unbiased under the joint

randomization of the participation model p and the survey design
p (for Sg:

Egp{Ui(an)} =0
where o is the true value of the model parameters o

@ Score functions are optimal among all unbiased estimating
functions (Godambe, 1960)
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The Method of Valliant and Dever (2011)

@ Consider the pooled sample: S, U Sp
@ Model {D;,i € S, U S;} where

Di=1if ieS,; D, =0 if ie &,

@ Note: the participation model g does not lead to a meaningful
model on the D;’s

@ The full log-likelihood function

() = Z log{m(xi, o)} + Z log{l — m(x;,x)}

i€Sa i€UN\S,

o Estimate ) ;.\ s, log{l — 7(x;, )} using data from S,
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The Method of Valliant and Dever (2011)

@ The objective function of Valliant and Dever (2011)

_ Z log{m(x;, )} + Z wilog{l — m(x;, @)}

€Sy i€Sp

e

where w; are re-scaled from d? such that Zz‘e sy Wi = Ny —ny
and N, = D ics, di
@ The functions U(a) = 0¢>(ax)/Ocx are given by

.I"

Us(a) = > W;(a)) (l — —) > & l _W;T . o)

X, X
iI€S, ( b B icSp

e We only have E,,{U> ()} = 0 under two scenarios

o &, is a simple random sample from the target population
o The sampling fraction n, /N is very small (i.e., n,/N = o(1))
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The Method of Wang, Valliant and Li (2021)

@ A method for correcting biases in Valliant and Dever (2011)

@ Consider an augmented population: §; U U
@ Model {4;,i € S; UU} where

=1ifieS; 6=0ifiecl
@ The authors argue that 7! = p; /(1 — p;) where
m=PielUd) and p;i=PlieS;|S UU)

@ Note: the participation model g does not lead to a meaningful
model on the §;’s
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The Method of Wang, Valliant and Li (2021)

@ The objective function

Zlo {1+?;E @) )} — delog{l + m(x;, o)}

€Sy i€Sp

@ Note: E,{/3(c)} # (), not a likelihood-based objective
function

@ The functions Uz(a) = 0¢3(x)/Ocx are given by

! !

Us(a) = Z mi () _ Zd.g: mi(c)

. . E .
= m(xi, a){l +7(x;, )} = 1 + 7(x;, )

@ The result E,,{Us(cxp)} = 0 holds for general cases

@ Wang, Valliant and Li (2021) can be viewed as a special case of
estimating equations based methods, among them the score
functions are optimal (Godambe, 1960)
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Nonparametric Estimation of Participation Probabilities

@ The participation probabilities

™ =P[R, =1|x;) =E,(R; | x;) = m(x;)

i

are the conditional mean function of R given x
@ The “standard” Nadaraya-Watson kernel regression estimator of

7(x) is given by
N
B D i1 K(x — x;)R,;
~ N
ij] Kn(x — x;j)

@ The nonparametric kernel regression estimator of the propensity
scores is given by (Yuan et al., 2023)

m(x)

€S,

22748
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Model-based Prediction (MP)

e Two “model-based prediction estimators™ for 1y, = N~ Z;M:] Vi

N N
i L~ - : j *
Hympr = ﬁ Z mi, Hymp2 = ﬁ{ Z(y'i — ;) + Z mi}

i=1 EESA i=1
where ; is an estimate for m; = E¢(y; | x;)
@ Two “practical” model-based prediction estimators for z,
A | . R | . 5 -
Hympr = N Z dim; Hymp2 = N Z (yi — ;) + Z d; mi
i€ESp i€Sa i€Sp
The so-called Mass-Imputation estimators (Kim et al., 2021)
@ Under a linear model (with an intercept), we have
ﬁ‘lf = I:ﬂﬁ and Z(yg — I’AH;) =0
i€S,
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Doubly Robust (DR) Estimators

@ The IPW estimators are a general tool for any y
@ The MP estimators are y-specific, and require a model £ on y | x
@ The “standard” doubly robust estimator of i,

. N
N 1 yi—m; 1 )
Hpr = EZT—FEZ”I:
i€S, t i=1
@ The doubly robust estimator of Chen et al. (2020)

) 1 yi — m; 1 .
i€Sy ! i€Sp

@ The estimator fi,,, 1s consistent if one of the two models, g on
(R; | x;) and &€ on (y; | x;), is correctly specified

@ The concept of double robustness is rooted in model-assisted
estimation in survey sampling (Cassel et al., 1976)
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Calibration-based Methods

@ The pseudo maximum likelihood estimator & for a parametric
form 7! = m(x;, ) is the solution to the pseudo score equations

@ Estimating equations based approach with the assumed
parametric form 7} = 7(x;, &): The estimator ¢ solves

Gla)= Z (i-:’ Zdﬁh xi, ) =0

icSy icSp

with a user-specified h(x;, )

@ The pseudo maximum likelihood method of Chen et al. (2020)
corresponds to h(x;, o) = m () /{1 — w(x;, )}

@ The method of Wang et al. (2021) corresponds to
hixi,o) =7l(a) /{1 + 7(x;, )}

@ Consistency of estimating equations based estimator « 1s
(loosely) argued through E,,{G(ca)} = 0
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The Calibrated IPW Estimator

@ The estimating functions based method becomes a calibration
method if we choose h(x;, &) = x;:

2

€S,

N

— Y dx, (or fo) 1)

i€Sp i=1

(-r”

where x and @ have the same dimensions

@ The method leads to the so-called calibrated IPW estimator
(Chen et al., 2020; Rao, 2021; Beaumont and Rao, 2021;
Chen et al., 2023)

i 1 Yi
yipw = = 1
\ 7

N €S, !

where 7! = m(x;, &) and & solves calibration equations in (1)
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The Calibrated IPW Estimator

@ The calibrated IPW estimator is approximately model-unbiased
under a linear regression model £ with m; = E(y; | x;) = x! 3:

EEP{% > W(éf@)} - EP{% 2. ?T(i?&)}

IESA €S,

= E, (% Z dfxf) TB

i€Sp

1 N
= ﬁ Zx;@ — EE(H;v)

i=1

@ The calibrated IPW estimator is doubly robust under a linear
regression model

@ The calibrated IPW estimator does not require the estimation of
the regression coefficients 3
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The Calibrated IPW Estimator

@ The “standard” two-sample framework requires all auxiliary
variables x be available in both S, and S,

@ A research problem:

How to combine auxiliary information from two (or more)
reference probability samples as well as information from
census?

@ The calibration-based approach, with & solving

2

i€S,

N

ngx,g (or fo),

EESB i=1

H

allows components of the “population controls™ Z‘:‘;] x; to be
estimated from different reference probability samples or from
census
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The Calibrated IPW Estimator

@ Need an iterative procedure for solving

G(a)zz e ) dixi=0

€S, i & i€Sp

e Assume 7(x;, @) = g(x] ) for some monotone increasing
smooth inverse link function g(-)

@ The “Hessian matrix” is given by

8
H(a) = Xix; .
(@) 3& EGZS:{chcnf}2

e The matrix H(«v) is negative definite, as long as {x;,i € S, } is of
full rank

@ The Newton-Raphson procedure is guaranteed to converge
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A Simple Scenario

A major problem with IPW estimators: sensitive to small
estimated participation probabilities

Suppose x = (x1,x2)", with x; having two levels and x, having
three levels,

There are a total of K = 2 X 3 = 6 subpopulations defined by x

Within each subpopulation, the participation probabilities
i = P(i € S, | x;) = m(x;) are a constant

More generally, the components of x are all categorical or ordinal

The S, can be poststratified into S, = Sy U - - - U Sk
corresponding to the cross-classification of sampled units using
the combinations of levels of the x variables.

Let ni be the size of S, and Ny, be the size of the corresponding
subpopulation

32748
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A Simple Scenario

@ The participation probabilities

l

e The estimated participation probabilities 7! = ny/ Ny fori € Sy,
where N, 1s an estimate of N,

@ The IPW estimator /iy, reduces to the poststratified estimator

K K

. 1 i S

Hypst = ﬁ Z Z /;Fi-_f" = Z Wik
k=1icSw ! k=1

_ _ o YTy o K 3
where y;, = n, : Ziegﬂ Vi. Wy = Ny /Nt and N* = >, | Ny
@ Poststratify S; based on x: S; = Sy U - - - U Sy

o Use Ny = D _ics, d;i and N* = D ics, di
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A General Procedure for Poststratification (Wu, 2022)

@ The dimension of auxiliary variables x is not low and/or some
components of x are continuous

@ The first part of the procedure: Form homogeneous groups in S,
in terms of participation probabilities

o Compute the initial 7} = 7(x;, &), i € S, based on an assumed
parametric model, g.

@ Choose K such that n, = m,K, where m, is an integer

¢ Order the initial estimated participation probabilities

Ty STy S S Wy

o Let S, be the set of the first m, units in the sequence, S,, be the
second m, units in the sequence, and so on
o The poststratified estimator of ji, 1s computed as

. K &, -
fyesr = Dy Wik

34748
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A General Procedure for Poststratification (Wu, 2022)

@ The second part of the procedure: Obtain the estimated stratum

weights Wi, k = 1,2, --- | K using the reference probability
sample S;

o Determine the strata boundaries as by = max{7! : i € S, },
k=1,2,--- . K—1,withbyg =0and b, = 1

o Compute 7; = w(x;, ), i € S,.

o Define &, = {f IfE Sﬂﬁbk_l <m < bk},k: 1,2,--- K.

o Calculate Ny = Y ,cq df k=1,2,--- K.

The estimated stratum weights Wy, = N /N”®, N® = D ics, di
@ The choice of K:

e The balance between homogeneity of the units within each
post-stratum (in terms of participation probabilities) and the
stability of the poststratified estimator (in terms of the stratum
sample sizes)

e Whenn, 1s small: K =5

e When n, is not small: Choose K > 5 to ensure that m, > 30
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Undercoverage Problems

o Assumption Al: (R; 1L y;) | x;

@ Assumption A1 may be reasonable if:

All key factors and features that may characterize behaviours for
participation in the survey are included in the sample data as part
of the x variables for S, (and are also available in the reference
probability sample S;)

@ Assumption A2: 7! =P(R;=1|x;,y;)) >0fori=1,2,....N

@ Violations of A2 lead to undercoverage problems:

If 7' = 0 for i € U, then the subpopulation I is not represented
in any way by the sample S,.
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Undercoverage Problems

@ Violation of A2 leads to invalid IPW-based estimation methods
even if A1 holds

@ A basic result on inverse probability weighting for finite
populations:

The Horvitz-Thompson estimator
. 1 Vi
bynr = — —
HyuT N Z .
€S

is design-unbiased for puy if and only if 7; > 0 for all
i=1,2,...,N

38748
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Undercoverage Problems

@ Violation of A2 also leads to invalid model-based prediction
methods even if A1 holds

o Assumption Al, (R; Il y;) | x;, implies that

Ec(yi | xi,Ri = 1) = E¢(yi | xi) (2)

so the model parameters 3 in m; = E¢(y; | x;) = m(x;, 3) can be
estimated using {(y;,x;),i € S,} (withR; = 1)

e However, equation (2) implicitly requires P(R; = 1) > 0, which
also requires P(R; =1 | x;) > 0
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Undercoverage Problems

@ The severity of undercoverage depending on

(1) the size of the uncovered subpopulation {4,
(1) the difference between U and the rest of the population

@ Two possible scenarios of undercoverage (Chen et al., 2023):

(1) stochastic undercoverage
(1) deterministic undercoverage

@ The calibrated [IPW estimator can be a useful tool for dealing
with undercoverage if

(1) a linear outcome regression model is suitable (no need to
estimate (3)

(11) population controls of auxiliary variables are reliable

@ Post-stratification can also be a useful tool

40/ 48



Settings Participation Probabilities Calibration Poststratification Undercoverage Additional Remarks
000000000 00000000000 G0000000 00000 slelelelel ] elelelelolele]

Undercoverage - A Proposed Solution (Chen et al., 2023)

@ Any full solutions to undercoverage problems require
e A correct identification of

Uy ={i|lield and 1 =0}, U ={i|iel and 7 > 0}

o Additional information from {4, on y

@ The concept of (an unspecified) accessibility function ®(x), a
convex function to equivalently define (through an unknown
cut-off value, ¢) (Chen et al., 2023)

Uy ={i|icU and O(x;) <c}, Ui ={i|i €U and (x;) > ¢}
@ Identify U and U, through a convex hull partition of S,
Sp = SB,{} U SB._I

@ A new subsample from Sz, with information on y

41748
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“Survey Design” for Non-Probability Samples

@ Yes, “design” is part of a non-probability survey

@ The first major design question: What types of auxiliary
variables to be included for data collection

Variables which might play a role in participation behaviour or
have certain prediction power for the study variable need to be
included. For human populations, demographic variables and
social-economic indicators should be considered.

@ The second major design question: What are the existing (large
scale) probability survey samples from the same target
population with information on auxiliary variables

@ Quality and relevance of auxiliary variables are the keys to the
success of a non-probability survey sample

43748
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Inferential Procedures: Validity vs Efficiency

@ Statistical analysis with non-probability samples:

o Validity refers to the consistency of the point estimators
(or to a lesser extent: approximate unbiasedness)

o Efficiency 1s measured by the asymptotic variance

o Validity is the primary goal; efficiency 1s secondary

@ Non-probability samples may have a very large sample size

@ Large sample sizes are a double-edged sword:

e When the inferential procedures are valid, large sample sizes lead
to more efficient inference

e When the estimators are biased, large sample sizes make the bias
even more pronounced

o Will a non-probability survey sample with a 80% sampling
fraction always provide better estimation results than a small
probability sample? (Meng, 2018)
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Do We Still Need Probability Surveys?

@ Non-probability samples do not fit into the traditional
design-based or model-based inferential frameworks for
probability survey samples

@ Design-based theory for probability survey samples, however,
plays a crucial role in the development of methodologies and
strategies in dealing with non-probability samples

@ The newfound role of probability survey samples:

Valid and efficient statistical inference with non-probability
samples requires auxiliary information from the target
population. A few high quality national probability surveys with
carefully designed survey variables can play a pivotal role in
analysis of non-probability survey samples.

~ Wu, C. (2022)
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