Automation and employment: preliminary evidence for Italian firms

Laura Bisio Marco Grazzi Daniele Moschella

24 February 2022

Bisio, Grazzi, and Moschella

Labor market effects of AI/automation

Theoretical mechanisms

Displacement effect (Automation replaces human tasks)

- employment ↓
- ► change in relative labor demand → some workers are more demanded
- Productivity and scale effects (Automation makes labor and capital more productive)
 - Employment expansion
 - Automation requires the creation of new (human) tasks

Employee matching effect (Change in the profile of new hires)

Sorting: High wage workers attracted to better firms (AKM)

Labor market effects of AI/automation - Empirical evidence

Effects on employment

- Aggregate studies fail to find a consensus (Acemoglu et al., 2020; Acemoglu and Restrepo, 2017; Dauth et al., 2018; Graetz and Michaels, 2018; Klenert et al., 2020)
- Firm-level studies Recent evidence that shows increase in employment of adopters of automation/robots in France, Spain, and Netherlands

(Acemoglu et al., 2020; Aghion et al., 2020; Bessen et al., 2020; Bonfiglioli et al., 2020; Domini et al., 2021b; Koch et al., 2019)

Effects on occupational structure

Domini et al., 2021b do not find any effect of automation on share of different occupational categories in French firms

Effects on workers

Bessen et al., 2019, using a Dutch survey on automation costs, find that automation leads to a higher probability of separation, especially for higher-skilled workers

Bisio, Grazzi, and Moschella

Our contribution

- Provide first large-scale evidence on the effects of automation in Italian firms
- First (today), focus on effects on firm-level employment and occupational structure
- Then (to be done), investigate the effects on workers

- ► ISTAT, International trade statistics, 2011-2019
- ► ISTAT, Statistical register "ASIA Occupazione" (2011-2019)
- ► ISTAT, FRAME-SBS register (2011-2019)

Sample definition

- Identification of importers in 2011-2019 (at least one importing transaction within the period)
- For this sample, employment (employees) and labour-force characteristics at firm-level are retrieved by Asia Occupazione (LEED structure)
- For this sample, economic and structural characteristics are retrieved by FRAME-SBS register
- After merging the different sources and after some cleaning, the sample of analysis is made of 201,408 firms (816,827 obs.)

Identifying and characterising automation and AI events

- We identify imported capital goods embedding automation and AI technologies via HS6 product codes papendix
 - ▶ We build on a taxonomy by Acemoglu and Restrepo (2018)
- Useful proxy since we lack systematic firm-level info on adoption of automation/AI technologies
 - Done by several studies (Acemoglu et al., 2020; Aghion et al., 2020; Bonfiglioli et al., 2020; Dixon et al., 2019; Domini et al., 2021b)
 - Exceptions: survey data (Bessen et al., 2019; Dinlersoz et al., 2018)
- Spiky behaviour typical of investment (cf. Domini et al. 2020): rare across firms and within firms

 \rightarrow Largest event for each firm = automation/Al spike

Firms adopting automation/AI are different from those who don't

Distribution of imports of automation/AI goods across sectors

Table 1: Distribution of imports embedding automation technologies and employment across sectors, 2019

Digital intensity quartile	Share in imports embedding automation technologies (%) (1)	Share in total employment (%) (2)	Ratio (1)/(2)
High-medium tech manufacturing	26.1	25.4	1.03
Low-medium tech manufacturing	11.5	28.6	0.40
Knowledge intensive services	5.2	11.0	0.47
Lower knowledge intensive services	57.3	35.0	1.63

Distribution of adopting firms, top 25% sectors

Distribution of adopting firms across size categories

Characteristics of firms importing automation/AI goods

Table 2: Comparing	; firms with	and without	an automation	/AI spike,	all years	(2011-2019)
--------------------	--------------	-------------	---------------	------------	-----------	-------------

	No spike	Spike	T-test
Number of employees	20.119	97.999	***
Value added per employee	76,663	87,252	***
Share of female employees (%)	42.337	31.659	***
Share of 15/29 years employees (%)	18.989	16.899	***
Share of blue-collars employee (%)	48.547	43.4667	***
Share of white-collars employee (%)	42.940	46.242	***
Share of managers (%)	0.610	1.485	***
Share of permanent employees (%)	85.639	89.2	***
Share of temporary employees (%)	14.360	10.799	***
Share of part-timers (%)	26.761	13.84	***
Number of observations	557,552	259,275	
Number of firms	160,341	41,067	

Automation/AI imports are rare within firms

Figure 1: Number of years with imports of automation/AI goods

Spikes account for high share of investments within firms

Figure 2: Investment shares by rank

Event Study Methodology

Spiky behaviour

event study (Bessen et al., 2020; Domini et al., 2021a)

Selection into automation/AI

$$y_{ijt} = \sum_{k \neq -1; k_{min}}^{k_{max}} \beta_k D_{kit} + \delta_i + \zeta_{jt} + \varepsilon_{it}$$
(1)

 y_{ijt} is the dependent variable of interest for firm *i* at time *t* in sector *j*; D_{kit} is a dummy = 1 if index= k for firm i in year t

Centered at t - 1, so the coefficient on t = 0 measures what happens in the year of the spike, with respect to the previous year

Employment

Bisio, Grazzi, and Moschella

Occupational categories

Education

Concluding remarks

- First preliminary investigations on the effects of automation in Italian firms
- Automation spikes are followed by increase in employment, share of managers, and share of low educated workers
- Automation spikes are followed by decrease in white collars and medium educated workers
- ► To be done: account for pre-spike trend
- ▶ To be done: Investigate the effects on individual workers

Data appendix

Product codes (HS6) embedding relevant technologies

Label	HS-2012 codes
 Industrial robots Dedicated machinery Automatic machine tools (incl. Numerically controlled machines) Automatic welding machines Weaving and knitting machines Other textile dedicated machinery Automatic conveyors Automatic regulating instruments 	847950 847989 845600-846699, 846820-846899, 851511-851519 851521, 851531, 851580, 851590 844600-844699, 844700-844799 844400-844590 842831-842839 903200-903299
9. 3-D printers 10. Automatic data processing machines	847780 847141-847150, 847321, 847330
11. Electronic calculating machines	847010-847029

Codes for (1)-(8) based on Acemoglu and Restrepo (2018, A-12-A14), for (9) on Abeliansky et al., 2015, p. 13, for (10)-(11) on ALP matching of USPC code 706 ('Data processing - Artificial Intelligence') to HS codes (Lybbert and Zolas, 2014) and own expertise.

▶ Return