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Abstract

Bayesian networks are a graphical formalisation of a joint multivariate distribution. 
They are efficiently exploited in many different applied settings. In these last years, 
some applications in official statistics have been defined. This paper illustrates at 
first the concept of Bayesian networks, and then focusses on applications in official 
statistics.
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1. Introduction

“…Bayesian networks are complex diagrams that organize the body of 
knowledge in any given area by mapping out cause-and-effect relationships 
among key variables and encoding them with numbers that represent the extent 
to which one variable is likely to affect another...” The previous quotation is 
from the Los Angeles Times (Helm, 1996). In that article Bill Gates and other 
researchers at Microsoft explain how the usual computers were deaf, dumb, 
blind and clueless, and how “Bayesian stuff” could be used in order to make 
computers more interactive with human beings. In the following example, 
Microsoft applications with Bayesian networks are briefly reviewed.

Example - The first Bayesian network application in Microsoft programmes 
is the so called paperclip (or Office assistant, see Figure 1), firstly programmed 
by Horvitz, a researcher at Microsoft. The annoying features of the paperclip 
may suggest the reader to immediately stop understanding and using Bayesian 
networks! However, as stated in the following quotation from a newspaper 
article (The Economist, 2001), the original tool has been modified: “…The 
paperclip in question, as even casual users of Microsoft’s Office software will 
be aware, is a cheery character who pops up on the screen to offer advice 
on writing a letter or formatting a spreadsheet. That was the idea, anyway. 
But many people regard the paperclip as annoyingly over-enthusiastic, since 
it appears without warning and gets in the way. To be fair, that is not Dr 
Horvitz’s fault. Originally, he programmed the paperclip to use Bayesian 
decision-making techniques both to determine when to pop up, and to decide 
what advice to offer….The paperclip’s problem is that the algorithm (sequence 
of programming steps) that determined when it should appear was deemed 
too cautious. To make the feature more prominent, a cruder non-Bayesian 
algorithm was substituted in the final product, so the paperclip would pop up 
more often….”.
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This first attempt has been followed by many Bayesian networks based tools 
more respectful of Bayesian network theory (see for instance the following 
web page: http://www.microsoft.com/research/default.aspx). They include 
the selection of the items in the sometimes long context lists, user modelling 
and intelligent user interfaces (not only the already discussed Office Assistant 
implemented in MS Office, but models, theory and systems implemented in 
Priorities), diagnostics, trouble shooting and sensor fusion. All these tools 
use the Windows-based application for Bayesian belief network (Belief 
network is a synonym of Bayesian network) construction and inference called 
Microsoft Belief Networks (MSBN, see Kadie et al, 2001), available free for 
non-commercial purposes (http://research.microsoft.com/adapt/MSBNx/). 

All the applications described in the previous example deal with the “decision 
making” problem. This is not the only problem that Bayesian networks tackle. 
Among the others, Bayesian networks have been proved to be useful for 
discovering causal relationships, prediction, assessment of risk, evolution in 
a simulated world, data mining, reliability analysis. The application fields are 
the most diverse, from biology (analysis of gene expression data) to medicine 
(diagnostics), psychology (cognitive psychology), artificial intelligence, 
speech recognition and weather forecasting (for a complete overview of 
Bayesian networks applications see Neapolitan, 2004, Chapter 12). The use 
of Bayesian networks in all these fields is justified by the interaction between 
an easily manageable set of multivariate statistical models and the existence 
of fast and efficient statistical algorithms for their estimation and use. This 
aspect is the motivation of a profitable use also in many different official 

Figure 1: The paperclip (Office Assistant) implemented in Microsoft Office
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statistics problems. Applications in official statistics are yet in their infancy. 
Preliminary results date to the beginning of this century (Getoor et al, 2001a; 
Sebastiani et al, 2001b, Thibaudeau et al, 2002). The topics of imputation of 
missing items and of the multivariate structure of estimators in finite survey 
sampling has been studied to a certain level of detail in a number of papers, 
and show that the models offered by Bayesian networks in official statistics 
are an extremely promising tool. 

This paper is organised as follows. At first (Section 2) Bayesian networks 
are defined and some theoretical aspects are highlighted. Note that this paper 
does not aim at aim at giving a complete and mathematically exhaustive 
explanation of Bayesian networks: just those elements that will be of 
interest in the applications to official statistics are described at a certain 
level of detail, leaving the rest to the relevant literature. This section is 
based on many references (mainly Cowell et al, 1999, and Neapolitan, 2004; 
but also Charniak, 1991, and the web page on Bayesian networks managed 
by Kevin P Murphy: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html). 
Sections 2.1, 2.2 and 2.3 are mainly based on Neapolitan (2004). Bayesian 
networks applications in official statistics (Section 3) include the treatment 
of missing items (Section 3.1, based on the results in Di Zio et al, 2003, 
2004a-c, 2005) and the use in sampling from finite populations (Section 3.2 
based on the results in Ballin et al. 2005a-e). At the end of each of these 
two last sections, the role of Bayesian networks and the advantages in their 
use are highlighted in separate comments. Section 3.3 describes some other 
Bayesian networks applications. Finally, possible future developments are 
discussed in Section 4.
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2. Bayesian Networks

Usually dependence relationship between variables are modelled with 
specific functions of their parameters, as in the generalised linear models or 
in the loglinear models. Bayesian networks are different. They are a class of 
models based on 2 elements:

i. the presence or absence of (any kind of) probabilistic relationship 
between the variables, and 

ii. the possibility to represent these probabilistic relationships 
graphically in such a way that it is possible to associate the joint 
probability distribution to the graphical representation in a non-
ambiguous way. 

The first requirement makes this class quite general, and not dependent on 
specific functional definition of the dependence relationship of the variables. 
The second one is restrictive (for instance just some, but not all, of the 
loglinear models are Bayesian networks, see Warning 2 in Section 2.1).

In the following Bayesian networks are defined formally starting from the 
concept of Conditional Independence Graph (CIG) and Directed Acyclic Graph 
(DAG) as in Whittaker (1990). Finally the Bayesian network characteristics 
are shown with the help of some simplifying examples. 

In general, a graphical representation of a multivariate variable (X1,…,XK) 
is composed of a set of nodes V, each node representing one of the K variables, 
and a set of edges connecting pairs of nodes, E. 

Conditional Independence Graphs (CIG) - A CIG is a graphical 
representation of the multivariate variable V composed of the pair (V,E), such 
that the edges in the set E are undirected and a pair of nodes is not connected 
by an undirected edge if and only if the two nodes are independent given all 
the other variables. Examples of CIG for three variables are in Figure 2.
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CIG (a) represents the situation of independence of the three variables, 
CIG (b) that X and Y are independent given Z, and CIG (c) that no conditional 
independencies characterize the three variables.

As a matter of fact, a CIG illustrates important features of the variables in 
V, in particular their dependence relationship. However, the joint probability 
distribution of V cannot be represented graphically, hence it is not yet useful 
for operative purposes. 

Directed Acyclic Graphs (DAG) – In order to be operative, DAGs are 
appropriate. A DAG is a pair (V,E) of nodes and edges. Differently from CIGs, 
a DAG uses directed edges, henceforth arrows, for connecting pairs of nodes. 
The following elements characterize a DAG:

1. if there is an arrow from X to Y or from Y to X, X and Y are called 
adjacent

2. if there is an arrow from X to Y, X is a parent of Y and Y is a child of X;

3. the set of arrows connecting two nodes X and Y is called a path;

4. if there is a path from X to Y, X is an ancestor of Y and Y is a descendent 
of X;

5. if there is not a path from X to Y, Y is a nondescendent of X

The DAG has not associated any particular probabilistic feature of the 
variables in V, yet. One possibility that allows the operative use of the 
graphical representation linking the DAG with the probabilistic features of 
the variables is offered by the so called Markov condition.

Markov condition. Let P be the joint probability distribution of 
the random variables represented by the nodes in V, and let the 

(a) (b) (c)

Figure 2: Three CIGs for three variables X, Y, and Z
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pair G=(V,E) be a DAG associated to V. Then, the pair (P,G) 
satisfies the Markov condition if, for each variable X in V, X is 
independent of all its nondescendants given all its parents.

The pair (P,G) is a Bayesian network when it satisfies the Markov condition. 
Hence, the Bayesian network is an operative graphical representation of the 
joint probability distribution of the nodes in V. It is enough to associate each 
node Xj, j=1,…K, with the conditional distribution of Xj given its parents 
pa(Xj) (when pa(Xj) is the empty set, i.e. Xj is a root of the network, this 
conditional distribution is simply the marginal distribution of Xj). Then, the 
joint distribution function of the variables V is given by (chain rule):

∏
=

=
K

j
jjk XpaXPXXP

1
1 ))(|(),...,(     (1)

Note that each multivariate variable can be factorised in the product of 
conditional distributions, but not all these decompositions correspond to a 
Bayesian network of the set of variables. As already said at the beginning 
of this section, a key issue is represented by the fact that the decomposition 
should be able to represent graphically the probabilistic relationship among 
the variables and describe it in a non-ambiguous way. Sometimes, this is not 
possible. For this reason, Bayesian networks are just a subclass of all the 
possible multivariate models: the Bayesian networks are the set of models 
for which it is possible to represent graphically the probabilistic relationship 
among the variables according to the Markov condition. Section 2.1 shows 
what this means in the case of three variables X, Y and Z.
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2.1 Meaning of different structures

Figure 3 shows some DAGs for three variables. According to the chain rule 
(1), these networks have the following interpretation (a thorough introduction 
on the concept of conditional independence is in Dawid, 1979).

Dag a)  It has associated the following factorisation of the joint probability 
distribution: P(X,Y,Z)=P(X)P(Y)P(Z). This case corresponds to the 
model of independence of the variables X, Y, Z.

Dag b)  The joint probability distribution is P(X,Y,Z)=P(X)P(Z|X)P(Y|Z). This 
is the case of conditional independence of X and Y given Z.

Dag c)  The joint probability distribution is P(X,Y,Z)=P(X)P(Y)P(Z|X,Y). 
This case corresponds to marginal independence of X and Y (just 
marginalize the joint probability with respect to Z) but conditional 
dependence of X and Y given Z. Note that it would not be possible to 
have at the same time X and Y marginal independent and conditional 
independent given Z in this network, unless (Z,X) is independent of 
Y or (Z,Y) is independent of X (as in the extreme case of DAG a) of 
complete independence; see also the following Warning 1). 

a) b)

c) d)

Figure 3: Four possible Bayesian network structures for three variables
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Dag d)  The joint probability distribution is factorised as P(X,Y,Z)=P(X)P(Y|X)
P(Z|X,Y). This is the complete model: all the dependencies between 
the variables are present. This model is also called clique.

When more than three variables are available, the possible dependence 
relationships are combination of the ones previously described. Two warnings 
are in order.

Warning 1 - As a matter of fact, the previous representations are not unique. 
In fact, for each CIG there can possibly be more than one Bayesian network, or 
better, given the same joint multivariate distribution P, more than one DAG. 
For instance, in Figure 2 conditional independence between X and Y given Z 
can be expressed uniquely by the CIG (b). On the contrary, different DAGs 
representing the situation of conditional independence of X and Y given Z can 
be defined via a suitable redirection of the arrows. These are shown in Figure 
4. Their justification lies on the fact that, when X and Y are independent given 
Z, their joint probability distribution can be equivalently factorised as:

P(X,Y,Z)=P(X)P(Z|X)P(Y|Z)=P(Y)P(Z|Y)P(X|Z)=P(Z)P(X|Z)P(Y|Z).

Figure 4 does not include the graph with the edges X -> Z and Y -> Z, i.e. 
Figure 3 c). In fact, this network has a complete different meaning. In order 
for Figure 3 c) to be consistent with the model represented by the equivalent 
networks of Figure 4, it is necessary to include an additional arrow linking X 
and Y. In other words, it is necessary to resort to a more complicated network 
than necessary (the clique, i.e. Figure 3 d). Hence, particular caution should 
be posed on the redirection of the arrows of a Bayesian network. The rules for 
arrows redirection and the definition of equivalent Bayesian networks are in 
Verma et al (1990).

(a) (b) (c)

Figure 4: Three equivalent Bayesian networks when X and Y are independent given Z
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Warning 2 - As already said, it is always possible to factorize a joint 
probability distribution, but it is not always possible to define a Bayesian 
network. An example is offered by loglinear models for categorical variables. 
It is easy to see that all the hierarchical loglinear models for three variables 
can be expressed as Bayesian networks but one: the one with the three way 
interaction set to zero. This loglinear model has a very peculiar aspect: the 
dependence relationship between the variables is not defined in terms of 
the joint probability distribution of all the variables, but by means of all the 
bivariate tables (distributions) of each couple of variables. In other words, it 
is true that each variable is connected with the others, although it is not the 
complete model (the saturated one). When factorizing the joint distribution of 
three variables X, Y, Z satisfying this model, the result is (no matter the order 
of the variables in the factorisation):

P(X,Y,Z)=P(X)P(Y|X)P(Z|X,Y).

Again, the result is the clique which is the appropriate factorisation for the 
saturated model (in other words, the factorisation of the joint distribution is 
the one associated to a more complicated dependence model). The appropriate 
representation of this loglinear model would actually involve three Bayesian 
networks, one for each minimal sufficient table for the model. Each model is 
a clique of respectively the pairs (X,Y), (X,Z), (Y,Z). As a matter of fact, there 
is not the possibility to describe this dependence relationship with a unique 
Bayesian network. Generally speaking, all those models that are defined via 
dependence relationship between subsets of variables in V and that cannot be 
expressed by an appropriate factorisation of the joint distribution function, 
do not have estimates of the parameters in closed form (e.g. the Iterative 
Proportional Fitting algorithm is used, calibrating successive estimates to 
the dependence relationship contained in each minimal sufficient table of 
the loglinear model). All these models are excluded by the set of models 
expressible as Bayesian networks.

Note that the previous problem does not apply to normal variables, i.e. 
multivariate normal variables can always be represented by Bayesian 
networks. This is due to the fact that multivariate normal variables are actually 
defined by the pairwise relationship of each couple of variables (subject to 
appropriate constraints on the variance matrix).



RIVISTA DI STATISTICA UFFICIALE  N. 1/2018

ISTITUTO NAZIONALE DI STATISTICA 19

2.2 BN estimation

In the previous paragraph we have described a Bayesian network as a 
particular (graphical) model. Nothing “statistical” has been described. When 
just a sample of records where the variables V are observed is available, 
the Bayesian network should be estimated. There are many algorithms and 
methods for the estimation of a Bayesian network, some of them implemented 
in commercial or free software tools. A complete and updated reference 
is Neapolitan (2004). Here we review just the most important features on 
Bayesian network estimation.

The most important thing is that a Bayesian network is the pair (P,G), 
where P is the multivariate distribution of the variables V, and G=(V,E) is the 
DAG. In this setting, only the set of nodes V is known in advance. The object 
of the inference is composed of two distinct elements:

1. the set of arrows E, or in other words the structure of a DAG

2. the conditional distribution of each node given its parents

In fact, the previous two elements define the Bayesian network and, by 
the chain rule (1), are able to define also the joint distribution of the variables 
V. It is worthwhile to mention three alternative approaches in estimating a 
Bayesian network.

The first one estimates at first the DAG structure, checking by appropriate 
independence and conditional independence tests whether undirected edges 
should be considered or not. Appropriate rules for the specification of the 
direction of the edges are defined in order to account for the relationship 
between variables (whether it is marginal or conditional independence). This 
estimation procedure of the structure is called PC algorithm (see Spirtes et 
al, 2000). Once the DAG structure is known, standard estimation methods 
(e.g. maximum likelihood estimation) can be applied in order to estimate 
the parameters of the conditional distribution of each node given its parents. 
This method is already implemented in commercial software tools, as Hugin 
(http://www.hugin.com). This approach is suitable when the data set is 
complete. Actually, some software tools allow to use this method also for 
incomplete data sets. In this last case, the PC algorithm is applied only on the 
subdata set of complete records, while the parameter estimation phase can be 
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performed on the overall data set. For instance, given the estimated structure, 
maximum likelihood estimation of the parameters can be performed with the 
EM algorithm.

The second approach is able to estimate with a unique procedure both 
the DAG structure and the parameters of the model given the structure via 
maximisation of the likelihood function (suitably penalised in order to avoid 
overspecification of the estimated model). This procedure has also been 
generalised to the case of partially observed data sets (Friedman, 1997). 
This approach is based on an extension of the Expectation-Maximisation 
(EM) algorithm for model selection problems that performs search for the 
best structure inside the EM procedure. Friedman proves the convergence 
properties of this algorithm, called Model Selection EM, and of one of its 
simplifications (in order to reduce the computational burden) Alternating MS-
EM.

The third approach is just for incomplete data sets. It is a Bayesian approach 
developed by Sebastiani et al (2001a). This approach has the particular merit 
to highlight the different missingness mechanisms with the possibility to 
estimate the structure of a BN. Actually, the missingness mechanism can be 
considered as a set of additional dichotomous variables, showing whether 
each variables is actually observed or not. The multivariate structure of the 
variables of interest should take into account also their relationship with the 
indicators of missingness. This approach has not been implemented in any 
software tool, yet.

For a complete list of software codes and tools for using and estimating 
Bayesian networks and of their characteristics, see the webpage managed by 
Kevin P. Murphy (http://http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html) 
and the one of the gR project (graphical models in R: http://www.r-project.
org/gR/).

2.3 Efficient use of the information in a BN

The Markov condition allows the identification of the relationship between 
a variable and its nondescendents. However it is still not clear the relation 
with all the other variables in V. The question is, given a variable X in V, 
which is the subsets of variables V’ in V that makes X independent of all the 
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other variables in V given V’? V’ is called the Markov blanket of X, henceforth 
MB(X), and can be graphically determined in the Bayesian network structure 
via the following definition.

Markov blanket – The Markov blanket MB(X) of a node X in V is 
composed by all the parents, children and parents of the children 
of X.

While it is evident the direct relationship of X with its parents and children, 
more attention should be given to its children’s parents. The easiest example 
is offered by Network c) in Figure 3. In that case, MB(X) is composed by 
Z (its child) and Y (its child’s parent). As already remarked, this network 
corresponds to considering marginal independence between X and Y, but 
conditional dependence of X and Y given Z. This last characteristic implies 
that Y should be included in MB(X) (Z alone is unable to make X independent 
of all the other variables given itself). Hence, in a multivariate setting the 
MB(X) is the subset of relevant variables for X: once MB(X) is known, all the 
other variables do not contain additional information on X.
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3. Use in Official Statistics

Multivariate statistical models, as regression equations and loglinear 
models, are efficiently exploited in different official statistics problems: 
are Bayesian networks able to add something? The answer is yes, in many 
respects. First of all, Bayesian networks define models of interdependence 
between all the variables: variables relationship are easy to recognize. 
Secondly, this interdependence model allows a simplification of the joint 
distribution of the variables induced by the chain rule (1). Thirdly, each 
factor of the joint distribution can be easily estimated and used for operative 
purposes. Finally, when additional information is available (evidences, new 
distributions, additional records in the sample and so on) it can be easily 
used in order to update the joint distribution according to well established 
algorithms (see Cowell et al, 1999 and Cowell, 1998). All these elements 
suggest that some of the typical methodologies used up to now are just 
components of a larger family (see Ballin et al, 2005e for sampling and Di 
Zio et al, 2004a, for imputation). In the following a quick review of the use of 
Bayesian networks in official statistics is given. Note that most of the results 
have been obtained in the last 5 years. They should still be considered as 
research problems, and many issues have not yet been investigated. In the 
following, only categorical variables are studied. In fact, applications in this 
setting can be easily performed by means of the available software tools. The 
case of continuous variables still need to be further studied.

3.1 Imputation of missing items

This is maybe the most straightforward application of Bayesian networks, at 
least when missing data follow a Missing at Random mechanism (henceforth 
MAR; see Little et al, 1987, and references therein for a formal definition of 
MAR). Let x=(x1i,…,xki), i=1,…n, be a sample of n i.i.d. observations of the 
r.v. X=(X1,…,Xk), and assume that these records are just partially observed. 
Let o(i) and m(i) be subsets of {1,…k} such that o(i) È m(i) ∪ {1,…,k} and 
let xo(i) and xm(i) be respectively the observed and missing part of the record 
xi, i=1,…n. A usual practice for partially observed data set is imputation of 
missing values, i.e. generation of suitable values )(

~
imx  for the unobserved xm(i). 

Different imputation procedures have been defined. A “perfect” imputation 
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procedure would impute the missing part of the record with a random 
generation from the distribution of Xm(i) given Xo(i). This procedure can be 
considered as “perfect” because the new imputed data set would maintain the 
characteristic to be a random sample of n i.i.d. observations of X. Actually this 
procedure can be simplified in the sense that not all the conditional variables 
are necessary. A simplification that preserves the property to maintain the 
inferential characteristics of the imputed data set would consider a generation 
of imputed values from the distribution of Xm(i) given MB(Xm(i)), where 
MB(Xm(i)) can possibly be a subset of Xo(i). Hence, the identification of the 
Markov Blanket of Xm(i) greatly simplifies the imputation procedure reducing 
the sets of conditionals and adapting the set of conditionals to the pattern of 
missing data in the record. For this reason, Bayesian networks are a useful tool 
for identifying which of the observed variables are necessary for imputation. 

A preliminary formalisation of the use of the Bayesian network 
representation of the dependence relationship of the variables for imputation 
is in Thibaudeau et al (2002). In their paper, given a DAG structure, each 
missing variable is imputed drawing a value at random from its probability 
distribution given its parents. The imputation procedure starts from those 
nodes without parents. When all the missing items in these variables have 
been filled in, all the remaining variables whose parents are within the already 
imputed variables are imputed. When also these variables have been imputed, 
all the remaining variables whose parents are among those already imputed 
are imputed and so on.
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Their approach has been studied and generalised in some papers (Coppola 
et al, 2002a, 2002b, and Di Zio et al 2004a). In particular Di Zio et al (2004a) 
explains how logical constraints in terms of structural zeros can be easily 
considered in this setting. In fact, rules of compatibility between the observations 
on a unit can be defined as a fundamental aspect of the multivariate model 
for X. The possibility to specify Bayesian networks subject to logical rules, 
as the structural zeros, is a powerful approach that can be easily implemented 
during the Bayesian network estimation procedure. However, this approach 
actually does not exploit all the information in the data set: imputation of a 
missing variable is performed only by means of its parents, given an ordering 
among the variables (e.g. C3 in Figure 5 (a) is imputed drawing randomly a 
value for its distribution given C1 and C2). Other papers (Di Zio et al, 2003, 
2004b-c) have defined algorithms for the imputation of missing items with 
respect to the corresponding Markov blanket (e.g. C3 is imputed conditioning 
on C1, C2, C4 and C5, see Figure 5 (b)). Manipulation of the Bayesian network 
in order to perform this operation is part of a software code in C++, described 
in Di Zio et al (2005).

An extension to the case of missing items in longitudinal surveys is in 
Righi (2005).

Comment: Bayesian networks appear as a device for exploiting most of 
the statistical information contained in the observed data set. Although the 

(a)  (b) 

Figure 5:  Use of the dependence structure suggested by a Bayesian network. The 
alternative use of just the parents and Markov blanket of C3 is highlighted 
respectively in (a) and (b)
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use of random generation of imputations via conditional distributions is not 
new, Bayesian networks are a novel practice as far as the definition of the 
conditional variables is concerned. In a sense, the use of the Markov blanket of 
the unobserved variables makes the set of conditionals adaptive with respect 
to the pattern of missing values in each record. Adaptation is justified by the 
statistical relationship of the overall multivariate distribution. The variables 
not used as conditionals are independent of the missing variables given the 
conditional ones.

As a matter of fact, the multivariate distribution and the DAG structure 
should be estimated. The use of maximum likelihood estimators is particularly 
appropriate in this setting for their consistency. When the data set is large, 
the maximum likelihood estimate of the joint distribution function should 
be reasonably “near” to the true but unknown one. Hence, the imputed data 
set can be considered as “almost” generated by the true, and unknown, joint 
distribution function. Up to now, imputation by Bayesian networks has always 
been performed via estimation of the Bayesian network structure by the PC 
algorithm and, given the estimated structure, the conditional probability 
distributions are estimated via maximum likelihood. Other approaches in the 
estimation of Bayesian network structures for imputation are under study.

3.2  Estimation with completely observed samples drawn according to 
complex survey schemes

Also sampling methods from finite populations benefit of the multivariate 
relationship among the variables of interest (e.g. regression estimators). In 
general, special attention should be given to the sampling design. In fact, as 
stated in every modern textbook on sampling theory (e.g. Chambers et al, 
2003), the sampling design is itself a variable and plays a very important role 
in the estimation process. Let X1,…Xk be k variables of interest on a finite 
population of N units. Let a sample of n units be drawn from the population 
according to a complex survey scheme, with sample weights (defined by the 
pair design/estimator) wi, i=1,…n. One of the most used estimators of the 
joint distribution function of the k variables is the ratio estimator:
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where I( ) is the indicator function, and x1i,…xki, i=1,…n, are the n observed 
records in the sample. The previous estimator can equivalently be rewritten 
via a Bayesian network model (preliminary results were obtained in Ballin 
et al, 2005a; advances are written in Ballin et al 2005b,c,d; and further 
extensions are in Ballin et al, 2005e). This new formalisation of estimator (2) 
is obtained via a new variable, S. This is the “design variable”, with as many 
categories as the different inclusion probabilities, say w(1),…,w(H), and with 
marginal probability given by the fraction of the total weight of the units with 
the same sample weight:
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where nh is the number of units with equal first inclusion probability w(h), 
h=1,…H. Given that S contains all the information on the sample design, 
conditioning on this variable produces estimators that are sample weights 
free. For instance, denoting with sh the set of labels of the nh units with weight 
w(h):
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These definitions allow to rewrite (2) as the following:

=),...,(ˆ
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As a matter of fact, the usual ratio estimator ),...,(ˆ
1 kxxF  implicitly 

assumes a particular model: the complete dependence model among (S,X1,…
,Xk). In the Bayesian network terminology, the implicit model is the clique. 
If the dependency model for (S,X1,…,Xk) is simpler, the estimator (2) may 
result inefficient. An example taken from Ballin et al (2005e) is represented 
in Figure 6.

In order to define estimators that fulfil the dependence relationship 
between the variables and, at the same time, always use the sample weights, 
four different type of nodes have been defined.

• Type (a) nodes: these nodes admit S as a parent. In Figure 6, nodes X1 
and X2 are type (a) nodes.

• Type (b) nodes: these nodes have at least a type (a) ancestor but S is 
not one of their parents. Node X3 in Figure 6 is a type (b) node.

• Type (c) nodes: these are those nondescendants of type (a) and/or (b) 
nodes that do not admit S as a parent but that are (indirectly) linked to 
S. Figure 6 has two distinct groups of type (c) nodes: the first one is 
composed by the pair (X4,X5); the second one by X6.

• Type (d) nodes: these are the nodes disconnected with S. In Figure 6, 
the couple (X7,X8) is a group of type (d) nodes.



AN OVERVIEW OF METHODS IN OFFICIAL STATISTICS BASED ON BAYESIAN NETWORKS (Reprint)

28 ISTITUTO NAZIONALE DI STATISTICA

The estimator of the joint distribution function will be of the following 
form:

=),X,X,X,X,X,X,X(XF 87654321
ˆ

),X(XF),X|X(XF)|X,X(XF)(XF),X(XF 87623421654
ˆˆˆˆˆ=

where each component is estimated marginalizing their joint distribution 
with S with respect to S:

type (c) 
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Figure 6: Example of Bayesian networks for finite populations
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type (d) 
∑

=
===

H

h
hSXXPhSP),X(XF

1
8787 )|,()(ˆ

Note that type (b), (c) and (d) nodes may admit more than one subgroup 
(the two type (c) subgroups in Figure 6 are just an example). As shown in the 
previous example, each of these subgroups should be estimated distinctly. In 
general, if there are T, V and W distinct type (b), (c) and (d) nodes, with labels 
in the sets Bt, t=1,…T, Cv, v=1,…,V, Dw, w=1,…W, the general form of the 
Bayesian network (BN) based estimator is (Ballin et al, 2005e):
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A Monte Carlo experiment in Ballin et al 2005(c) shows that the BN based 
estimators can be much more efficient than the usual ratio estimators. The 
key idea is that the use of estimators linear in the weights introduce implicitly 
dependence induced by marginalisation with respect to S. For this reason, each 
type of node and each subgroup should be estimated distinctly with respect 
to S. As a result, if the interest is just on a few marginal tables instead of the 
complete joint distribution of the variables of interest, this approach gives 
results which are internally consistent (see Ballin et al, 2005d), i.e. if two 
tables contain the same variable, its marginal distribution is always the same. 
Ballin et al (2005e, Proposition 1) define a list of necessary and sufficient 
conditions that ensure that the dependence model of the set of variables is 
respected (and hence the disseminated tables are consistent). Finally, Ballin et 
al (2005b) and (2005e) show that the usual calibration estimators (that in case 
of categorical variables are poststratification estimators) can be equivalently 
defined as updating procedures in a BN, and this ensures the possibility to 
enlarge the set of possible poststratification procedures.

Comment: As a matter of fact, it seems that survey weights may have an 
unpleasant effect on the usual estimators computed as linear functions of 
the weights: the introduction of dependencies that actually do not hold true. 
The introduction of a wrong dependence relationship makes the estimator 
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structure more complex, and consequently less efficient. BN based estimators 
are non linear in the weights but still make use of the weights, without the 
unpleasant introduction of spurious dependencies.

All the previous results are obtained given the BN structure. Estimation of 
a structure of a BN in a finite population setting is still an unsolved problem. 
The possible translation of the PC algorithm through changes of the test 
statistics in order to take into account the complexity of the survey design is 
discussed in Ballin et al (2005a).

3.3 Other applications of Bayesian networks and possible extensions

Statistical Information Systems - One of the first Bayesian networks 
applications in official statistics is in Getoor et al. (2001a). They show how 
a very complex data base, as the one of the 1990 U.S. Census, can be easily 
and efficiently represented by a Bayesian network. The Bayesian network 
shows which contingency tables are necessary in order to describe the overall 
statistical information in the census, reducing the figures to store. They also 
show what numerical computations are necessary for any queries, i.e. how to 
join information from the different tables suggested by the Bayesian network. 
The example that the authors consider is relative to a data set which refers to 
just one kind of statistical unit. In general, the available tables may refer to 
different kinds of units: for instance some variables may refer to individuals, 
other to families, other to geographical (regions, counties,…) or institutional 
(hospitals, schools,…) entities. Getoor et al (2001b) show how to extend the 
concept of Bayesian network to the case of data referring to multiple kinds 
of units: they call this tool Probabilistic Relational Model (PRM). This tool 
is based on a knowledge representation language describe in Koller et al 
(1997). It seems particularly suitable for designing statistical information 
systems.

Record Linkage – When it is necessary to match records belonging to the 
same statistical unit in two data sets, but the record identifiers in the two data 
sets are subject to error, record linkage procedures are used (ISTAT, 2003, and 
references therein). Winkler (2002) shows which DAG structure is implicitly 
used for the naïve record linkage procedure. Assuming that the status of 
matched and unmatched pairs of records is represented by a (latent) variable 
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L, the DAG structure for the naïve record linkage procedure is represented 
in Figure 7. As a matter of fact, it corresponds to the so called conditional 
independence assumption.

It is well discussed how the naïve record linkage procedure can lead to 
misleading results. It is important to investigate other approaches. For instance, 
Friedman (1997) shows how to estimate Bayesian networks in presence of 
latent variables. This approach can suggest alternative multivariate models 
able to link appropriately the record pairs.

Time series – Penny et al (2004) describe by means of BNs the multivariate 
dependence structures of time series. They apply this description to the 
quarterly gross national expenditure in New Zealand. Their objective is to 
identify which components of the gross national expenditure deserve to be 
improved in terms of timeliness. 

Figure 7:  Bayesian network for the naïve record linkage procedure, where L is the 
latent status of pair, and Y1,…Yk are the comparison of the two records in the 
pair with respect to the k matching variables
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4. Further developments

First of all, the applications discussed in Section 3 still need to be further 
explored and compared to the “traditional” ones. Nevertheless, it seems that 
Bayesian networks can be useful in many other different topics. Two of them 
appear particularly promising.

1. Integration of surveys – Following Ballin et al (2001), the different 
surveys can be designed as a junction tree (i.e. the tool used for the 
propagation of information in a Bayesian network, see Cowell, 1998, 
and Jensen, 1996). This network can perform as a tool for jointly 
analyzing variables only when strict model assumptions hold (this case 
corresponds to the statistical matching problem, see D’Orazio et al, 
2005). Nevertheless it seems to be a formidable tool for updating survey 
results according to new information from archives or new surveys. In 
this case, it is necessary to understand the interaction between BN 
based estimators (Section 3.2) and calibration, poststratification, ratio 
raking (Harora et al, 1977a-b), and repeated weighting (Houbiers, 
2003) estimators

2. Editing – The possibility to include logical rules in the estimation 
of the joint distribution of multiple variables, as well as to include 
the definition of “rare” events to be further investigated, suggest that 
editing procedures can be appropriately defined via Bayesian networks. 
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