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Abstract

Website categorization has recently emerged as a very important task in several con-
texts. A huge amount of information is freely available through websites, and it could
for instance be used to accomplish statistical surveys. However, the information of
interest for the specific task under consideration has to be mined among that huge
amount, and this turns out to be a difficult operation in practice. This work describes
techniques that can be used to convert website categorization into a supervised classi-
fication problem. Each data record should summarize the content of an entire website.
Records are obtained by using web scraping procedures, followed by a number of fea-
ture extraction and selection steps. When such records are completed, we apply state
of the art classification techniques to categorize the websites according to the aspect
of interest. Since in many applicative cases the labels available for the training set
may be noisy, we also analyze the robustness of our procedure with respect to this
issue. We present results obtained on real-world data for the detection of websites
providing e-commerce facilities.

Keywords: Classification; Big Data; Machine Learning; Feature Selection; Text
Mining

1 Introduction

Text Mining is the branch of Data Mining concerning the process of deriving high-quality
information from texts. References can be found for instance in [10]. This area underwent
considerable improvements in recent years, with a number of concurrent factors contribut-
ing to its progress, first of all the continuous expansion of the Internet and the demand
for effective automatic search and manipulation strategies. Modern text mining techniques
require the integration of natural language processing operations (see, e.g., [4]) with several
advanced machine learning techniques (see, e.g., [12, 14]).

A very relevant problem in this field is the classification of text documents. This consists
in using a set of text documents, each having a class label, to learn a classifier. The classifier
is then used to automatically assign the class label to new unlabeled text documents. This
task is required in a large variety of practical applications, in particular when the considered
text documents are websites. In this case, the task is also called Website categorization.
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The number of web pages available on the Internet has constantly been increasing in the
last decades, and nowadays a huge amount of data is freely available through this channel.
Indeed, the sheer size of the problem makes implausible a non-automatic intervention.
On the other hand, the automatic extraction of statistical information from this source is
extremely appealing, because it would produce large datasets with considerable savings, or
it would provide a way to check or integrate datasets that are already available, increasing
their quality.

However, website categorization turns out to be a very difficult task in practice, for sev-
eral reasons. First, the classification problem has a very large dimension: the data records
representing the websites generally have thousands of fields, and there are thousands of
records. It is well known that such a dimensionality increase usually raises considerably
the difficulty of the classification task. Secondly, the content of the generic website, con-
sisting of thousands of pages in some cases, should be summarized by the corresponding
data record. Hence, these records should be automatically generated. This is a complex
process that requires the use of different Web Scraping and Text Mining phases. Web
sites are of course not standardized, part of the information of a website is provided to the
human users by means of the graphics rather than the text, etc. Thirdly, effective feature
selection techniques are required, since these automatically produced data inevitably con-
tain a very large amount of noise. This preponderant noise content should be reduced as
much as possible to successfully apply the classification techniques. Therefore, to obtain a
satisfactory performance in the classification phase, quite articulated procedures have to be
developed. An extensive survey on text mining techniques is in [22], while the specific case
of web pages is surveyed in [18]. Previous attempts in solving the same type of problem
are described in [2, 3].

In this work, we propose an overall strategy to perform websites categorization. We
apply this strategy to the specific problem of the detection of websites providing e-commerce
facilities. In particular, we want to determine whether the generic website allows to buy, or
at least to order, goods or services, or not. We analyze the performance and the robustness
of our approach using real-world data.

Roughly speaking, we proceed as follows. Given a list of websites, for each of them,
we take the text extracted from the website by means of automatic scraping. Also, we
download images and screen-shots and we process them with optical character recognition
(OCR) [24] to extract additional information provided by the graphics. We use this material
to prepare very large text files. Subsequently, we perform several steps in order to identify
and select only the relevant parts of the above information, and to exclude the noisy part
as much as possible. This is done by using natural language processing techniques, such as
tokenization, lemmatization and part-of-speech recognition [21], until we obtain, for each
website, a number of relevant words, n-grams and additional features. After this, we apply
term evaluation techniques to reduce the dimensions and obtain a set of standardized data
records describing the above websites.

Finally, we classify the obtained records by using state-of-the-art classification algo-
rithms [17]. In particular, we use Support Vector Machines [7], Random Forest [5], Logistic
classifiers [11]. Each of these classifiers requires to set some algorithmic parameters, which
greatly affect the result of the classification phase. We formulate the problem of the pa-
rameters’ choice as follows. We chose the parameters which maximize the harmonic mean
of precision and sensitivity of the classification produced. This type of accuracy measure
is called F1-score [23].

Note that the classification paradigm is based on the availability of a set of labeled
records, called training set, that constitute the source of information to learn a classifier.
Therefore, to apply the described approach for website categorization, we need a set of
websites for which we already have, or we can obtain, the class labels with respect to the
considered categorization. In practical cases, such class labels may easily contain some
errors, due to many reasons. For example, labels may have been assigned to websites by
several human operators which follow slightly different labeling criteria, or which may be
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mistaken on ambiguous cases; labels may have been assigned by automatic procedures
which have difficulties on complex cases; labels may simply be outdated; etc. Hence, in
practical cases, the training set physiologically contains a certain portion of misclassified
records. As a consequence, website categorization techniques should have some degree of
robustness with respect to the presence of noise in the class label. Hence, we also analyze
the robustness of our categorization procedure, by perturbing at several intensity levels
the class labels of the training set. We obtain very encouraging results, and we discuss on
possible motivations of the observed robustness.

Therefore, the main contributions of this work is the presentation of a practically viable
technique to perform automatic categorization of websites in order to attain satisfactory
accuracy and robustness. The paper is organized as follows. Section 2 describes all the
operations that have been used to convert the generic website into a data record of rea-
sonable size summarizing that entire website. Section 3 provides a brief overview of the
classification algorithms that have been used for our analysis. Section 4 reports the results
of experiments by considering websites belonging to enterprises operating in Italy.

2 The Text Mining Phase

We begin with a list L of websites corresponding to commercial companies. For each li ∈ L,
we use a web scraping procedure that reads and saves the content of the website, that is the
text appearing in its pages. It starts from the homepage and continues with all the other
pages reachable form it, up to a certain depth, that can be selected. The underlying idea
is that the pages that are too nested are less relevant for the analysis, while they would
mainly introduce a large amount of noise. On the other hand, besides the text appearing
in the pages, we read some additional information: the attributes of HTML elements, the
name of the image files, the keywords of the pages.

Moreover, we perform Optical Character Recognition (OCR) on all the types of images
that appear in the pages processed by the scraping procedure, in order to read also the
words provided as images. In fact, these words are often written with such a special
emphasis because they are particularly relevant (consider for instance the case of logos,
‘buy’ and ‘pay’ commands, etc.). Similarly, we take screen-shots of the homepages and
perform OCR on them, too. Indeed, many websites try to catch the eye on the key sentences
of the homepage by adopting unusual writing techniques or symbols. OCR is achieved by
using the Tesseract Open Source OCR Engine, initially developed by Hewlett Packard
Research before 1995 and subsequently by Google Research since 2006 [24]. The regions
of the images containing text have been located by using the Marvin image processing
framework, developed in java [1].

The above operations produce, for each li, a text file di. The set of all such text files isD.
These text files are very large, they may contain more than 1 million words. Unfortunately,
for almost all non-trivial categorizations that may be required in practice, the overwhelming
majority of this information is simply irrelevant. Therefore, we need to identify and select
only the part of the above information that is relevant for the categorization required, and
to exclude the remaining parts as much as possible.

To perform such a selection, we use the following steps. We initially clean the text by
removing all non-alphabetic symbols (e.g. %,&,=, etc.), and by inserting white spaces to
detach the words (tokenization). Then, we remove the stop-words (articles, prepositions,
etc.), since their generic meaning has practically no relevance for the categorization task.
Subsequently, we identify a training set S composed of 50% of the elements in D. The
elements in S should have the class label for the categorization under analysis. When this
information is not already available, it must be assigned by some ad hoc procedure or by
manual intervention. Evidently, in practical cases, S may very easily contain misclassified
elements. Hence, the class label is often noisy. Moreover, the dataset may be imbalanced,
in the sense that the proportions of the records in the different classes are not comparable.
For example, in the case of the detection of e-commerce, negative records, i.e., those not
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providing e-commerce facilities, constitute about 80% of D.
After this, we extract from S two dictionaries: the set W of the uni-grams, i.e., the

single words, appearing in those files, and the set Z of the n-grams appearing in the same
files. N-grams are sequences of n adjacent words that are typically used together. An
example is “credit card”, which is a bi-gram, i.e., has n = 2.

For the set of uni-grams W , we perform lemmatization, that is, the inflectional ending of
each word is removed in order to return the word to its basic lemma. This operation allows
to group together the different inflected forms of a word (e.g., plurals of nouns, tenses of
verbs, etc.) so they can be analyzed as a single item. Since we are working with websites of
enterprises operating in Italy, this is done for Italian and English language. All words not
belonging to these two languages are discarded. Clearly, the choice of the languages can
be changed without affecting the fundamental aspects of our approach. Lemmatization is
performed by using the software TreeTagger. This tool was initially described in [21] and
it was subsequently developed by several contributors.

For the set of n-grams Z, we do not perform lemmatization, since substituting words
with their basic lemmas may result in losing the identity of many n-grams, which are
generally built with specific inflectional forms. On the other hand, for Z we do perform
part-of-speech recognition (POS tagging), that is, each word is identified as a particular
part of speech (e.g., a noun, a verb, etc.). This is done again in Italian and English language,
and again with the software TreeTagger. All words not belonging to these two languages are
discarded. Moreover, we discard all n-grams that cannot represent meaningful concepts.
For example, in the case of bi-grams, we keep only the pairs that are syntactically well-
composed. This means they must be composed by: noun and verb; noun and adjective;
noun and adverb; noun and noun; verb and adjective; verb and adverb.

Thus, we obtain at this stage the following two sets of terms:

1. Set W ′, whose component terms are single lemmas in Italian or English language.

2. Set Z ′, whose component terms are syntactically well-composed n-grams in Italian
or English language.

Now, for each of the terms of W ′ and Z ′, we must compute a measure of its relevance for
the categorization under analysis by means of a Term Evaluation (TE) function. There
exist several possible TE functions, representing several metrics; for example Chi Square,
Information Gain (also known as Mutual Information), Gain Ratio, etc. [8].

We have selected for our experiments the so-called Chi-square metric (χ2), since it
appears appropriate and it is one of the most frequently used in text categorization. Indeed,
χ2 statistics is often used in many fields to measure how the results of an observation differ
from the results expected according to an initial hypothesis [16]. In our case, we make
the hypothesis of dependence between the generic term w ∈ W ′ and the class (positive or
negative) of the generic file d containing w, and thus we measure the dependence of w from
the class, with lower values corresponding to lower dependence. Since we have two classes,
for each w ∈ W ′, we compute a score s(w) = χ2

+(w) + χ2
−(w), where χ2

+ is called positive
score and χ2

− negative score. The positive score is defined as follows:

χ2
+ =

p(p11p22 − p12p21)2

(p11 + p12)(p21 + p22)(p11 + p21)(p12 + p22)
,

where p11 is the number of occurrences of w in positive files; p12 is the total number of
occurrences of w; p21 is the number of all distinct words occurring in positive files; p22 is
the total number of all distinct words; and p = p11 + p12 + p21 + p22. The negative score is
defined similarly, except that p11 becomes the number of occurrences of w in negative files
and p21 the number of all distinct words occurring in negative files.

Similarly, for any n-gram z ∈ Z ′, we compute a score s(z) = χ2
+(z) + χ2

−(z), where
χ2
+ is the positive score and χ2

− the negative score. These scores are again based on the
described Chi-square metric, and the basic idea is now to measure the dependence between
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the presence of the words constituting the generic z ∈ Z ′ and the class of the generic file
d containing z. Assuming z is a bi-gram, the positive score is defined as follows:

χ2
+ =

q(q11q22 − q12q21)2

(q11 + q12)(q21 + q22)(q11 + q21)(q12 + q22)
,

where q11 is the number of positive files containing all the words constituting z; q12 is the
number of positive files containing only the first word of z; q21 is the number of positive
files containing only the second word of z; q22 is the number of positive files not containing
any of the words constituting z; and q = q11 + q12 + q21 + q22. The negative score is defined
similarly, except that all the above values are computed for negative files. In case z has
n ≥ 3, the above formula is consequently expanded. We extract n-grams using all the
values of n from 2 to 5. In case an n-gram with n words is fully contained in a larger n-
gram with (n+ 1), . . . , 5 words, we remove the larger n-gram. This because we assume the
presence of the shorter n-gram more significant than that of the larger one. We observe
that, in our experiment, this practically leads to using mainly bi-grams. However, this
reveals not to be a limitation, and it also provides computational advantages.

After this, all terms in W ′ and in Z ′ are sorted by decreasing score values, and we
finally select among them the terms constituting the relevant information. We take from
W ′ all the terms with a TE score larger than a threshold τw and up to a maximum of αw
terms. Similarly, we take from Z ′ all the terms with a TE score larger than τz and up to
a maximum of αz terms. Generally, we set these parameters in order to obtain a set T of
about 1000 terms, where the uni-gram terms are about 800 and the n-gram terms are the
remaining part. Now, for each di ∈ D, we project it on the set T , that is, we reduce di
to a binary vector ri of size |T |. The h-th element of ri will be denoted by rhi and it is
computed as follows:

rhi =

{
1 if the h−th term in T is present in di
0 otherwise.

Vector ri constitutes the data record summarizing di, as anticipated above. The set of all
records is R. The class ci of ri ∈ R, when available, is

ci =

{
1 if the i−th website in L offers e−commerce
0 otherwise.

3 The Classification Phase

Many different classification approaches have been proposed in the literature, based on
different data models and mathematical techniques. It is well known that there is not a
single approach capable to outperform all the others on every instance of the classifica-
tion problem. However, given a specific category of problems, it is empirically possible to
identify which approaches generally provide the best performances for that category. For
our category of problems, we have performed preliminary tests with several classifiers by
means of scikit learn [17], that is a machine learning package currently included into scien-
tific Phyton distributions. The best results in these preliminary tests have been obtained
with:

• Support Vector Machines;

• Random Forests;

• Logistic classifiers.

Hence, we have selected these three classifiers for our full experiments. For each record ri,
the fields rhi corresponding to the terms constitute the input or independent variables; the
class ci constitutes the target or dependent variable.
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Support Vector Machines Support Vector Machines (SVMs) are supervised learning
models that build a deterministic linear classifier. They are based on finding a separating
hyperplane that maximizes the margin between the extreme training data of opposite
classes. New examples are then mapped into that same space and predicted to belong to a
class, on the basis of which side of the hyperplane they fall on. In addition to performing
linear classification, SVMs can efficiently perform a non-linear classification using what is
called the kernel trick, by implicitly mapping their inputs to a higher dimensional space,
see also [7, 25]. This classifier requires to set some algorithmic parameters, in particular
when using as kernel a Gaussian radial basis function. The main parameters in this case
are the penalty parameter c of the error term and the kernel coefficient γ. They greatly
affect the result of the classification, In particular, we chose the combination of values
(c̄, γ̄) which maximizes the harmonic mean of precision and sensitivity of the classification
produced, called F1-score [23]. By denoting with TP the number of true positive records
produced, by TN that of true negatives, by FP that of false positives and by FN that of
false negatives, this means:

(c̄, γ̄) = arg max
(c,γ)

200 TP

2TP + FP + FN
. (1)

We solve this minimization problem by using a grid search approach, see also [7] for details.
The tolerance for the stopping criterion in SVM was set at the default value of 0.001; the
maximum number of iterations at 1000.

Random forests Decision trees are a supervised learning model that maps observations
about the input variables to conclusions about the target variable. The goal is to create
a decision tree that predicts the value of the target variable based on combinations of the
values of the input variables. Each internal node is associated with a decision concerning
the value of an input variable that best splits the training set. Different algorithms can be
used to determine the input variables associated with the internal nodes, see also [19]. This
methodology is generally quite effective and computationally light, however it often exhibits
a tendency to overfit the training set. This means that the model produced by the classifier
may become unnecessarily complex in the attempt to excessively fit the peculiarities of the
available data. To overcome similar problems, Ensemble techniques have been developed.
Roughly speaking, those techniques generate many weak learners and combine their outputs
in order to obtain a classification that is generally both accurate and robust.

In particular, Random Forest (RF) is an ensemble learning method that operates by
generating a multitude of decision trees. The global output is obtained by computing the
mode of the outputs of the individual trees. Additional details can be found in [13, 5]
Random forests are generally more robust and can achieve better performances than the
single decision trees. For this reason, we use such a version of the decision tree methodology
in our experiments. The number of trees used in our experiments has been set at 500.

Logistic classifiers Logistic regression is a regression model where the target variable
is categorical; hence, it can be used to perform a classification. This approach is called
Logistic Classifier (LC). It measures the relationship between the target variable and one
or more independent variables by estimating the probabilities using a logistic function,
which is the cumulative logistic distribution, see also [11]. Logistic regression can be seen
as a special case of the generalized linear model and thus analogous to linear regression.
This approach is often used in practice because it is computationally light and it possesses
a fair power of generalization.

We use the Python implementations of the above three classifiers that are available in the
scikit-learn package through the functions: SVC(); RandomForestClassifier(); LogisticRe-
gression().
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4 Experimental Results

We apply the described procedure to a list L of 4,755 websites belonging to enterprises
operating in Italy. Each item in L originally had a class value, although, as observed,
this information may be noisy. By applying the techniques described in Section 2, we
produce a set R of 4,755 records. Each ri ∈ R has 1000 fields, 800 obtained from uni-
grams and 200 from n-grams as described in Section 2, and the class label ci. A record
of this type is positive if the corresponding website offers e-commerce facilities, and it is
negative otherwise.

Since only about 20% of the entires are positive, the dataset is very imbalanced. This
increases the difficulty of the classification phase. Indeed, it is very easy to reach an 80%
of classification accuracy by simply predicting all records as negative. However, this result
would be completely useless from the practical point of view. In fact, obtaining the correct
identification of the positive records constitutes the main goal in this type of problems,
and this identification is particularly challenging.

To remove the noise in the class, the class labels have been interactively checked by hu-
man intervention. This operation led to reverse about 8% of positive records into negative
ones, and about 3.33% of negative records into positive ones. The fact that the class noise
is concentrated more on positive records has been frequently observed on our instances of
the problem. After this, we obtain a set of records R′ with correct class labels.

To perform the classification task, we select in R′ a training set S of 2,377 records,
that is 50% of the total dataset. The extraction have been randomly performed 3 times,
and all performance results are averaged on the 3 trials. Given a training set S, we apply
to it a random perturbation in the class label, in order to simulate the presence of the
above described class noise. This is done at different levels of intensity and with the three
following proportions in the distribution of the class errors:

1. Observed error proportion. We introduce errors in the class using an error proportion
2.4 times larger for positive records than for negative ones, as it was the error observed
in our dataset.

2. Balanced error proportion. We introduce exactly the same number of class errors in
reach class, independently of the size of each class.

3. Uniform error proportion. We introduce errors in the class using an error proportion
that reflects the size of each class, so that the frequency of errors is the same all over
the dataset. In our case, roughly 20% of the entries are positive, and the remaining
80% of the entries are negative. Therefore, the uniform error proportion has a number
of errors on negative records that is about 4 times larger.

Therefore, we obtain 8 x 3 = 24 versions of the training set, denoted by Skh. Index h =
1, . . . , 8 represents the perturbation level, from 0% (not perturbed at all) to 21% (a strong
perturbation); index k = 1, . . . , 3 represents the perturbation model: observed, balanced,
uniform. The actual number of training records whose class have been changed to obtain
each Skh is reported in Table 1 below. Note that the total number of positive records in S is
only 432; hence some of the highest perturbation levels reverse the class of more than half
of the positive training records. This means that the information provided to the classifier
to be able to predict the positive class has been strongly altered.

After this, we perform the training phase of the three classifiers (RF, SVM, LC) de-
scribed in Section 3 for each of the above 24 training sets Skh. The objective in the training
phase is the maximization of F1, as shown in equation (1). This is obtained for RF and
LC in less than 5 minutes of computation for each training set Skh. SVM classifier, on the
other hand, requires a more elaborate training phase. We perform a grid search to find
the best parameters, requiring about 20 minutes for each training set Skh and using 3-fold
cross-validation. Note that the use of such an approach is standard for training SVM in
practical applications. Though it cannot theoretically guarantee to determine exactly the
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optimal parameters, it is generally regarded as the more reasonable compromise between
time and performance.

Table 1: Number of perturbed training records in each perturbation scheme.

Observed Balanced Uniform
Total Perturbation pos. neg. pos. neg. pos. neg.

3% 50 21 36 36 13 58
6% 101 42 71 71 26 117
9% 151 63 107 107 39 175
12% 201 84 143 143 51 234
15% 252 105 178 178 62 292
18% 302 126 214 214 77 351
21% 352 147 250 250 90 409

When the training phase is completed, we use the learned classifiers to predict the class
for all the records in the test sets T = R′ − S. Subsequently, by knowing the real class of
each ri ∈ T , we compare it to the predicted class so we can compute the confusion matrix
corresponding to each classifier and each training set Skh. The elements of each confusion
matrix (true positives TP , false negatives FN , true negatives TN , false positives FP ) are
then used to evaluate the following performance measures:

• Accuracy a, defined as the percentage of correct predictions over all predictions:

a =
100(TP + TN)

TP + FN + TN + FP
.

• Precision p, also called the positive predictive value, defined as the percentage of true

positive records in all positive predictions: p =
100 TP

TP + FP
.

• Sensitivity s, also called the true positive rate, defined as the percentage of correct

positive predictions in all real positive records: s =
100 TP

TP + FN
.

• F1-score, which is the harmonic mean of the above described measures of precision
and sensitivity:

F1 =
200 TP

2TP + FP + FN
.

Note that, for the detection of e-commerce, the latter one appears the most relevant per-
formance measure, since it fully evaluates the correct identification of the positive records,
that is the most important and difficult task. Therefore, in our experiments, besides the
basic measure of accuracy, we consider the F1-score.

Table 2 compares the results of the three described classifiers using the correct training
set S1

1 and all the training sets perturbed with the observed error proportion S1
2 . . . S

1
8 .

Table 3 compares the same information but using the training sets perturbed with the
balanced error proportion S2

2 . . . S
2
8 . Finally, Table 4 compares the same information but

using the training sets perturbed with the uniform error proportion S3
2 . . . S

3
8 .

By analyzing the above results, we observe what follows.

1. The classification performance obviously degrades by increasing the perturbation
level. However, this degradation is not so marked as it could be expected. Indeed,
up to a perturbation level of 15%, the degradation is less than proportional to the
perturbation introduced. Also, in some cases, one step of increase in the perturba-
tion level does not worsen the classification performance. In other words, the whole
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Table 2: Results obtained when perturbing with the observed proportion.

RF SVM LC
Perturbation level Accuracy F1-score Accuracy F1-score Accuracy F1-score

0% 90.45 % 73.51 % 88.81 % 70.31 % 87.76 % 65.86 %
3% 90.66 % 73.25 % 87.94 % 68.80 % 87.35 % 63.90 %
6% 90.15 % 70.97 % 86.63 % 64.68 % 87.30 % 62.37 %
9% 90.2 % 70.39 % 84.63 % 59.68 % 86.96 % 60.46 %
12% 89.91 % 68.50 % 82.93 % 56.21 % 87.59 % 60.32 %
15% 86.92 % 57.92 % 76.79 % 53.77 % 86.50 % 56.44 %
18% 84.57 % 48.96 % 71.86 % 49.15 % 85.87 % 52.94 %
21% 84.74 % 47.47 % 70.67 % 47.31 % 85.79 % 51.01 %

Table 3: Results obtained using balanced perturbation.

RF SVM LC
Perturbation level Accuracy F1-score Accuracy F1-score Accuracy F1-score

0% 90.45 % 73.51 % 88.81 % 70.31 % 87.76 % 65.86 %
3% 90.19 % 72.33 % 88.18 % 68.95 % 87.34 % 64.71 %
6% 89.86 % 71.75 % 85.75 % 65.83 % 86.63 % 63.70 %
9% 89.49 % 70.79 % 86.54 % 64.04 % 86.03 % 62.10 %
12% 88.77 % 68.77 % 85.67 % 57.64 % 86.03 % 60.43 %
15% 85.79 % 60.42 % 80.12 % 55.04 % 85.37 % 60.27 %
18% 84.82 % 57.88 % 78.20 % 48.89 % 86.96 % 56.70 %
21% 80.91 % 47.96 % 75.15 % 47.08 % 84.18 % 55.97 %

procedure appears to possess a certain degree of robustness with respect to the pres-
ence of class errors in the training set. We hypothesize that this robustness is due to
the use of the automatic classification algorithms. Indeed, it is well known that the
capability of a classifier to generalize what is learned from the training set is strictly
correlated with its ability to search for a “simple” model of the data, according to
the so-called Occam’s razor principle, see also [9]. In our experiments, by reversing
the class of some training records, we are actually providing a limited amount of
wrong information, carried by the records that have been perturbed, mixed with the
correct information carried by the unperturbed records. The simplification ability
of the automatic classifiers allows to override this amount of wrong information, at
least until it remains a minoritary part of the whole information provided.

2. Data perturbed with the uniform model produce the best F1 performance, while
those perturbed with the observed model produce the worst F1 performance. This
holds because, for each given perturbation level, the observed model is the one that
corrupts the largest amount of positive records, so their correct detection becomes
more difficult. On the contrary, the uniform model is the one that corrupts the
smallest amount of positive records, so the effect is the opposite of the former case.

3. Despite the intrinsic robustness observed in the classification approach, we have to
note that there exists a kind of threshold effect. Indeed, when the perturbation
level goes beyond 12 %, the performance degrades more sharply, since the amount
of wrong information becomes consistent and it starts to cause a sort of “avalanche
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Table 4: Results obtained using uniform perturbation.

RF SVM LC
Perturbation level Accuracy F1-score Accuracy F1-score Accuracy F1-score

0% 90.45 % 73.11 % 88.81 % 70.31 % 87.76 % 65.86 %
3% 89.66 % 72.67 % 86.24 % 68.20 % 85.70 % 63.98 %
6% 89.02 % 72.38 % 85.83 % 65.44 % 85.37 % 63.04 %
9% 87.13 % 69.09 % 76.32 % 62.57 % 84.61 % 63.83 %
12% 86.99 % 68.71 % 73.43 % 58.69 % 83.05 % 62.07 %
15% 83.60 % 64.09 % 73.30 % 57.07 % 82.42 % 60.87 %
18% 80.07 % 57.99 % 69.28 % 49.69 % 79.48 % 57.97 %
21% 79.39 % 56.33 % 68.61 % 49.69 % 78.85 % 57.50 %

effect”. This especially holds for the dataset perturbed with the observed model, for
the reasons specified in the previous observation.

4. Random Forest classifier (RF) generally provides the best performances in our exper-
iments. However, the results of the other two classifiers (SVM, LC) are not consider-
ably worse, and in any case the trend is very similar. Hence, the overall classification
results can be considered as to be quite aligned. As known, in practical applications,
any generic dataset has its inherent “level of difficulty”, in the sense that in many
cases the classification accuracy cannot be pushed up to 100%, no matter which clas-
sifier and parameters’ combination is used. In other words, if we operate a bad choice
for classifier/parameters, we may be able to worsen the results at will, but, on the
other extreme, there exist a sort of upper limit in the classification performance that
is obtainable on a dataset. Coming back to our case, the fact that the classification
results are quite aligned allows us to deem that, after the careful parameters’ opti-
mization and the learning phase, the performance of the classification produced by
our classifiers is not far from to the upper limit in the performance obtainable by a
generic automatic classification strategy on the considered dataset.

To provide further insight on the robustness of the procedure, we also report the graphs
of the decrease of the performance obtained when increasing the perturbation level. In
particular, Fig. 1 reports the analysis of the accuracy of RF classifier; Fig. 2 reports the
analysis of the F1 score of the same classifier; Fig. 3 reports the analysis of the accuracy
of SVM classifier; Fig. 4 reports the analysis of the F1 score of the same classifier; Fig. 5
reports the analysis of the accuracy of LC; Fig. 6 reports the analysis of the F1 score of
the same classifier. These figures allow to fully observe the evolution of the degradation in
the classification performance, confirming the observations reported above.

The computational times and the memory usage of the whole procedures are quite
reasonable, considering also the large size of the problem. In particular, using a PC with
i7 processor and 16GB RAM, we experienced what follows. Given the set of text files D,
the text mining operations which produce the set of records R and the whole classification
phase, running all the three classifiers in sequence, require about 50 minutes in total. On
the other hand, the generation of the set D from the initial list of website L by means
of web scraping and OCR procedures is much more time consuming, requiring several
hours; however this part is intended to be performed offline, and it can also be completely
parallelized on several machines.
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Figure 1: Accuracy of Random Forest classifier for different perturbations of the training
set.
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Figure 2: F1 score of Random Forest classifier for different perturbations of the training
set.

5 Conclusions

Website categorization has recently emerged as a very important task in several contexts,
because it allows the automatic individuation of some feature of interest by solving a clas-
sification problem. Determining whether an enterprise website offers e-commerce facilities
or not is a particularly interesting case of this problem. However, to use a classification
algorithm, it is necessary to convert each website into a record describing the website in a
compact and tractable manner. These records should contain only the relevant portion of
the information of the websites, and a careful selection of the information inserted in the
records is a key element for obtaining satisfactory performances in the classification. On
the other hand, we found that the use of classification algorithms provides also a certain
degree of robustness with respect to the presence of errors in the class labels of the training
set. This feature is very useful in practice, because in similar cases the class label physio-
logically contain some errors. Our experiments show that the overall procedure presented
in this work constitute a practically viable technique that is able to perform automatic
categorization of websites with a satisfactory degree of accuracy and robustness.
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Figure 3: Accuracy of Support Vector Machines classifier for different perturbations of the
training set.
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Figure 4: F1 score of Support Vector Machines classifier for different perturbations of the
training set.
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