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1. Introduction 

 

The increased availability of large amount of administrative information at the Italian Institute of 

Statistics (Istat) makes it necessary to investigate new methodological approaches for the produc-

tion of estimates, based on combining administrative data with statistical survey data.  

Traditionally, administrative data have been used as auxiliary sources of information in different 

phases of the production process such as sampling, calibration, imputation. Basically, the classical 

approach, that could be defined supervised, relies on the assumption that, at least after some data 

editing procedures to remove occasional measurement errors, the survey data provide correct 

measures of the target variables, so that the use of external sources is essentially limited to the re-

duction of the sampling error. This is because the measures provided by administrative sources 

usually do not correspond to the target variables. On the other hand, although surveys are designed 

to meet the statistical requirements, also statistical data could be affected by measurement errors 

that may seriously compromise the accuracy of the target estimates.    

In order to take into account deficiencies in the measurement process of both survey and adminis-

trative sources, a more symmetric approach with respect to the available sources can be adopted. A 

natural strategy, according to this approach, (unsupervised approach), is to consider the target vari-

ables as latent (unobserved) variables, and to model the measurement processes through the distri-

butions of the observed variables conditional on the latent variables.  

 

In this latent modeling approach it is useful to classify the variables in three groups: 

 

1. variables Y* representing the “true” target phenomenon. These are the variables that 

we would observe if data were error free. In general, Y* are considered  latent  varia-

bles because they are not directly observed. 

2. variables Yg   (g=1,..G) representing imperfect measures of the target phenomenon. 

These variables are the ones actually observed from G different data sources. 

3. covariates XL and XM associated respectively to the latent variables Y* and to the 

measures Yg   through statistical models.  

 

The statistical model is composed of two components specified via the conditional probability dis-

tributions: 

 

)|( * LXYP                        (latent model),      (1) 

)*,|,..,( 1 MG XYYYP  (measurement model)    (2) 

 

From the conditional distributions (1) and (2) one can derive the marginal distribution 

),|,..,( 1 MLG XXYYP of  the imperfect measures.: 
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Then, model parameters can be estimated using a likelihood approach, based on the data observed 

from the G different sources. Once the model parameters have been estimated, we can derive  the 

marginal distributions GgXYYP Mg ,..,1),*,|(    from (2). These distributions can be used to 

assess the accuracy of each source and the sources can be ranked accordingly. Using Bayes theo-

rem one can derive the distribution of the latent variables conditional on the available information 

(posterior distribution):   

 

),,,..,|*( 1 LMG XXYYYP
        

 

and use the expectations from this distribution to obtain predictions of the true values for each unit.  

 

2. Use of administrative and statistical data for labour statistics 

 

The main sources available for the production of labour statistics are the Italian Labour Force Sur-

vey (Lfs) and administrative sources mainly providing social security and fiscal data.  

 

The Italian Lfs is a continuous survey carried out during every week of the year. Each quarter, the 

Lfs collects information on almost 70,000 households in 1,246 Italian municipalities for a total of 

175,000 individuals (representing 1.2% of the overall Italian population). The Lfs provides quarter-

ly estimates of the main aggregates of labour market (employment status, type of work, work expe-

rience, job search, etc.), disaggregated by gender, age and territory (up to regional detail). 

 

Administrative data relevant for the labour statistics come mainly from social security, Chambers 

of Commerce and fiscal authority. Data are organized in an information system having a linked 

employer-employees (LEED) structure. From this data structure it is possible to obtain information 

on the statistical unit of interest, i.e., the worker. The main goal of this analysis is twofold: 1) to 

produce statistics on the employment status by small geographical domains in order to fulfill the 

population census requirements; 2)  to improve the accuracy of the labour force estimates.   

 

Within the general framework described above appropriate models are Hidden Markov Models 

(HMM). In fact the methodological choices have to take into account that the variable of interest is 

categorical and the data are longitudinal.  

     

According to the HMM modeling, the latent variable at time t, St takes values on a finite set of size 

r that we can identify, without loss of generality, with the set (1,2,..,r). For a given final time T, the 

values (s0, s1, s2,…, sT) represent the realization of an unobserved random process S at discrete 

times 0,1,..,T. We assume that the stochastic process S  is a first order Markov process, that is P(St+1 

| S1 , S2 ,..,St)  = P(St+1 | St). The law of this process is specified through the initial probabilities p0
j = 

P(S0=j)  (j=1,..,r), and the transition probabilities pt
j|i = P(St+1 =j| St=i) (i,j=1,..,r; t=1,..,T). 

Furthermore, we assume that, at each time t, a set of G imperfect measures 
g

tY  (g=1,..G) is also 

available. If we consider the manifest variables 
g

tY as measures with error of the target variable St, 

it is natural to assume that they take values on the same set (1,2,..,r) associated with the categories 

of St. However, in some circumstances it is useful to allow for more general situations where the 

latent process and the manifest variables take values on different domains. For instance, this is the 

case if St takes values 1=employed, 2=unemployed, 3= economically inactive, while the categories 

of 
g

tY  are only employed (1) and not employed (2+3).  

 

In the basic version, the measurement process is modeled by assuming local independence among 

the manifest vartiables: 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Inactive
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The meaning of the equation (3) is that the G measures 
g

tY are conditionally independent, given the 

true value of the target variable St (see Figure 1 for a graphical representation of the conditional in-

dependence structure of the HMM in the case G=2).  

 

 

Figure 1. Hidden Markov Model with G=2 data sources. 

 

 
 

 

 

Estimates of the model parameters can be obtained via likelihood methods provided that the model 

is identifiable. The latter condition is trivially not valid if the number of parameters to be estimated 

is higher than the numbers of distinct combinations of values of the observed variables. 

In cases where there exists a one-to-one relation between the categories of the variable 
g

tY and the  

states of the latent process S, the (estimates of the) probabilities )|(| iSjYP t

g

t

g

ij   can be 

used to evaluate the accuracy of the measurement process associated to the source g.  

 

The methodology can be easily extended by introducing covariates in the latent process as well as 

in the measurement model. This is usually done by relating the involved probabilities to the covari-

ates through multinomial-logit models. Moreover, mixtures of HMMs can be used in order to ac-

count for possible heterogeneity among the units of the population.  

 

If the latent model is not only used to assess the quality of the available sources, but also to directly 

provide estimates of some finite population quantities, one can use the Bayes formula to derive the 

posterior probabilities of the true target variable conditional on the available information (manifest 

variable and covariates). Specifically, given G sequences ),...,( 1:1,

g

kT

g

k

g

Tk YYY   of values of the 

manifest variables and values of the covariates ),( ML XXX   for each unit k of the population, 

the relevant probability distribution is: 

 

).,;,...,|,..( :1,

1

:1,1

MLG

TkTkkTk XXYYssP                                                      (4) 

 

Different usages of distribution (4) are possible. For instance, estimates of linear aggregates refer-

ring to time t can be obtained by taking expectations from the conditional distributions 

),;,...,|( :1,

1

:1,

MLG

TiTiit XXYYsP ,  resulting by marginalization of (4). Furthermore in a general pur-

pose estimation context, one can build a synthetic micro-data file by random drawing from distri-

bution (4).     
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3. Experimental study 

 

In this section, we illustrate a simulation study  where the methodology described above is applied 

in different scenarios. The main goal of the study is to assess the robustness of the methodology 

with respect to departure from the model assumptions. In particular, we are interested in evaluating 

the robustness of the measurement error parameter estimates and of the aggregate estimates based 

on prediction of the latent variable given the observed measurements.  

In all scenarios, N arrays of T binary values are drawn from a discrete time process which is as-

sumed to be the latent process. The t component of the ith array Sit (i=1,..N; t=1,..T) represents the  

true  employment status of the ith individual at time t in a population of size N. Since according to 

the international regulation, the reference time for the employment status is the week, we set T=52 

which is the number of weeks in a year. 

For each individual and each time, two different imperfect measures (Yit
A , Yit

L) of the latent process 

are also simulated by independently drawing two binary values at each time, conditionally on the 

realized values of the latent process. In other words, given a realization of the latent variable Sit, we  

draw the two imperfect measures Yit
A, Yit

L from the conditional distributions 

)|()|()|,( itit

L

ititit

A

ititit

L

it

A

it sSYPsSYPsSYYP  .  

In order to mimic the real scenario where one of the sources (labour force survey)  is available only 

on a sample of size n, we assume that  the measure YL  is observed only on n units. For the sake of 

simplicity, we do not take into account the labor force sampling design and we draw the n sample 

units according to a simple random sampling.  

Moreover,  in order to reproduce the missing pattern of the labour force survey implied by the sam-

ple design, we drop values in the YL source so that for each individual i, the corresponding measure 

is available not more than twice in the year and not more than once in a quarter.  

In the following, several simulation scenarios are described differing for the distribution generating 

both the “true” data and the manifest measures. For each scenario we try to fit data through some 

latent models and we obtain the model parameters estimates via maximum likelihood estimation. 

We split data in two datasets E and P: E is used to estimate the model while P is used as test set. 

Specifically, given the parameter estimates obtained from E, these estimates are used to predict 

values of the latent variables at different times conditionally on the available information. Evalua-

tion is performed by comparing the estimates of the  annual averages of  “employed”  based on 

predictions with the corresponding number of true “employed”.  Moreover, in order to evaluate the 

capability of the method to correctly assess the quality of the different sources of information, the 

estimates of the parameters associated with the measurement processes (classification errors) are 

also compared with the corresponding true values.  

For the conditional distributions associated with the measurement processes we will use the follow-

ing notation: 

TtkjnijSkYPjSkYP it

A

it

A

jkit

L

it

L

jk ,..,1);1,0(,;,..,1);|(),|( ||    

while initial probabilities and transition probabilities from state i, to state j will be denoted by p0
i 

and pj|i = P(St+1 =j| St=i) respectively. Note that, since the latent processes are supposed to be time 

homogeneous in all scenarios, dependence on time has been removed from the notation. 



A Monte Carlo  simulation study  is carried on considering  three  different  scenarios. In all scenar-

ios,  R=100 replications have been simulated. For each replication N=1000 binary arrays with  

T=52  time occasions and  two  imperfect measures are drawn. In the following, the different simu-

lation scenarios are described.    

 

S1)  In this scenario we simulate the latent process as a two state Markov chain with 52 time occa-

sions and the two measurement processes through the specification of the corresponding condition-

al distributions.  

Two experiments S1a and S1b are conducted differing for the set of parameters of the measurement 

process:  

S1a : 1.0,2.0;1.0,05.0 1|00|11|00|1 
AALL

  

S1b : 1.0,2.0;0,4.0 1|00|11|00|1 
AALL

  

The second set of parameters corresponds to situations where one of the two sources measures the 

target variable correctly when the true value is equal to one, while the probability of misclassifica-

tion is high when the true value is zero.   

The probability at t=0  and the independent parameters of the transition matrices  are   in both cas-

es: 

p01 = 0.4,   p1|0 = 0.07, p0|1= 0.05 

For each set of parameters we estimate two models corresponding to different choices of the refer-

ence time for the dynamic of the employment status. Specifically, in the first case, we suppose, ac-

cording to the simulation model, that the reference time for the Markov chain is the week (52 

times). In the second model, we synthetize the weekly available information at month level by con-

sidering only one value per month of the manifest variables (12 times). In detail, for each month of 

the year we take for YL (representing the labour force survey) the unique available value (when pre-

sent) as representative of the month. The week representing YA  in the month is the same as YL 

when it is present, and is randomly selected otherwise. Collapsing information from week level to 

month level could be an option for dimensionality reduction. Thus, we performed this experiment 

in order to analyze the impact of the approximation on the accuracy of the estimates.  

 

The main goal of the other experiments is to investigate robustness of the methodology with re-

spect to misspecification of the underlying model. 

 

S2)  In this scenario we simulate the latent process as a mixture of two Markov chains C1 and C2 

with probabilities at t=0  and transition parameters p1
j|i and p2

j|i given by: 

p01
1 = 0.6 and p01

i = 0.5; P1
1|0 = 0.07, p1

0|1= 0.05;   p2
1|0 = 0.3, p2

0|1= 0.4. 

The mixing weight of the mixture is = 0.7  

 

The measurement processes are simulated according to the following values of the probabilities for 

the classification errors:  

1.0,2.0;1.0,05.0 1|00|11|00|1 
AALL


 

The scenario represents situations where  individuals can be classified in two groups with different 

characteristics in terms of employment dynamics. Total employment and classification errors are 
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estimated by modeling data both with a simple HMM (basic model) and with the appropriate mix-

ture of HMMs (mix model).  

S3)  In the last group of experiments we simulate heterogeneity among the units by allowing that 

the initial probabilities and transition matrix to depend on a set of four binary covariates X1,..,X4. 

Dependence is modeled through logit functions. The measurement processes are simulated accord-

ing to the following values of the probabilities for the classification errors:  

1.0,2.0;1.0,05.0 1|00|11|00|1 
AALL

  

We obtain predictions and estimates of the classification errors using 4 models: 

1) A simple HMM (basic) 

2) A two component mixture of HMMs (mix2) 

3) A three component mixture of HMMs (mix3) 

4) The appropriate HMM where covariates for the latent process are correctly specified (cov). 

Bias and RMSE for  the estimation of  the parameters of the measurement processes are reported in 

Table 1. Figures 1-3 show the distributions of the estimation errors, respectively for scenarios S1-

S3.   

 

Table1. Bias and RMSE for the estimates of the parameters of the measurement processes 

 

Table 1 shows that the estimates of the parameters 
A

ij|  and 
L

ij|  are not biased in all scenarios. 

The accuracy level seems quite high in all cases except for the scenario S2 where in some cases the 

RMSE is around 10%. In particular, the results for scenarios S1a and S1b show that, as expected, 

the accuracy level decreases as we move from the weekly reference period to the monthly reference 

period. Moreover, different sets of parameters in the simulated model do not seem to imply signifi-

cant change of the accuracy level. All these findings are confirmed in Figure 1. It is worthwhile 

noting that when the true error parameter 
L

1|0  is equal to zero the corresponding estimation error 

vanishes.     

 

 

Simulated Model Estimated model 
 0|1

A  1|0
A  0|1

L  1|0
L  0|1

A  1|0
A  0|1

L  1|0
L

Basic  52 weeks -0.0007 0.0003 -0.0010 -0.0007 0.0050 0.0034 0.0174 0.0114

Basic  12 months 0.0081 -0.0014 -0.0049 -0.0039 0.0677 0.0145 0.0302 0.0192

Basic  52 weeks 0.0001 -0.0003 0.0009 -0.0028 0.0048 0.0035 0.0025 0.0235

Basic  12 months -0.0022 -0.0063 0.0044 -0.0039 0.0216 0.0136 0.0084 0.0261

Basic  0.0581 0.0102 0.0354 -0.0041 0.0588 0.0112 0.0414 0.0148

Mixture 2 comp   0.0220 0.0242 0.0242 0.0170 0.0927 0.0874 0.1318 0.0794

Basic  0.0272 0.0197 0.0007 0.0020 0.0544 0.0231 0.0371 0.0532

Mixture 2 comp  0.0087 0.0051 0.0028 0.0006 0.0502 0.0159 0.0364 0.0546

Mixture 3 comp  0.0029 0.0015 0.0047 0.0010 0.0501 0.0142 0.0374 0.0544

Covariates -0.0006 -0.0013 0.0085 0.0057 0.0220 0.0149 0.0376 0.0351

S2  scenario

S3  scenario

BIAS RMSE

S1a   scenario

S1b   scenario



 

Figure 1.  Distributions of the estimation errors for the  parameters of the measurement processes - 

scenarios S1a and S1b 
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Figure 2 Distributions of the estimation errors for the  parameters of the measurement processes - sce-

nario S2 

 

 



 

Figure 3. Distributions of the estimation errors for the  parameters of the measurement processes - 

scenario S3 

 
As far as the robustness of the estimation method is concerned, we notice that when we simulate 

true data from mixture of HMMs, or HMM with covariates (scenarios S2 and S3), the estimates ob-

tained via the basic HMM in most cases are biased. It is also interesting to note that the accuracy 

level of the error parameters is lower for the measure with an high rate of missing values (L).   
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Table2. BIAS  and RMSE for the prediction errors 

    Prediction errors 

Simulated Model  Estimated model  BIAS RMSE 

S1a  scenario 
Basic  52 weeks -0.0628 1.6978 

Basic  12 months 0.3714 5.2928 

S1b  scenario 
Basic  52 weeks -0.0621 4.0159 

Basic  12 months 0.2215 9.4780 

S2  scenario 
Basic   7.5007 7.8658 

Mixture 2 comp    0.7219 6.2633 

S3  scenario 

Basic   -1.3861 4.7556 

Mixture 2 comp   -0.4677 4.7199 

Mixture 3 comp   -0.5599 4.6703 

Covariates -0.2059 4.5738 

 

 

Figure 4 Distributions of the prediction errors in scenarios S1-S3 

 

The results in Table 2 and Figure 4 concerning the distributions of prediction errors agree with the 

previous findings. In particular, the accuracy level of the predictions is definitely lower when mov-

ing from week to month for the reference time. Furthermore, in presence of heterogeneity among 

individuals (scenarios S2 and S3), the basic model provides strongly biased estimates whereas the 

mixture of HMMs seems to approximate quite well the true data distribution.   

 

 



4. Issues for discussion 

 

1. In this paper inference based on latent models is presented as a possible useful approach in 

presence of different imperfect measures of the variables of interest. One of the possible 

usages of latent models is to assess the quality of the available sources. Is it appropriate to 

directly produce estimates based on latent variables in the context of Official Statistics?    

 

2. Instead of directly using the posterior probabilities for estimation, the estimates of misclas-

sification errors could be used to correct estimates based only on the survey data. Can be  

this approach considered as a valid alternative? 

 

3. For longitudinal categorical data, a natural approach is to model true variables through 

Hidden Markov Chains. However, in some situations (e.g., when the target variable is the 

employment status), Markov property does not seem a realistic assumption. Can the ap-

proach be extended in order to account for possible departure from the Markov assump-

tion? 

 

4. What valid inferential alternatives can be considered when none of the available sources 

(survey included) are assumed to be error free?   
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