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1. INTRODUCTION 

The Italian National Statistical Institute (Istat) is currently engaged in a modernization 
programme which includes a significant revision of the methods it has been using for   the 
production of statistics. The principal concept underlying this important change is the use of a 
system of integrated statistical registers as a basis for the all the production system. This new 
system will be referred to as the Italian Integrated System of Statistical Registers (ISSR) in the 
following discussion.  ISSR called for a big initial investment in both architecture, methodology 
and professional competences and continues to require ongoing work. 

The ISSR  consists of two main elements : the Base registers containing the unique identifier of 
the statistical units and a limited set of some registry “core” variables, highly identifiable and 
stable in time, derived from administrative sources, and the Satellite registers, containing  
thematic variables derived from administrative sources or statistical surveys.   

The ISSR has been created by a massive integration of administrative archives and survey data. 
At microdata level, different statistical techniques have been adopted, e.g.: record linkage, 
statistical matching, projection estimators, model predictions for single units, Hidden Markov 
Models, etc. These techniques result in defining predictions at the unit level. As a consequence, 
we have an increase in the amount of available information as compared to each source when it 
is considered individually.  

Summarising, the register values are the output of statistical processes subject to statistical 
uncertainty with respect to both units and variables.  We note that the availability of a register 
(which is a statistical object composed of microdata values) enables different stakeholders to 
produce estimates for different domains by summing up the domain values in the register. It be 
could that some of these estimates are highly inaccurate. Therefore, it would be useful not only 
to make the different stakeholders aware of their level of accuracy but also to adopt a strategy 
allowing them to compute the accuracy of their estimates autonomously. This a crucial point for 
NSIs to maintain trust with users, in a responsible and transparent way. 

In this paper we deal with this problem. The inferential framework for estimating aggregates 
from registers is described Section 2. In Section 3  we propose the Anticipated Variance (AV) 
(Isaki and Fuller, 1982) as statistical quantity suitable for measuring the accuracy in the context 
of the production of Official Statistics. The AV considers the different source of variability 
(deriving from sampling design and from statistical model) affecting the accuracy. Section 4 
illustrates some approximated results for defining the explicit expressions of the different 
components of the AV; these are developed considering a simplified statistical setting and some 
examples are developed in order to illustrate how the AV can be computed for some well known 
statistical models. Finally, Section 5 develops some considerations for defining a strategy for 
ensuring the user be aware of the accuracy and in Section 6 some preliminary conclusions are 
given. 

 

2. ESTIMATES OF AGGREGATES FROM THE REGISTER 

Let 𝑦𝑘 be the true unknown value of a variable of interest y of the kth  (k=1,…, 𝑁) unit included 
in the statistical register R.  
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According to a given statistical working model, M, we can suppose that the 𝑦𝑘 value is expressed 
as the sum of two components: 

𝑦𝑘 = �̃�𝑘 + 𝑒𝑘,                               (2.1a) 

where �̃�𝑘 is the theoretical value according to which the value of y is generated for the unit k and 
𝑒𝑘 denotes random noise with model expectations, 𝐸𝑀(∙), and model variances, 𝑉𝑀(∙),  given by 

𝐸𝑀(𝒆) = 𝟎𝑁   ;     𝑉𝑀(𝒆𝒆′ ) = 𝐸𝑀(𝒆𝒆′ ) = 𝚺𝑦 =

[
 
 
 
 
 
𝜎𝑦1

2  𝜎𝑦1𝑁

𝜎𝑦𝑘1 𝜎𝑦𝑘
2  𝜎𝑦𝑘𝑁

𝜎𝑦𝑁1 𝜎𝑦𝑁
2

]
 
 
 
 
 

, (2.1𝑏)    

in which:  𝒆 = (𝑒1, … , 𝑒𝑘, … , 𝑒𝑁)′ , 𝟎𝑁 is the 𝑁 column vector of zeroes and  𝚺𝑦 is the 𝑁 × 𝑁 model 

covariance matrix. 

Let us suppose that the �̃�𝑘 can be expressed as a function 𝑓(∙)  

�̃�𝑘 = 𝑓(𝐱𝑘; 𝝑)                                   (2.2) 

in which 𝐱𝑘 = (𝑥𝑘1, ⋯ , 𝑥𝑘𝑖 , ⋯ , 𝑥𝑘𝐼 , )
′    is the vector of I auxiliary variables and 𝝑 =

(𝜗1, ⋯ , 𝜗𝑖 , ⋯ , 𝜗𝐼)
′   is the vector of I unknown parameters.  

Suppose furthermore that for observing the y  values, a sample S, of size n,  is selected  from R 
according to a sample design P. Let 𝝀 = (𝜆1 ,⋯ , 𝜆𝑘, … , 𝜆𝑁)′ denote the N  column vector of 
sample membership indicators being 𝜆𝑘 = 1 if 𝑘 ∈ 𝑆 and 𝜆𝑘 = 0, otherwise and let 𝐸𝑃(∙) and 
𝑉𝑃(∙) indicate respectively the operators of sampling expectation and sampling variance, being  

𝐸𝑃(𝝀) = 𝝅   ;     𝑉𝑃(𝝀𝝀′ ) = 𝚺𝜆,                                                                                            (2.3) 

where, 𝝅 = (𝜋1, … , 𝜋𝑘, … , 𝜋𝑁)′ is the vector of the inclusion probabilities.  

Given the model M – defined by the relationships (2.1a), (2.1b) and (2.2) –, and the sample 
observational setting – defined in (2.3) –  the register predictions of the value �̃�𝑘 (k=1,…,N) can 
be defined by: 

�̂̃�𝑘 = 𝑓(𝐱𝑘; �̂�),                                                                                                                           (2.4) 

in which �̂� = {�̂�𝑖;  𝑖 = 1,… , 𝐼} represents the estimate of 𝝑 based on the observation of the the 
values 𝑦𝑘 on the sample S; while the values 𝐱𝑘 are available for all the units of R. In many 
situations, the vector �̂� = {�̂�𝑖; 𝑖 = 1,… , 𝐼} may be obtained as solution of the following system of I 
equations:  

�̂�𝑖(�̂�) = ∑ 𝑔𝑖
𝑗∈𝑅

(𝑦𝑗; �̂�;  𝜆𝑗; 𝑤𝑗) = 0   (𝑖 = 1,… , 𝐼)                                                           (2.5) 

where 𝑔𝑖(𝑦𝑗; �̂�;  𝜆𝑗; 𝑤𝑗) represents the score function of the unit j  of the Generalized Estimating 
Equation  (GEE) (Ziegler, 2015) for the parameter �̂�𝑖 (𝑖 = 1,… , 𝐼) and 𝑤𝑗  is a generic weight 

assigned in the estimation phase to the unit j ; here in the following, for making it simple, we 
suppose that 𝑤𝑗  may be equal either to 1 (solution usual in the classical inferential approach) or 

to 1/𝜋𝑗  (solution usual in the model assisted approach). The score function may incorporate in 

different ways the auxiliary information {𝐱𝑘; 𝑘 ∈ 𝑅} in the register. 

Let 𝑅𝑑  be a domain (i.e. a specific subset with 𝑁𝑑 units) of R, defined on the basis of the variables 
in R, and let 

𝑌𝑑 = ∑ 𝑦𝑘                                                                                                                        (2.6)
𝑘∈𝑅𝑑
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be the unknown total of the variable y  in 𝑅𝑑 . 

The total 𝑌𝑑  may be estimated as the sum over 𝑅𝑑  of the predictions �̂̃�𝑘 

�̂�𝑑 = ∑ �̂̃�𝑘
𝑘∈𝑅𝑑

.                                                                                                                      (2.7) 

Remark 1. On the basis of the predictions �̂̃�𝑘, it is possible to set up different estimators of 𝑌𝑑 . For 
instance consider 

�̂�𝑑,𝑎𝑙𝑡 = ∑ 𝑦𝑘
𝑘∈𝑆∩𝑅𝑑

+ ∑ �̂̃�𝑘
𝑘∈�̅�∩𝑅𝑑

.                                                                             (2.7𝑎) 

which is an estimator more usual when using the standard prediction approach. However, it is 

reasonable to assume that (2.7) and (2.7a) are roughly equivalent for large domains, (i.e.: �̂̃�𝑑 ≅

�̂̃�𝑑,𝑎𝑙𝑡). For making it simple, from now on will consider only the estimator (2.7). 

 

3. THE MEASURE OF ACCURACY 

The estimates are obtained summing up the predicted values where the predictions are based on 
model parameters estimated according to both M and S. In our observational setting, the 
sampling design enables the observation of the sample S  and its variability is given by the 
sample variance/covariance matrix 𝚺𝜆 while the statistical model M  generates the variable y  
and its variability is expressed by the variance/covariance matrix 𝚺𝑦. In order to consider 

explicitly the variability deriving from both the sampling design and  and the model M, Wolter 
(1986) proposes the concept Global Variance: 

𝐺𝑉(�̂�𝑑) = 𝐸𝑃𝐸𝑀[�̂�𝑑 − 𝐸𝑃𝐸𝑀(𝑌𝑑)]
2

= 𝐸𝑃[𝑉𝑀(�̂�𝑑)|𝝀] + 𝑉𝑃[𝐸𝑀(�̂�𝑑)|𝝀]. 

Nevertheless, while we are interested to consider all the sample space and the inducted sampling 
variability, we want focus on a single determination of the super-population underlying the 
model M. This is achieved by the Anticipated Variance (AV) which considers the variability of 
both the sampling design and the statistical model M of the difference (�̂�𝑑 − 𝑌𝑑). The concept of 

AV , which has been introduced in literature for dealing with different inference problems (Isaki 
and Fuller, 1982; Sarndäl  et al., 1992; Nedyalkova and Tillé, 2008; Nirel, and Glickman, 2009; 
Falorsi and Righi, 2015), can be defined as:  

𝐴𝑉(�̂�𝑑) = 𝐸𝑃𝐸𝑀(�̂�𝑑 − 𝑌𝑑)
2

                                                                                                               (3.1) 

               = 𝐸𝑃[𝑉𝑀(�̂�𝑑)|𝝀] + 𝑉𝑃[𝐸𝑀(�̂�𝑑)|𝝀] − 𝑉𝑀(𝑌𝑑).                                                                  (3.2) 

As can be seen, the AV  neutralizes the variability due to a pure model variability of the 
parameter 𝑌𝑑  , even if it still considers the model variability of the estimator �̂�𝑑 . 

In order to derive the explicit expression of the AV we adopt two main approximations: (i) we  
consider the Taylor’s series expansion of the function 𝑓(𝒙𝑘; �̂�) evaluated at the point 𝑓(𝒙𝑘; 𝝑) 
and (ii) we approximate the actual sampling design with a Poisson sampling design which has 
the same first order inclusion probabilities as the actual design. This makes for a conservative 
measure of the sampling variability.  

Then we consider the AV  of its linear approximation, �̂�𝑑,𝑎𝑝𝑝: 

�̂�𝑑 ≅ ∑ 𝑓(𝐱𝑘; 𝜽)
𝑘∈𝑅𝑑

+ ∑ ∑ 𝑓𝑘𝑖  (�̂�𝒊 − 𝜗𝑖) + 𝑂𝑘𝑓 
𝐼

𝑖=1𝑘∈𝑅𝑑

                                                (3.3) 
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𝑤here: 𝑓𝑘𝑖 =
𝛿𝑓(𝒙𝒌; 𝝑)

𝛿𝜗𝑖
 and 𝑂𝑘𝑓 is the rest of minor order. 

Therefore, we may assume the following 

𝐴𝑉(�̂�𝑑) ≅ 𝐴𝑉(�̂�𝑑,𝑎𝑝𝑝) = 𝐸𝑃[𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] + 𝑉𝑃[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] − 𝑉𝑀(𝑌𝑑)                            (3.4) 

in which 

�̂�𝑑,𝑎𝑝𝑝 = ∑ ∑ 𝑓𝑘𝑖 �̂�𝒊
𝐼

𝑖=1
.

𝑘∈𝑅𝑑

                                                                                                              (3.5)  

In matrix notation, the above expression may be expressed as: 

�̂�𝑑,𝑎𝑝𝑝 = 𝜸𝑑
′ 𝐅�̂�. 

𝜸𝑑 = (𝛾𝑑1 , ⋯ , 𝛾𝑑𝑘, … , 𝛾𝑑𝑁)′ is the N column vector of the d-th domain membership variables  
being  𝛾𝑑𝑘 = 1, if 𝑘 ∈ 𝑅𝑑  and  𝛾𝑑𝑘 = 0,  otherwise; 𝐅 = {𝑓𝑘𝑖: 𝑘 = 1,… ,𝑁;  𝑖 = 1,… , 𝐼} is an 𝑁 × 𝐼 
matrix. 

 

4. SOME EXPRESSIONS OF THE COMPONENTS OF THE AV 

In this section we will develop some lines of development for defining some explicit expressions 
of the first two terms on the right hand side of (3.4). Basically we will start from the 
approximation (3.5). 

 

4.1. Term 𝐸𝑃[𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] 

Considering the expression (3.5), we have 

[𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] = ∑ 𝑣�̂�𝒊|𝜆

𝐼

𝑖=1
∑ (𝑓𝑖𝑘

2 + ∑ 𝑓𝑖𝑘
𝑘′≠𝑘

𝑓𝑖𝑘′)
𝑘∈𝑅𝑑

+ 

+∑ ∑ 𝑐�̂�𝑖,�̂�ℓ|𝜆
ℓ≠𝑖

𝐼

𝑖=1
∑ ∑ 𝑓𝑖𝑘𝑓ℓ𝑘′

𝑘′≠𝑘𝑘∈𝑅𝑑

,                                                              (4.1) 

where 

𝑣�̂�𝒊|𝜆 = 𝑉𝑀(�̂�𝑖|𝝀) , 𝑐�̂�𝑖,�̂�ℓ|𝜆
= 𝐶𝑜𝑣𝑀(�̂�𝑖, �̂�ℓ|𝝀) . 

In matrix notation we have 

[𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀]=𝜸𝑑
′ 𝐅[𝑉𝑀(�̂�)|𝝀]𝐅′𝜸𝑑 .         (4.2) 

The 𝐼 × 𝐼 matrix [𝑉𝑀(�̂�)|𝝀] - with the variances 𝑣�̂�𝒊|𝜆 and the covariances 𝑐�̂�𝑖,�̂�ℓ|𝜆
- may be derived with 

the usual inferential approaches; however in their specific expressions the vector 𝝀 should be 
explicitly introduced in such a way that their formulae are computed on the whole set R, instead of 
considering only units in the sample S .  

The first component of the AV may be then obtained as 

𝐸𝑃[𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] = 𝜸𝑑
′ 𝐅(𝐸𝑃[𝑉𝑀(�̂�)|𝝀])𝐅′𝜸𝑑.        (4.3) 

That said, the approach for deriving the explicit formulae of the 𝐼 × 𝐼 matrix 𝐸𝑃[𝑉𝑀(�̂�)|𝝀] may be  
different. It is useful to distinguish the case of the linear (or general linear) models from the case in 
which the score functions 𝑔𝑖(𝑦𝑗; �̂�;  𝜆𝑗; 𝑤𝑗) are implicit expressions of the vector �̂�. 
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Example. 4.1. Consider the classical simple linear model, in which 𝑓(𝐱𝑘; 𝝑) = �̃�𝑘 = 𝐱𝑘
′ 𝜽 and 𝚺𝑦 = 𝜎𝟐𝐈, 

being 𝐈 the identity matrix and suppose that 𝑤𝑗 = 1  for 𝑗 ∈ 𝑆.  

The vector �̂� is obtained as explicit solution of the system of estimating equations:  

(∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜆𝑗)

−1

∑ 𝐱𝑗
𝑗∈𝑅

𝑦𝑗 𝜆𝑗 − �̂� = 𝟎𝐼. 

From the above may be easily derived the standard expression for computing the matrix variance  

[𝑉𝑀(�̂�)|𝝀] = 𝜎2 (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜆𝑗)

−1

. 

 
4.1.1. Linear Models 

We have F= 𝐗 where: 𝐗 = {𝐱𝑗
′; 𝑗 ∈ 𝑅}. For the sampling expected values, we consider the term 0 of the 

linear approximation of  [𝑉𝑀(�̂�)|𝝀] evaluated at its sampling design expected value.  

Example. 4.2. For the classical simple linear model given in example 4.1, we have 

𝐸𝑃[𝑉𝑀(�̂�)|𝝀] ≅ 𝜎2 (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜋𝑗)

−1

. 

 

Example. 4.3. Consider an heteroscedastic linear model with no correlation among units in which 
𝚺𝑦 = 𝑑𝑖𝑎𝑔{𝜎𝑗

2; 𝑗 = 1,2, … , 𝑛} . Suppose furthermore that that 𝑤𝑗 = 1  for 𝑗 ∈ 𝑆.  

The vector �̂� is obtained as explicit solution of the system of estimating equations:  

(∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜆𝑗/𝜎𝑗

2)

−1

∑ 𝐱𝑗
𝑗∈𝑅

𝜆𝑗𝑦𝑗/𝜎𝑗
2 − �̂� = 𝟎𝐼. 

The standard expression for computing for computing the matrix variance is  

[𝑉𝑀(�̂�)|𝝀] = (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜆𝑗/𝜎𝑗

2)

−1

. 

We approximate the sampling expected value of the above matrix as 

𝐸𝑃[𝑉𝑀(�̂�)|𝝀] ≅ (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜋𝑗/𝜎𝑗

2)

−1

. 
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Example. 4.4. Consider a general linear model with a general 𝚺𝑦 matrix and suppose that 𝑤𝑗 = 1  

for 𝑗 ∈ 𝑆. Denote with 𝒚𝑠the 𝑛 vector of the y values in the sample S  and with 𝚺𝑦,𝑆  the model 

variance covariance matrix of the y values in the sample. Let  𝐗𝑆 be the 𝑛 × 𝐼 matrix of the 𝐱𝑗
′ values in 𝑆. 

The vector �̂� is obtained as explicit solution of the system of estimating equations:  

(𝐗𝑠
′𝚺𝑦,𝑠

−1
𝐗𝑆)

−1
𝐗𝑠

′𝚺𝑦,𝑠
−1𝒚𝑠 − �̂� = 𝟎𝐼  

Using the 𝜆 values in the matrix  𝑫(𝜆𝑗) = 𝑑𝑖𝑎𝑔{𝜆𝑗;  𝑗 = 1, . . . , 𝑁 }, the above expression may be 

alternatively defined as: 

(𝐗′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)𝐗)

−1
𝐗′𝑫(𝜆𝑗)𝚺𝑦

−1𝑫(𝜆𝑗)𝒚 − �̂�  =  

     = [∑ 𝐱𝑗𝑗∈𝑅 𝜆𝑗(𝐱𝑗
′𝜈𝑗𝑗 + ∑ 𝐱𝜄

′𝜆𝜄𝜈𝑗𝜄𝜄≠𝑗 )]
−1

∑ 𝐱𝑗𝑗∈𝑅 𝜆𝑗(𝑦𝑗𝜈𝑗𝑗 + ∑ 𝑦𝜄𝜆𝜄𝜈𝑗𝜄𝜄≠𝑗 ) − �̂� = 𝟎𝐼 ,                                (4.4)  

where 𝜈𝑗𝜄 the generic element of the matrix in the position 𝑗𝜄 of the matrix 𝚺𝑦
−1

. 

The model variance of �̂� it is  . 

[𝑉𝑀(�̂�)|𝝀] = (𝐗𝑆
′ 𝚺𝑦,𝑠

−1𝐗𝑆)
−1

= (𝐗′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)𝐗)

−1
. 

Finally approximating the actual sampling design with a Poisson sampling design which has the 
same first order inclusion probabilities of the actual design, we have 

𝐸𝑃[𝑉𝑀(�̂�)|𝝀] ≅ (𝐗′𝑫(𝜋𝑗)𝚺𝑦
−1𝑫(𝜋𝑗)𝐗)

−1
= [∑ 𝐱𝑗

𝑗∈𝑅
𝜋𝑗 (𝐱𝑗

′𝜈𝑗𝑗 + ∑ 𝐱𝜄
′𝜋𝜄𝜈𝑗𝜄

𝜄≠𝑗
)]

−1

 

where 𝑫(𝜋𝑗) = 𝑑𝑖𝑎𝑔{𝜋𝑗;  𝑗 = 1, . . . , 𝑁 }. 

 

4.1.2. Generalized Estimating Equations 

For the GEE estimation system (2.5), using the linear approximation proposed by Chambers (2012, 
p.124) we have 

�̂� ≅ 𝝑 − [𝑨(𝝑)|𝝀] −1�̂�(𝝑),                                                                                                                                    (4.5) 

where 

[𝑨(𝝑)|𝝀] = (
𝛿 ∑ 𝑔𝑖𝑗∈𝑅 (𝑦𝑗; 𝝑; 𝜆𝑗; 𝑤𝑗)

𝛿𝝑
),                                                                                                            (4.6)  

�̂�(𝝑) = {�̂�𝑖(𝝑) = ∑ 𝑔𝑖(𝑦𝑗; 𝝑; 𝜆𝑗; 𝑤𝑗)
𝑗∈𝑅

= 0; (𝑖 = 1,… , 𝐼)}                                                                 (4.7) 

Thus, it is  

[𝑉𝑀(�̂�)|𝝀] = [𝑨(𝝑)|𝝀]−1𝑉𝑀 [�̂�(𝝑) (�̂�(𝝑))
′

| 𝝀] [𝑨(𝝑)|𝝀]−1.             (4.8) 

The Sampling design expected value of the above may by the term 0 of its linear approximation: 

𝐸𝑃[𝑉𝑀(�̂�)|𝝀] ≅ [𝑨(𝝑)|𝝅]−1𝑉𝑀 [�̂�(𝝑) (�̂�(𝝑))
′

| 𝝅] [𝑨(𝝑)|𝝅]−1                                                                 (4.9) 

where  

[𝑨(𝝑)|𝝅] ≅ (
𝛿 ∑ 𝑔𝑖𝑗∈𝑅 (𝑦𝑗; 𝝑; 𝜋𝑗; 𝑤𝑗)

𝛿𝝑
), 
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in which the expression of 𝑉𝑀 [�̂�(𝝑) (�̂�(𝝑))
′

| 𝝅] is obtained by that of  𝑉𝑀 [�̂�(𝝑) (�̂�(𝝑))
′

| 𝝀] with 

the replacement of the values 𝜆𝑗  with their expected values 𝜋𝑗 . 

 

Example. 4.5. Consider a generalized linear model (GLM) and suppose that the weights 𝑤𝑗 = 1  

for 𝑗 ∈ 𝑆. According to Ziegler (2015, p.121), the estimating equations �̂�(𝝑), can be defined as  

�̂�(�̂�) = 𝐅𝑆
′𝚺𝑦,𝑆

−1 [�̂̃�𝑆(�̂�) − 𝒚
𝑆
] = 𝟎𝐼 ,         (4.10) 

where �̂̃�𝑆(�̂�) = (�̂̃�1, … , �̂̃�𝑛)′ denotes the 𝑛 vector of the �̂̃� values in the sample S, each of which is 
an implicit function of the parameter �̂�. Adopting the same computational trick proposed in 4.4, 
the (4.10), may be expressed as 

�̂�(�̂�) = 𝐅′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)[�̂̃�(�̂�) − 𝒚] = 𝟎𝐼                                                                                                       (4.11)  

Therefore, we have:  

𝑉𝑀 [�̂�(𝝑) (�̂�(𝝑))
′

| 𝝀]= 

       = 𝐅′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)[𝑉𝑀(�̂̃�(�̂�)|𝝀) + 𝚺𝑦 − 2𝐶𝑜𝑣𝑀(�̂̃�(�̂�),𝒚|𝝀)] 𝑫(𝜆𝑗)𝚺𝑦

−1𝑫(𝜆𝑗)𝐅.                 (4.12) 

Therefore, considering the (4.8), it is 

[𝑉𝑀(�̂�)|𝝀] = [𝑨(𝝑)|𝝀]−1𝐅′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)[𝑉𝑀(�̂̃�(�̂�)|𝜆) + 𝛴𝑦 − 2𝐶𝑜𝑣𝑀(�̂̃�(�̂�), 𝑦|𝜆)] ∙   

                      ∙ 𝑫(𝜆𝑗)𝚺𝒚
−𝟏𝑫(𝜆𝑗)𝐅 [𝑨(𝝑)|𝝀]−𝟏                                                                                (4.13) 

Finally, Applying the (4.9) and approximating the actual sampling design with a Poisson 
sampling design which has the same first order inclusion probabilities as the actual design, we 
have: 

𝐸𝑃[𝑉𝑀(�̂�)|𝝀] = [𝑨(𝝑)|𝝅]−1𝐅′𝑫(𝜋𝑗)𝚺𝑦
−1𝑫(𝜋𝑗)[𝑉𝑀(�̂̃�(�̂�)|𝝅) + 𝚺𝑦 − 2𝐶𝑜𝑣𝑀(�̂̃�(�̂�),𝒚|𝝅)] ∙  

                             ∙  𝑫(𝜋𝑗) 𝚺𝑦

−1
𝑫(𝜋𝑗)𝐅 [𝑨(𝝑)|𝝅]−1.                                                                                    (4.14) 

Remark.  In order to determine an explicit expression of the model variance 𝑉𝑀(�̂̃�(�̂�)|𝜆) and 

𝐶𝑜𝑣𝑀(�̂̃�(�̂�), 𝑦|𝜆), we can consider a linear approximation of the estimating equation (given in 

2.5) as  

�̂�𝑖(�̂�) = ∑ 𝑔𝑖
𝑗∈𝑅

(�̃�𝑗; 𝜗;  𝜆𝑗; 𝑤𝑗) + ∑ 𝑔𝑗𝑖(𝑦)(𝑦𝑗 − �̃�𝑗)
j∈R

      (i = 1, … , I) 

where 

𝑔𝑗𝑖(𝑦) =
𝛿𝑔𝑖(𝑦𝑗; 𝝑; 𝜆𝑗; 𝑤𝑗)

𝛿𝑦𝑗
|
𝑦𝑗=�̃�𝑗

. 

Then, adopting a matrix notation, we have 

�̂̃�(�̂�) ≅ 𝐷(𝜆𝑗)𝐅𝐆𝑦
′ 𝐷(𝜆𝑗)𝒚 

Where 𝐆𝑦
′ = {𝑔𝑗𝑖(𝑦): 𝑗 = 1,… ,𝑁; 𝑖 = 1,… , 𝐼}. Therefore, we have: 

𝑉𝑀(�̂̃�(�̂�)|𝝀) 

  ≅ 𝑫(𝜆𝑗)𝐅𝐆𝑦
′ 𝑫(𝜆𝑗)𝚺𝑦𝑫(𝜆𝑗)𝐆𝑦𝐅′𝑫(𝜆𝑗), and  𝐶𝑜𝑣𝑀(�̂̃�(�̂�), 𝒚|𝝀) = 𝑫(𝜆𝑗)𝐅𝐆𝑦

′ 𝑫(𝜆𝑗)𝚺𝑦.       (4.15) 
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4.2  Term 𝑉𝑃[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] 

Considering, the first order linear approximation, we have: 

[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] = ∑ ∑ 𝑓𝑘𝑖 �̂̃�𝒊
𝐼

𝑖=1
,

𝑘∈𝑅𝑑

                                                                                       (4.16) 

where �̂̃�𝒊 is obtained as solution of the following systems of I estimating equations: 

�̂�𝑖(�̂̃�) = ∑ 𝑔𝑖
𝑗∈𝑅

(�̃�𝑗; �̂̃�;  𝜆𝑗; 𝑤𝑗) = 0   (𝑖 = 1,… , 𝐼).                                                               (4.17) 

In matrix notation, the (4.16) expression may be expressed as: 

[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] ≅ 𝜸𝑑
′ 𝐅�̂̃�.                                                                                                                  (4.18) 

In which �̂̃� denotes the vector solution of (4.17). 

Example. 4.6. Consider the simple linear model illustrated in the example 4.1.  

The vector �̂̃�  is obtained as explicit solution of the system of estimating equations:  

(∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜆𝑗)

−1

∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗 𝜆𝑗 − �̂̃� = 𝟎𝐼. 

Then we have:  

[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] ≅ 𝜸𝑑
′ 𝐗(∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′𝜆𝑗)

−1

∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗  𝜆𝑗 , 

Therefore, it is  

𝑉𝑃[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] ≅ 𝜸𝑑
′ 𝐅𝑉𝑃 (�̂̃�)𝐅′. 

Even in simple linear models, �̂̃� is an implicit expression of the 𝜆 values. Hence, for developing an 

explicit expression 𝑉𝑃(�̂̃�), it is necessary, to consider its linear approximation 

�̂̃� = 𝐸𝑃(�̂̃�) + 𝐆𝜆
′ (𝛌 − 𝝅)                                                                                                                      (4.19)  

where 𝐆𝜆 is an 𝑁 × 𝐼 which generic element 𝑔𝑗𝑖(𝑦) is 

𝑔𝑗𝑖(𝑦) =
𝑔𝑖(�̃�𝑗; �̂̃�;  𝜆𝑗; 𝑤𝑗)

𝛿𝜆𝑗
|

𝜆𝑗=𝜋𝑗

           (𝑗 = 1,… ,𝑁; 𝑖 = 1,… , 𝐼). 

According to the above, it is  

𝑉𝑃(�̂̃�) ≅ 𝐆𝜆
′ 𝑉𝑃(𝛌)𝐆𝜆 ≤ 𝐆𝜆

′ 𝑫[𝜋𝑗(1 − 𝜋𝑗)]𝐆𝜆                                                                                    (4.20) 

where 𝑫[𝜋𝑗(1 − 𝜋𝑗)] = 𝑑𝑖𝑎𝑔 {𝜋𝑗(1 − 𝜋𝑗); 𝑗 = 1,… ,𝑁} is the diagonal matrix of the variance 

under  a Poisson sampling  of the 𝛌 values.       
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Example. 4.7. Consider the simple linear model, illustrated in the example (4.1). The matrix 𝐆𝜆
′  is 

given by 

𝐆𝜆
′ = (∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′𝜋𝑗)

−1

[∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗 − (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′)(∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′𝜋𝑗)

−1

∑ 𝐱𝑗
𝑗∈𝑅

𝜋𝑗�̃�𝑗] 

       = (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′𝜋𝑗)

−1

[𝑰 − (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′)(∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′𝜋𝑗)

−1

] 𝐗′𝑫(�̃�𝑗)𝑫(1 − 𝜋𝑗)  

Where 𝑫(�̃�𝑗) =  𝑑𝑖𝑎𝑔 {�̃�𝑗; 𝑗 = 1,… ,𝑁} and 𝑫(1 − 𝜋𝑗) = 𝑑𝑖𝑎𝑔 {1 − 𝜋𝑗; 𝑗 = 1,… ,𝑁}. 

 

Example. 4.8. Consider the simple linear model, illustrated in the example (4.1), but suppose that the 
weights 𝑤𝑗 = 1/𝜋𝑗 (as in the model assisted approach). In this case the matrix 𝐆𝜆

′  equals to 𝟎𝐼×𝑁 (an 

𝐼 × 𝑁 matrix of zeroes . Indeed, it is 

𝐆𝜆
′ = (∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′)

−1

[∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗 − (∑ 𝐱𝑗
𝑗∈𝑅

𝐱𝑗
′) (∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′)

−1

∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗] = 𝟎𝐼×𝑁, 

and thus we have the Result  that if we use in the estimation phase the weights 𝑤𝑗 = 1/𝜋𝑗, we obtain: 

𝑉𝑃[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] = 0. 

The same result may be obtained, if we consider the heteroscedastic linear model of the example (4.3). 

Indeed, using the  𝑤𝑗 = 1/𝜋𝑗  it is   

𝐆𝜆
′ = (∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′/𝜎𝑗
2)

−1

[∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗/𝜎𝑗
2 − (∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′/𝜎𝑗
2)(∑ 𝐱𝑗

𝑗∈𝑅
𝐱𝑗

′/𝜎𝑗
2)

−1

∑ 𝐱𝑗
𝑗∈𝑅

�̃�𝑗/𝜎𝑗
2] 

Remark.  1. The above examples make explicit the more general result according to which, if the 
parameter �̂� represents an unbiased estimate of the corresponding population parameter 𝒕 then the 

component 𝑉𝑃[𝐸𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝛌] of the AV vanishes. 

Remark.  2. The above result confirms the Result  5.10.1 in Sarndal et al. 1992. 

 

Example. 4.9. Consider the GLM model introduced in example 4.5 and suppose that the weights 𝑤𝑗 =

1  for 𝑗 ∈ 𝑆. According to the example (4.5), the estimating equations for the parameter �̂̃� can be 
defined as  

�̂�(�̂�) = 𝐅′𝑫(𝜆𝑗)𝚺𝑦
−1𝑫(𝜆𝑗)[�̂̃�(�̂̃�) − �̃�] = 𝟎𝐼 .   

where �̂̃�𝑆(�̂̃�) denotes the 𝑁 vector of the predictions �̂̃� estimated with the sample parameter �̂̃�.  

 

5. STRATEGIES FOR MAKING THE STAKEHOLDERS AWARE OF THE ACCURACY 

Two main strategies are suggested in the paper for making the user aware of the accuracy: 

1. The first is based on the development of a software applications that together with the 
production of the aggregates �̂�𝑑  will provide the user the estimates of the corresponding AV.  

2. The second is based on that developed for the synthetic presentation of the sampling errors in 
social sample surveys.  

Software application 

The plug-in estimate of the AV may be computed by replacing the estimates �̂� , �̂̃� and  �̂�𝑦instead of the 



 

 10 

unknown parameters 𝝑 , �̃� and 𝚺𝑦 in the expressions of the different components of the AV. 

According to Ziegler (2015, point 5, pp.121) these plug-in estimates are strongly consistent 
estimator of the different components of the variance. Other approaches  may be based on the 
Bootstrap methods (Scholtus, 2018).  

As far as concerns the computational feasibility of the proposal, let us consider that [𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] 

can be computed according to the matrix expression according to formula (4.2).  

Nevertheless, from the register perspective, the variance [𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀]  could be computed 

according to (4.1) applying the sum function. In particular, for each record k, the [𝑉𝑀(�̂�𝑑,𝑎𝑝𝑝)|𝝀] 

needs the knowledge of the following variables:  

 I  column variables such as: 𝑣�̂�𝒊|𝜆𝑓𝑖𝑘
2 ; 

 I  column variables such as: 𝑣�̂�𝒊|𝜆[𝑓𝑖𝑘(𝐹𝑖 − 𝑓𝑖𝑘)]; 

 I (I-1)  column variables such as: 𝑐�̂�𝑖,�̂�ℓ|𝜆
[𝑓𝑖𝑘(𝐹ℓ − 𝑓ℓ𝑘)], 

being 𝐹𝑖 = ∑ 𝑓𝑖𝑘𝑘  and 𝐹ℓ = ∑ 𝑓ℓ𝑘𝑘 . 

The above approach requires the storage of the above quantities,  but it  will be less 
computational demanding when the user asks for specific statistics because much of the 
computation is moved up. The sum of the columns for the records belong to the domain (the only 
parameter of the computation) must be carried out.  

Finally we note, that the parameters to stored for a given 𝑌 are [2I+ I (I-1)]. 

Synthetic presentation of the sampling error 

This approach largely used for the presentation of social surveys, is based on the hypothesis that the 
estimates �̂�𝑑 and their AV  are linked by means of a functional models, as for instance: 

𝐴𝑉(�̂�𝑑)

�̂�𝑑
2

= 𝜖2(�̂�𝑑) = 𝑓(�̂�𝑑, 𝛼1, … , 𝛼𝑞) + 𝑢𝑑 ,   

where 𝛼1, … , 𝛼𝑞 are unknown parameters and 𝑢𝑑  is an error term.  

From a practical point of view the estimates �̂�1, … , �̂�𝑞 of the parameters 𝛼1, … , 𝛼𝑞 are obtained with 

the standard regression techniques fitting the models on a cloud of different couple of points   

[
𝐴�̂�(�̂�𝑑)

�̂�𝑑
2

, �̂�𝑑] , 

where 𝐴�̂�(�̂�𝑑) is the estimate of the AV.  Then, on the basis of the parameters �̂�1, … , �̂�𝑞 , the users can 

compute the accuracy of their estimates by mean of  

𝐴�̂̂�(�̂�𝑑) = 𝑓(�̂�𝑑, �̂�1, … , �̂�𝑞)�̂�𝑑
2 

In practice this could be done with a software application, which should have stored the functional 
for of the function 𝑓 and the parameters �̂�1, … , �̂�𝑞 . 

A form of 𝑓 useful in practice for frequencies hypothesizes a decreasing relationship between the �̂�𝑑 
value and the 𝜖2(�̂�𝑑) : 

𝜖2(�̂�𝑑) = 𝛼1�̂�𝑑
𝛼2𝑢𝑑 . 

 
6. PRELIMINARY CONCLUSIONS 

In this document we have proposed different strategies which allow the different users of a 
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statistical register to be of aware of the accuracy of their estimates.  

The main result of this research line is the identification of the AV  as a suitable for  evaluating the 
accuracy of register aggregates and the definition of the computational formulae for defining its 
values, considering a simplified statistical setting.  

The main further steps in this research line are those of evaluating the strengths and robustness of 
the results with some simulation studies. 

Another aspect to be considered is that of the computational feasibility of the proposal. This is 
strictly related on the definition of the best strategy for presenting the accuracy to the users. 
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