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1. Introduction 
 

Data collected in statistical surveys are generally affected by different kinds of non-sampling 
errors. In Statistical Offices, procedures and tools are used at the post data capturing stage for 
identifying and eliminating errors that generally contaminate the collected data. Such procedures 
generally use sets of statistical or logical criteria (edits) expressing known relationships among the 
surveyed variables. These criteria are specifically designed for dealing with the different types of 
errors occurring during the overall survey process. A general distinction among errors refers to 
stochastic and non-stochastic errors, depending on their random or not random origin. Particularly 
in business surveys, an important further distinction has to be made between influential and not-
influential errors, depending on their effects on the final survey estimates. 

The identification of influential errors and other kinds of relevant errors (like unit measure errors 
and other systematic errors having a potential high impact on published figures) is generally 
performed in preliminary data editing steps in order to control the data variability at the publication 
level. Selective editing (Latouche et al., 1995) and macro editing (Granquist, 1992) are useful 
approaches in this context. 

Probabilistic algorithms like the Fellegi and Holt method (Fellegi et al., 1976) are specifically 
designed for identifying stochastic non influential errors in statistical survey data taking into 
account coherence constraints (edits) among the investigated phenomena. Generally, for any given 
unit do not satisfying a given (sub-) set of edits, the Fellegi and Holt methodology (FH in the 
following) allows the identification of the minimum number of fields to be changed in order to 
make the units passes all edits. A commonly used classification of edits makes a distinction between 
hard edits, pointing out fatal errors (e.g. certainly erroneous relations among data), and soft (or 
query) edits, identifying suspicious but not necessarily unacceptable data relations. When soft edits 
are used in probabilistic algorithms as if they were hard ones they can produce the misclassification 
as fatal errors of some amounts of correct data (e.g. representative outliers). In fact, in these 
algorithms errors due to the failure of any edit are always considered as fatal errors, regardless of 
the nature of the failed edit. Furthermore, users generally apply to data more edits than necessary 
(e.g. either useless edits in terms of their capability of pointing out ‘true’ errors or edits that do not 
highlight unacceptable situations). This problem could affect the effectiveness of the editing 
process, e.g. by determining over-editing and/or high percentages of acceptable data erroneously 
classified as unacceptable. 

From the above discussion it is evident that also in the editing phase, and particularly during the 
automatic data editing process, additional errors can be introduced among data because of an 
inaccurate design of edits. A very crucial problem in this context is then the rationalization and 
improvement of the edit rules used in the automatic error localization process. Granquist (1995; 
1996) underlines the importance of the accuracy in the definition of edits, and in particular of query 
edits, e.g. by eliminating unnecessary edits, by focusing on edits that do not identify influential 
errors, by improving the query edits bounds, by monitoring the impact of editing on data. 

The availability of generalized software for automatic editing allows at present the application of 
different editing techniques at low costs and time. Among others, the FH approach is at present 
available in a number of generalized packages (for both categorical and continuous data) developed 
in different National Statistical Offices: for continuous variables see Winkler et al. (1997a), Kovar 



et al. (1988), Kovar et al. (1996); De Waal (1996), Todaro (1999); for categorical variables see 
Riccini et al. (1995), Garcia Rubio (1990), Winkler et al. (1997b). The main advantages related to 
the use of these packages are the reduction of the editing costs, the standardization and the full 
documentation of the automatic editing step and the minimisation of the number of modifications of 
the original data under some general conditions. The FH approach is useful for detecting errors 
originated by random mechanisms, so their use is theoretically not appropriate for localizing other 
types of errors (e.g. systematic errors). 

In the paper we describe a strategy for monitoring and improving the effectiveness of editing 
rules (in particular, ratio edits) to be used in the FH methodology for continuous business data. The 
adopted FH algorithm is that implemented in the Generalised Edit and Imputation Software (GEIS) 
(Kovar et al., 1988; Cotton, 1991). In the proposed strategy, we concentrated on the definition and 
analysis of query edits. To this aim, the Hidiroglou and Berthelot algorithm (Hidiroglou et al, 1986) 
was used in combination to Exploratory Data Analysis techniques (EDA in the following). The 
Hidiroglou and Berthelot algorithm (HB in the following) has been originally proposed for defining 
acceptance bounds of longitudinal ratios (ratios between current and historical values of a same 
variable). In the strategy proposed in this paper the algorithm is used to find bounds for query edits 
having the form of ratios between related variables. EDA (Tukey, 1977; Ellfors et al., 2000) 
represents a powerful approach for analysing statistical data structures and relations supported by 
appropriate graphical representations.  

Taking into account that the FH algorithm works in the best way in presence of only random 
errors, the study has been performed in order to verify to what extent the algorithm itself can be 
adapted for dealing with any kind of errors.  

The research activities and the results presented in the paper have been produced in the context 
of the EUREDIT project (www.cs.york.ac.uk/euredit/). 

The paper is structured as follows. In paragraph 2 the overall strategy and the methods used for 
improving the effectiveness of edit sets including query edits in an automatic context are described. 
Paragraph 3 contains a description of an application of that approach to a sample of the U.K. 
Annual Business Inquiry data. 
 
 
2. The methodological approach 
 

When using soft (or query) edits in probabilistic editing algorithms the main risk is the potential 
misclassification of correct data as erroneous. Particularly in business surveys, a generally high 
number of query edits having the form of ratios1 is used in combination with fatal edits in order to 
identify statistically or mathematically non-consistent data. The use of these rules for units 
containing only non fatal errors (for example, unusual or anomalous but acceptable relations among 
variables) can be dangerous because of various reasons: 

- the imputation of values of these units determines the replacement of true data with erroneous 
ones, i.e. the introduction of additional errors among data; 

- the imputation of values of these units generally produces modifications of the variability of 
original data (for example, in case of continuous data, because of the truncation of the 
distribution tails). 

 
For these reasons, when adopting automatic probabilistic algorithms for data editing, it is crucial 

to properly define the set of consistency rules in order to guarantee an acceptable trade off between 
correctly detected and resolved errors and risk of potential data misclassifications. In particular, 
query edits are to be limited and carefully defined: often the introduction of few query edits or the 

                                                
1 a ratio check has the form a<X/Y<b, were X and Y are related variables. 



slight modification of query edits bounds may produce significant effects on data in terms of correct 
data classification. 

In this section we propose a strategy for analysing and improving the effectiveness of query edits 
for continuous business survey data. This strategy consists of several combined analyses, performed 
by using different techniques in an integrated manner. The applicability of the proposed approach 
implies that the editing procedure for the current survey is defined and tuned by using a data set 
(called test data set) having the same characteristics of current data but for which the subject-matter 
expert has information on both the errors location and the corresponding ‘true’ data. This situation 
can be either artificially obtained by simulating errors among edited data, or approximated by using 
data from a previous survey repetition for which both the raw and the final edited data are available. 

For any given initial set of editing rules, the proposed strategy consists of the following main 
analyses: 

- identifying ineffective query edits; 
- defining new soft edits; 
- defining new bounds for the ineffective edits. 

The first analysis aims at identifying soft edits that potentially produce data misclassification. 
The second analysis is based on the fact that the FH algorithm is effective when each variable to be 
analysed is involved in many hard rules, or, in other words, when the edit rules are strongly 
dependent one each other (“well connected set of edit”).  

In this experimental situation, the given error localization procedure can be tuned on test data by 
measuring and analysing its capability of correctly classifying data, through appropriate quality 
indicators (Chambers, 2000).  

Once methods have been applied and tuned on test data, the obtained results can be used as a 
starting  point for  building the actual  editing strategy. The underlying assumptions here are 
that:  1) the surveyed phenomena maintain similar behaviour, distributions and relations from one 
period to the next one, and  2) the error mechanisms are similar in the test and in the actual survey 
data. 
 
The proposed strategy consists of the following main phases: 

1 on test survey data: 

a) analysis of the original set of query edits in order to identify possibly ineffective rules; 

b) graphical analysis of relations between items in order to both assess the significance of 
ineffective query edits and possibly identify new query edits; 

c) by using statistical methods, identification of appropriate bounds for the new query edits and 
determination of new most effective bounds for the originally ineffective rules; 

d) by iterating the application of the FH algorithm using the different potential sets of edits, 
identification of the optimal set of rules based on the analysis of some performance 
indicators (in particular, the probability of correct data classification); 

2) on the actual raw data: 

a) (only if different items are surveyed in actual data with respect to the test ones) graphical 
analysis of the relations between items in order to possibly identify new soft edits; 

b) by using statistical methods, determination of bounds for both the new query edits and the 
originally ineffective ones taking into account the results obtained in step 1.c). 

 
Step 1.d) is possible because of the knowledge of the true data and errors in the test survey data. In 
this situation it is in fact possible to measure the effects on data of the edit rules (Chambers, 2000), 
and to analyse the changes in these effects due to changes of the editing strategy.  



The methodologies and approaches used in each step are described in the following subsections. 
 

2.1. Analysis on test data: identification of ineffective query edits 

As already mentioned, the use of soft rules as if they were hard ones may cause anomalous but 
acceptable records are targeted as erroneous. This risk can be estimated by means of different 
measures: 

1. the failure rates of query edits; 

2. the probabilities of correct data classification associated with the applied edit rules (Chambers, 
2000), based on contingency tables reporting the frequencies of actual vs predicted error status. 
These probabilities are based on the classification of each value of a given variable Y observed 
on n sampling units with respect to its status before the editing process (erroneous or true value) 
and its status after the editing process (suspicious or acceptable value). Therefore for each 
variable Y we have the following cross-classification table (Table 1): 

 
Table 1 – Cross classification table of original vs edited values 

 S = 0 S = 1 
E = 0 na nb 
E =1 nc nd 

 
where E=0 if a value is true and 1 otherwise, S=0 if the value is classified as acceptable by the 
error localisation algorithm and 1 otherwise, na+ nb+ nc+ nd = n. It is obvious that high 
frequencies in the table diagonal indicate good performance of the error localisation in terms of 
correct data classification. The probabilities of wrong data classification can be easy obtained 
as: 

α = nc/(nc + nd) (not detected errors out of the total number of errors); 

β = nb/(na + nb) (true data classified as erroneous out of the total number of true data). 
 
 

2.2. Analysis on test data: identification of potential new query edits  

It is well known that the effectiveness of the FH algorithm increases when variables are involved 
in a well connected set of hard rules: a typical example is represented by a double contingency table 
with row and column totals, or crossed ratio edits between couple of strictly related variables. 

Often some item is involved in too many constrains with respect to the other ones so that the FH 
algorithm, based on the minimum change criterion, doesn't work in a balanced way. In these cases, 
the behaviour of the algorithm can be influenced either by balancing the set of edits (for example by 
adding further edits to the initial ones or by eliminating not effective rules) or by modifying the 
reliability weights2 associated to variables. The latter strategy is generally used to take into account 
in the editing algorithm of the different level of reliability of each analysed variable.  

In this phase of the data analysis, our objective is to identify new query edits that potentially 
improve the effectiveness of the error detection algorithm without increasing the over-editing risk. 

                                                
2 Although the error localisation algorithm determines for each erroneous unit the minimum number of fields to be 
changed (solution of minimum cardinality), the user can exert some influence on its choice through the utilisation of 
weights. Weights are assigned to variables depending on the user believe about variable reliability in an edit group. If 
weights are attached to variables, the criterion used to determine which fields should be imputed is still based on the 
minimum change criterion. However, in this case, the cardinality of the solution is given by the sum of the weights of 
fields involved in the solution instead of the number of fields. 



To this aim we propose an approach based on the joint analysis of following elements: data 
distributions and relations, failure rates of edits, classification probabilities α and β defined in 
section 2.1. 

Marginal and joint data distributions are graphically explored by using the EDA tools available 
in the SAS Insight module. EDA has shown itself to be an important methodology in the context of 
data editing, in the analysis of data, and for identifying outliers and inliers. Des Jardins et al. (2000) 
analyse the main advantages of using EDA for exploring data relations and editing statistical data 
and show how graphical methods can be easily applied to discover features that conventional 
methods could not highlight. Further, EDA is particularly helpful when data relations vary 
markedly in different data clusters (e.g., when using ratios, the use of graphical representations 
allows to highlight unpredictable changes of relations among items in different strata). 

New software packages make it straightforward to perform several graphical analyses. These 
tools often allow the application of even sophisticated methods in a simple and quick manner. Some 
generalised tools implementing graphical approaches for exploring data have been developed (see 
for example Esposito et al., 1994; Houston et al., 1993). In this context, a powerful tool is 
represented by the SAS Insight module available in the SAS software. Many data representations 
and statistical analyses can be performed by jointly using a high number of tools, the simplest are 
scatters and box plots, regressions, analysis of residuals and so on. Furthermore, data 
transformations can be easily performed allowing the inspection of data relationships in the most 
appropriate scale. 

In our application, possible new query edits have been identified by analysing the marginal and 
two-dimensional data distributions through scatter and box plots, using in some cases data 
transformations in order to better investigate some specific surveyed phenomena. Evidence of 
strong linear relations among pair of logically related items suggested testing the use of these 
relations for building new ratio edits. 

By analysing marginal distributions of selected variables, univariate query edits are also defined 
in order to check that values of a given item are inside an appropriate acceptance region. An 
important reason for using univariate query edits in the FH algorithm is increasing the capability of 
the algorithm itself of detecting particular kinds of errors (like consistently reported unit measure 
errors or other kinds of non representative outliers that cannot be identified by using ratios). 
 

2.3. Analysis on test data: find bounds for the original and the new query edits  

Once the new potential query edits (ratios and univariate ones) have been identified, their 
optimal acceptance bounds are to be determined. In the application we developed a procedure based 
on the Hidiroglou and Berthelot algorithm (Hidiroglou et al., 1986) for identifying acceptance 
bounds for ratio and univariate3 edits. We also developed an algorithm for calibrating the 
Hidiroglou and Berthelot (HB in the following) parameters when historical data are available for a 
sample of units that differs from the one currently available.  
 
 

2.3.1. Determining acceptance bounds for ratio edits 

Given two related variables Yj and Yk observed on a given sample s, we want to determine the 
acceptance bounds of the distribution on s of the ratio R = Yj/Yk. To this aim, we use the following 
algorithm based on the HB method: 
 
1. symmetry the distribution of R through the following transformation: 

                                                
3 Given the marginal distribution of a variable Y observed on a sample s, an univariate edit corresponds to an acceptance 
region determined on the Y distribution on s. 



ei=1-(rmedian/ri) if ri < rmedian (and in this case results ei < 0); 
ei=(ri/rmedian)-1 if ri ≥ rmedian (and in this case results ei > 0), 

where ri = yji/yki   is the value of R in the unit i and rmedian is the median of the R distribution. 
 
2. Define the lower (L) and upper (U) acceptance bounds as:  

L = einf = emedian – C × dQ1  
U = esup = emedian + C × dQ3 

where: 
- dQ1 = MAX { emedian - eQ1 , A×emedian }     and     dQ3 = MAX {eQ3 - emedian, A×emedian } 
- eQ1, emedian, eQ3 are respectively the first quartile, the median and the third quartile of the ei 

distribution; 
- A is a suitable positive number introduced in order to avoid the detection of too many 

outliers when the ei are concentrated around their median; 
- C is a parameter used for calibrating the acceptance region width. 

 
3. Express the acceptance bounds (rinf, rsup) of the original distribution through the following back-

transformation: 
 rinf = rmedian/(1-einf) 
 rsup = rmedian×(1+esup). 

A central role in determining the acceptance limits for a given ratio is played by the C 
parameter. Roughly, C is a calibration parameter measuring the size of the acceptance region. We 
tried to develop an algorithm to "estimate" C from data. In particular, we implemented a 
generalized procedure calibrated on historical data that can be applied to current data, making the 
assumption that in the two considered periods the variable distribution as well as the error 
mechanism generating outliers are similar. 

In this procedure we exploit the availability of both true and raw values for historical data. In 
fact, in this case, for each algorithm parameters setting we are able to build a 2x2 contingency table 
T containing the cross frequencies of original status (erroneous, not erroneous) vs post-editing 
status (suspicious, acceptable). It is obvious that the higher are the correct classification frequencies, 
the better is the quality of an editing method. Since in general the two correct classification 
frequencies (erroneous data classified as suspicious and not erroneous data classified as acceptable) 
cannot be simultaneously maximized, a “best” contingency table can be found only in subjective 
way: for example if it is believed that to classify as suspicious a correct value is more dangerous 
than to accept an erroneous value, the two erroneous classification frequencies are “weighted” in 
different way. 
 
Algorithm applied to historical data 

1. Initialize parameters A (A=0.05 as generally suggested), C, and a “step” parameter S; the 
initial values C0 and S0 depend on ratio distribution characteristics.  

2. Repeat the following steps several times for different values of S: 
o iterate the revised HB method for K different  values Ck, where Ck = Ck-1 + S and K is 

chosen so that the resulting acceptance region will include the most extreme not 
erroneous value;  

o  for each Ck analyze the correspondent 2x2 contingency table Tk and identify Tk = T* 
“optimum”. 

3. Determine the S* generating the same T* a "high" number of times.  
 
 



Algorithm applied to current data 

1. For k=1,…K, detect outliers through revised HB method with Ck = Ck-1 + S*. 
2. Choose the “optimum” C* among Ck producing the same number of detected outliers a 

"high" number of times. 
 
2.3.2. Determining acceptance bounds for univariate edits 

The determination of the acceptance bounds for the marginal distribution of a given variable Y 
(univariate edit) has been performed by following the same procedure used for ratio edits. In this 
case, the previous algorithms are directly applied on the marginal distribution of Y.  
 
 

2.4. Analysis on test data: identifying the ‘best’ set of edits  

The selection of the final editing strategy is performed by analysing the results obtained by applying 
on test survey data different sub-sets of constraints (chosen among the original edits and the new 
ones) and analysing the corresponding results. The adopted quality indicators correspond to the 
probabilities α and β defined in section 2.1. The optimal set of edits is obviously the one that 
produces the best trade-off between α and β. A more accurate evaluation should take into account 
also the relative importance of detected/undetected errors: further analyses are requested to this aim. 
 
 
 
3. The experiment 

In this paragraph we illustrate the application of the strategy described in the previous section 
and the corresponding results. 

Data used for the experiment are subsets of a sample of the U.K. Annual Business Inquiry 
inquiry (ABI), provided by the U.K. Official National Statistics in the context of the EUREDIT 
project. Only one Economic Sector has been considered in the application, while two years data 
(1997 and 1998) have been used. Both true and artificially contaminated data have been made 
available for the year 1997: these data have been used as test ones. The test sample consists of 6,099 
records, while 6,233 observations are to be analyzed for 1998. Each record corresponds either to a 
long or to a short form. The data sets contain responses to selected questions from the ABI: there 
are some differences in the definition and treatment of some items between long and short forms 
and between years. Out of the 33 collected variables in long forms, 27 ones have been artificially 
perturbed and need to be edited. Out of the 17 items reported in short forms, 11 need to be edited. 
Because of the need of working within homogenous sub-sets of data, the ABI samples have been 
stratified by form type and class of registered turnover (large businesses have registered turnover 
greater than 1 million of pounds). Therefore, the overall data processing has been split in several 
sub-analyses, each referring to a different stratum. 

The original ABI set of edits consists of 25 rules (hard and soft). Unfortunately, being most of 
the variables involved in not more than two edits, the initial set of edits doesn’t form a well 
connected ‘grid’ of constraints among items. Furthermore, most of the edits are soft with too narrow 
acceptance regions. For these reasons, starting from the initial set of edits, we tried to improve the 
effectiveness of the editing process by introducing new edits and by redefining the acceptance 
region of some of them. In particular we have introduced both ratio and univariate edits. Univariate 
edits have been defined only for the most important employment variables, originally involved in 
too few edits. In this way the main variables are involved in a larger number of edits and the system 
is more effective in identifying errors. 
 



3.1. Analysis of original query edits 

The analysis of the original edits has been performed by using the measures introduced in section 
2.1. The failure rates of the original query edits range from a minimum of 1.22% to a maximum of 
21.7% for long forms, while in the subset of short forms they range from a minimum of 3% to a 
maximum of 27.6%. Furthermore, it has to be noted that the original set of ABI rules is quite poor, 
in the sense that edits do not form a well connected ‘grid’ of constraints among variables: each 
variable is in fact involved in one or at maximum two hard edits, and the most important survey 
variables (e.g. TURNOVER, NUMBER OF EMPLOYEES) are involved only in few soft edits. As a result, 
by using the original set of (hard + soft) edits in the FH probabilistic algorithm, it does not work in 
the optimal conditions. This is directly indicated by the probabilities α and β of correct/erroneous 
data classification computed after the application on the test data of the FH algorithm using the 
original set of rules. In the first part of tables 1 and 2 the α and β probabilities obtained using the 
original edits are reported for the main survey variables TOTAL EMPLOYEES COSTS, EMPLOYEES 
WAGES AND SALARIES, NUMBER OF EMPLOYEES, TURNOVER, TOTAL PURCHASES separately for long 
and short forms. 
 

3.2.Identifying potential new query edits 

As discussed in section 2.2, the identification of new rules has been performed by a graphical 
analysis of the marginal and joint distributions of the considered variables. Data distributions have 
been explored within specific domains where appropriate. Data transformations (e.g. in logarithmic 
scale) have been performed when useful. 

As an example of graphical representation and analysis of data relations and errors, in figures 1 
and 2 multiple scatter plots of transformed variables (logarithm of TURNOVER, REGISTERED 
TURNOVER and TOTAL PURCHASES) are shown. Data refer to a given data domain, i.e. long forms 
having the registered turnover less than £1,000,000 (small long forms). The plots reported in figure 
1 have been obtained from the true test data, while in figure 2 the same plots refer to the raw test 
data. As it can be seen from both plots, strong relationships exist between the three analysed items, 
thus confirming the opportunity of including the corresponding ratios in the editing strategy. 

Furthermore, figure 2 brings to light the existence of markedly separate clouds of observations.  
These clusters could include both acceptable but unusual data relations (representative outliers) 

and erroneous data. For example, by observing the l_turnover (logarithm of TURNOVER) vs 
l_turnreg (logarithm of the REGISTERED TURNOVER) scatter plot it is evident as a same relation 
between these two items exists in the two clusters, but it is also probable that the upper cloud 
corresponds to observations affected by consistent systematic errors due to a wrong measure unit. 

Our aim is to design the edits in order to make the FH algorithm identify also this kind of errors, 
taking under control the probability that original true data are classified as unacceptable. 

 

3.3. Find bounds for both original and new query edits 

The bounds of query edits were found by following the procedure illustrated in sections 2.3.1 (for 
ratios) and 2.3.2 (for univariate edits). 

 

3.4. Identifying the ‘best’ set of edits 

The optimal set of edits has been determined based on the following procedure: 

1) out of the original set of edits, select all the hard ones (starting set of edits); 

2) taking into account the percentages of true data failing the original query edits, include in 
the starting set of edits the original soft edits not requiring the revision of their bounds; 



3) include in the starting set of edits the original edits judged as ineffective with bounds 
revised as described in previous sections; 

4) select the optimal set of edits by analysing the α and β probabilities produced by using 
different sub-sets of query edits defined in steps 2 and 3 in association to the hard ones. 

 

Figure 1 – Multiple scatter plots of logarithms of Total Turnover (l_turnover), Registered Turnover 
(l_turnreg) and Total of Purchases (l_purtot) for the Small-Long Forms stratum on the true 1997 
survey data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2 – Multiple scatter plots of logarithms of Total Turnover (l_turnover), Registered Turnover 
(l_turnreg) and Total of Purchases (l_purtot) for the Small-Long Forms stratum on the raw 1997 
survey data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l _t urnreg

0. 0000

6. 9027

l _pur t ot

0. 0000

12. 1731

l _t urnover

0. 0000

12. 2534

l _t urnover

0. 0000

13. 8251

l _t urnreg

0. 0000

6. 9027

l _purt ot

0. 0000

13. 5986



 

It is important to stress the fact that, in the latter step, different combinations of variable weights 
have been tested for any given set of edits. 

For each type of form and for each variable of interest, in tables 2 and 3 we report the results 
obtained by using the original and the optimal set of edits. In each table, the cross-classification 
table associated to each variable has the form of Table 1 (see section 2.1): rows indicate the status 
of the true variable values (E=0 → not erroneous value; E=1 → erroneous value), while columns 
indicate the status of the edited variable values (S=0 → value classified as not erroneous; S=1 → 
value classified as erroneous). Frequencies of cells out of the main diagonal correspond to the α and 
β misclassification probabilities. 
 
 
Table 2 – Long forms - Cross-classification of values by variable and set of edits 

 Original edits  Revised edits 

FIELD   S=0 S=1 Total  S=0 S=1 Total 

E=0 1,261 (89.18) 153 (10.82) 1,414 E=0 1,364 (96.74) 46 (3.26) 1,410 

E=1 3 (4.48) 64 (95.52) 67 E=1 7 (10.45) 60 (89.55) 67 
TURNOVER 

Total 1,264 217 1,481 Total 1,371 106 1,477 

E=0 1,379 (99.78) 3 (0.22) 1,382 E=0 1,370 (99.42) 8 (0.58) 1,378 

E=1 86 (86.87) 13 (13.13) 99 E=1 42 (42.42) 57 (57.58) 99 WAGES OF 

EMPLOYEES 
Total 1,465 16 1,481 Total 1,412 65 1,477 

E=0 1,356 (99.41) 8 (0.59) 1,364 E=0 1,357 (99.78) 3 (0.22) 1,360 

E=1 106 (90.6) 11 (9.4) 117 E=1 64 (54.70) 53 (45.30) 117 
TOTAL 

EMPLOYEES 

COSTS 
Total 1,462 19 1,481 Total 1,421 56 1,477 

E=0 965 (66.37) 489 (33.63) 1,454 E=0 1,430 (97.54) 36 (2.46) 1,466 

E=1 8 (29.63) 19 (70.37) 27 E=1 9 (81.82) 2 (18.18) 11 
NUMBER OF 

EMPLOYEES 
Total 973 508 1,481 Total 1,439 38 1,477 

E=0 1,244 (93.6) 85 (6.4) 1,329 E=0 1,306 (98.27) 23 (1.73) 1,329 

E=1 136 (89.47) 16 (10.53) 152 E=1 80 (54.05) 68 (45.95) 148 
TOTAL 

PURCHASES 
Total 1,380 101 1,481 Total 1,386 91 1,477 

 
 

In case of long forms, for example, for the TURNOVER the final set of rules minimises the 
probability of introducing new errors in the data (in fact, the probability β of classifying original 
true data as errors decreases from 10.82% to 3.26%). This high improvement has a negative impact 
on the edits capability of recognising errors (in fact the probability of classifying true errors as 
acceptable increases from the original 4.48% to 10.45%).  

A similar result has been obtained for the NUMBER OF EMPLOYEES, but in this case the reduction 
of the β probability is higher than in the previous case (it decreases from 33.63% to 2.46%). Also in 



this case this result is associated to a lower capability of the algorithm to identify true errors (α 
increases from 29.63% to 81.82%). 

Different effects correspond to variables WAGES OF EMPLOYEES and TOTAL EMPLOYEES COSTS: 
in both cases the capability of the error localisation algorithm of correctly classifying true data is 
high and similar. In these cases, the probabilities of correctly classifying true errors as unacceptable 
increase for both items (e.g., the percentage of detected true errors for TOTAL EMPLOYEES COSTS 
increases from 9.4% to 45.3%). 

A mixed situation characterises the TOTAL PURCHASES: in this case, both the α and β 
probabilities of erroneously classifying data decrease when using the revised set of edits. 

Similar considerations can be performed for short forms (Table 3). 
 
 

Table 3 – Short forms - Cross-classification of values by variable and set of edits 

 Original edits  Revised edits 

FIELD   S=0 S=1 Total  S=0 S=1 Total 

E=0 3,916 (88.96) 486 (11.04) 4,402 E=0 4,348 (98.77) 54 (1.23) 4,402 

E=1 198 (91.67) 18 (8.33) 216 E=1 41 (19.07) 174 (80.93) 215 
TURNOVER 

Total 4,114 504 4,618 Total 4,389 228 4,617 

E=0 3,388 (77.67) 974 (22.33) 4,362 E=0 4,361 (99.98) 1 (0.02) 4,362 

E=1 218 (85.16) 38 (14.84) 256 E=1 57 (22.35) 198 (77.65) 255 
TOTAL 

EMPLOYEES 

COSTS 
Total 3,606 1,012 4,618 Total 4,418 199 4,617 

E=0 3,574  (78.64) 971 (21.36) 4,545 E=0 4,532 (99.74) 12 (0.26) 4,544 

E=1 59 (80.82) 14 (19.18) 73 E=1 35 (47.95) 38 (52.05) 73 
NUMBER OF 

EMPLOYEES 
Total 3,633 985 4,618 Total 4,567 50 4,617 

E=0 4,027 (97.91) 86 (2.09) 4,113 E=0 4,078 (99.15) 35 (0.85) 4,113 

E=1 489 (96.83) 16 (3.17) 505 E=1 402 (79.76) 102 (20.24) 504 
TOTAL 

PURCHASES 
Total 4,516 102 4,618 Total 4,480 137 4,617 

 
 

From the previous results it results a general low capability of the editing strategy of correctly 
identifying true errors (all the alpha values are quite high). This fact depends on some main reasons. 
First of all, as already mentioned in previous sections, the FH algorithm works in an optimal way 
when variables are involved in many edit rules and the error mechanism is random. In case of ABI, 
most of the variables appear just once in the edits. Furthermore, since most of the edits are soft and 
the corresponding acceptance regions are too narrow, we had to enlarge them in order to avoid the 
classification as errors of acceptable data. Because of the poor knowledge of the investigated 
phenomena, we preferred approaching the problem by prioritizing the identification of very large 
errors, and minimizing the probability of misclassifying correct data. Since most of large errors in 
this survey correspond to the systematic error “variable values multiplied by a 1,000 factor”, the 
correct way of dealing with them in a real context is to preliminary identifying them through 
appropriate techniques. On the other hand, since our main goal was to evaluate strengths and 



weaknesses of probabilistic editing, we tried to use the FH algorithm also for identifying this kind 
of error, even if it is a priori known that this approach is not suitable to this aim.  

Results show that the variables involved in a higher number of edit rules are those with lower α 
values (TURNOVER, WAGES OF EMPLOYEES and TOTAL EMPLOYEES COSTS). It has also to be 
observed that β values are generally very low, as a consequence of the attention paid to the 
misclassification of acceptable data.  

In any case, it is useful to note that a natural decrease in the quality of the editing process of 
1998 compared with 1997 data is expected, since in the latter case we calibrated the procedure 
parameters knowing the true values. However since for some variables the decrease is quite 
remarkable, this seems to suggest further causes. 

In such situations, a first analysis should be addressed in order to verify if the error mechanism 
in the two surveys can be considered the same. In fact, the approach of editing a survey through a 
strategy calibrated on a development dataset (a previous survey where original contaminated data 
and imputed data are available) is strongly based on the assumption that the error mechanism 
affecting data is basically the same. It is obvious that a direct comparison of the error mechanism 
cannot be made, nevertheless other indirect information might be useful: for instance the analysis of 
the frequency of the edit failures in the two years. It is also clear that a change in the error 
mechanism in just one variable may affect the editing performance also on the others, because all 
variables are connected by the overall grid formed by the edit rules. 

As already mentioned in the paper, an important aspect to be further investigated relates to the 
importance of not identified errors, in terms of potential biasing effects on final figures. On the 
other hand, in our application we observed that the actual optimal editing strategy is able to identify 
the most part of biggest errors affecting test data (this result can be observed in Figure 2, where 
light points correspond to data classified as erroneous by the probabilistic error localisation 
algorithm). An acceptable percentage of errors are “lost” in the upper clusters, making us confident 
about the quality of results also in terms of preservation of aggregates and distributions. However, 
further investigations are needed concerning these aspects. 
 
 

3.5. Identifying the ‘best’ set of edits for the current survey repetition 

In order to build the editing strategy for the current survey data, the same approach adopted in 
the definition of the final editing procedure for test data has been followed. Similar criteria have 
been used for obtaining strata and for defining the edits and the FH parameters, exploiting the 
experience coming from the test phase. In other words, the editing strategy for current data has been 
designed by essentially reproducing the process of data and parameter definition followed for test 
data.  

A similar approach and the same algorithms described in paragraphs 2.3.1 and 2.3.2 have been 
adopted for defining the bounds of query edit in each data domain. The final set of edits for current 
data has been defined by reproducing as much as possible the final structure of rules applied to test 
data.  
 
 
4. Conclusions 

In Official Statistics, large part of survey data are edited by using automatic procedures using 
pre-specified sets of rules checking for the coherence of the captured information. The potential 
drawbacks of using inaccurate or inappropriate edits in automatic editing are well known: for 
example, the increasing risk of introducing new errors among data, as a consequence of the 
misclassification of true data as errors, and the amplification of the risk of biasing effects on 
marginal and joint observed distributions. Particularly in business surveys, these problems can be 



more relevant because of the use of the so called query edits (in particular, ratio eidts), which 
bounds are to be carefully determined in order to limit the above mentioned risks. 

In the paper, a strategy for analysing and improving the effectiveness of the automatic editing in 
business surveys when using probabilistic algorithms is illustrated. This strategy aims at analysing 
the query edits effects on data in order to improve their effectiveness, and uses test data for 
designing an otpimal editing strategy (in terms of probability of correct data classification). In the 
adopted approach Exploratory Data Analysis (EDA) and the Hidiroglou and Berthelot method are 
combined together. 

In the paper we concentrated on the probabilistic algorithms for editing continuous data 
proposed by Fellegi and Holt as implemented in the GEIS software.  

From the analysis of the application results, all the main elements characterizing strength and 
weakness of an editing strategy based on the Fellegi and Holt approach have been highlighted. The 
main problem relates to the setting of the edit rules. This is not a simple task: in fact, if on one hand 
edits must form a grid of "well connected" rules, on the other hand they have to be thought in order 
to avoid the problem of over-editing. A similar trade-off problem arises when soft edits are 
introduced. Since the algorithm interprets soft edits as they were hard, the acceptance regions of 
each soft edit rule must be large enough in order to not cut the tails, but at the same time strict 
enough in order to find as many errors as possible. A further problem whith the Fellegi and Holt 
approach relates to its ability of dealing in the appropriate way with not random error mechanisms. 
The application has shown that even if the effectiveness of the probabilistic error localization results 
can be markedly improved by carefully designing the edit rules, the most appropriate way of 
dealing with non-sampling errors other than the random ones (e.g. representative and non 
representative outliers and systematic errors) remains their treatment before any automatic data 
processing phase. 
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