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Sommario 

Le tecniche di partizione ricorsiva note come alberi di regressione sono comunemente 

utilizzate per predire valori mancanti di variabili numeriche continue dovuti a fenomeni di 

mancata risposta. I valori mancanti di un certo item statistico sono predetti sulla base di un 

insieme di covariate considerate esplicative del fenomeno oggetto di ricostruzione (o 

target). Diversi modelli per la costruzione di alberi di regressione possono essere utilizzati 

in combinazione con diverse tecniche di imputazione al fine di ottimizzare l’accuratezza 

dei risultati finali. Nel lavoro viene presentata un’applicazione sperimentale in cui diversi 

modelli di alberi di regressione sono utilizzati in combinazione con tradizionali tecniche di 

imputazione per la ricostruzione di valori mancanti simulati su dati di impresa. 

 

 

Abstract 

Regression trees are tree-structured methods generally used to predict missing values for 

continuous variables affected by non response. For a given statistical item (target 

variable), missing values are predicted on the basis of a set of explanatory variables 

(covariates). Different regression tree models can be used in combination with different 

imputation techniques, in order to optimise the accuracy of final results. In the paper an 

experimental application in which different regression tree algorithms are combined to 

traditional imputation methods to predict artificial missing values in a business survey is 

illustrated. 



  

 

1. Introduction1 

In Official Statistics non-responses represent the failure to obtain some of the asked 

items of information for some individual sample members. Generally, a distinction is made 

among unit (total) non-response and item non-response. A unit non-response corresponds 

to the absence of any information for a given sampling observation. A item non-response 

occurs when a given unit does not provide information for a subset of the questionnaire 

items.  

Different procedures can be used to compensate for non-response (Kalton et al., 1986; 

Grande et al., 2003). Total non-responses are generally compensated by using re-weighting 

procedures, while item non-response is generally dealt with by imputation, which covers 

many techniques aiming at predicting suitable values for the missing items.  

In the paper the quality of some imputation methods, supported by the use of 

regression trees, is evaluated through an experimental application on business data. 

Regression Trees are tree-structured methods used to predict the unobserved values of a 

continuous variable (target variable) by using appropriate explanatory variables 

(covariates). These methods, introduced by Breiman et al. (1984), perform a recursive 

partition of the measurement space in order to create subgroups of the target variable 

values characterised by increasing internal homogeneity.  

In the application presented in the paper, different tree-models are built on 

experimental data. To this aim, the algorithms available in the SPSS software Clementine 

6.5 have been used. The resulting data partitions are used in the imputation process: two 

imputation techniques have been used in each partition to compensate for non-response: 

the mean within cell and the random donor within cell techniques. A comparative 

evaluation of the statistical effects of imputation for each regression tree model has been 

performed. 

In section 2 general issues on imputation and its link with regression trees are 

discussed. Section 3 contains the description of methodological aspects relating to 

regression trees. In section 4 the regression trees algorithms available in the software 

                                                 
1
 Il lavoro è stato svolto nell’ambito del programma di stage 2002 ISTAT/Agenzia Lazio Lavoro (Area 

Metodologica) presso la struttura MPS/B dell’ISTAT. A Enrico Grande vanno attribuite le attività di ricerca 

sulle metodologie illustrate, la loro sperimentazione e la valutazione comparativa dei risultati, nonché la 

stesura del lavoro. A Orietta Luzi vanno attribuiti l’impostazione generale e il supporto metodologico nelle 

attività di ricerca, sperimentazione e valutazione. 



  

 

Clementine 6.5 are described. Finally, section 5 contains the description of the 

experimental application and results. 

 

2. Imputation and Regression trees  

 

In imputation, missing information is “predicted” by exploiting the available information 

coming from observed data. In other words, missing values are expressed as function of 

one or more observed items (covariates) used as explanatory variables for the investigated 

phenomenon. Almost all imputation techniques can be considered as special cases of the 

following general regression model: 

 
j
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where miy  represents the predicted value for variable Y missing in unit i, mijz  is the jth 

covariate value in unit i, 0r and rj  are the regression coefficients of Y on Z computed on 

respondents, mie  is a residual random term. If we assume 0mie  for any i, the imputation 

technique is said to be deterministic, otherwise it is defined as stochastic. The choice 

among different imputation techniques depends on the statistical objectives of the survey. 

Some applications can be found in Cirianni et al., 2001, Laaksonen, 2000, Di Zio et al., 

2003. 

In Official Statistics, the use of imputation for dealing with item non-responses is justified 

in literature on the basis of the following considerations (Kalton et al., 1982): imputation 

aims at reducing the effects on final estimates (in terms of both bias and precision) due to 

the presence of missing information (roughly, the effects due to the differences among the 

observed and non-observed data); imputation is carried out mainly for obtaining complete 

and consistent data sets that can be handled by traditional statistical data analysis tools; 

finally, imputation avoids inconsistent analyses that could arise if incomplete data are used. 

On the other hand, imputation can only reduce non-response bias with respect to known 

information: if this information is not properly modelled or if it is not used at all in the 

imputation model, imputation may distort the variables distributions and/or the data 

relations. Furthermore, once data have been completed by imputation, there is also the risk 

that analysts may treat the completed data set as if all the data were actual responses, 



  

 

thereby overstating the precision of the survey estimates. A critical problem when dealing 

with imputation is the measurement of its effects on data relations (Kalton et al., 1986): for 

example if the study of data relations among a variable Y to be imputed and other survey 

variables is one important survey objective, these variables are to be used in the imputation 

model adopted for Y. For justifications and a discussion about statistical effects of 

imputation see Kalton et al. (1982). 

Imputation techniques require that missing data are missing at random (MAR) (Rubin, 

1986). Roughly, a mechanism originating missing data on a variable Y is said to be MAR 

when the probability that the Y is missing does not depend on the value of the variable 

itself. One way to approach this hypothesis, consists in performing imputation inside the so 

called imputation cells (or classes), resulting by appropriate stratification of units with 

respect to known covariates n ..., 21  for the variable Y subject to imputation. Using 

imputation cells also produce a reduction of the biasing effects due to imputation (Haziza, 

2002).  

One way of obtaining imputation cells consists in the application of regression trees. 

This methodology is widely discussed in literature as a powerful tool for predicting the 

unobserved values of a continuous target variable by using appropriate sets of explanatory 

variables. In fact, the leaves of trees obtained through the recursive partition of the 

measurement space and containing subgroups of the target variable values internally 

homogeneous, correspond to imputation cells.  

 

3. Regression Trees 

The use of tree-structured methods, like regression trees, in the imputation process can be 

really seen as an application of a regression model in which some explanatory variables  

are used as covariates to predict the target variable values on the basis of some decisional 

rules. 

In a regression problem an observation is represented by the couple (x , y) where y is a real 

value associated to the response variable Y, and x is a set of observed values (covariates) 

in the measurement space  . The main purpose in a regression analysis consists in 

building a model “capturing” the relationships between the dependent variable and the 

covariates, thus allowing to predict the dependent variable values in the most accurate way. 



  

 

Such a model is represented by a function d(x) which takes real values in  , called 

predictor. A regression tree is a tree-structured predictor, i.e. a set of (prediction) rules 

that partitions a data set into mutually exhaustive and non-overlapping subsets (nodes). 

These rules are defined using the values of a pre-defined set of categorical explanatory 

variables, and the model is built by successively splitting the data sets into subsets that are 

increasingly more homogeneous with respect to the continuous response variable of 

interest (target variable). The splitting continues until either some stopping rules are met, 

or the generated subsets are as much homogeneous as possible. The final subsets obtained 

from this process are called tree terminal nodes (or leaves). The typical structure of 

regression trees is shown in figure 1.  

Using the terminology introduced by Breiman et al. (1984) we can classify the tree nodes 

into non-terminal nodes (round-shaped in figure 1), i.e. nodes are successively split, and 

terminal nodes (square-shaped in figure 1) no further sub-separable. Out of non-terminal 

nodes, 1t  represents the root (or initial) node. In general, a node splitting into two new 

nodes is called parent node, while the descending (or generated) nodes are called child 

nodes. Each terminal node of the tree can be viewed as an imputation cell for the response 

variable Y. A branch tT  of a regression tree T consists of a single node t and all its 

descending nodes. In Figure 1 the branch 
2tT  includes all the nodes within the shadowed 

area. 

3.1 Accuracy and Validation 

Once a regression tree has been generated, it is important to evaluate its accuracy, i.e. the 

power of the tree to correctly predict missing values. For this purpose we can estimate the 

error of the tree, i.e. a measure of its inaccuracy. As error estimate of a generic predictor 

d(x) the mean squared error 2))(()( xdYEdR  . The simplest (and most used) way to 

obtain the error estimate is to calculate it on the same data used for the tree building 

process (re-substitution estimate), but this approach often leads to an underestimate of the 

real error. An alternative good method consists in subdividing data into two distinct 

subsets: a training set (learning sample) which is used only to build the model, and a test 

set (test sample) which is used only to evaluate the goodness of the model. In practice, 

once the model has been generated (on training data), it is applied to test data in order to 

estimate the corresponding error. This validation process is suitable mostly for medium or 



  

 

large dimension data sets. When the data set is small, better results can be obtained by 

using a cross-validation method (for more details see Breiman et al., 1984). 

 

Figure 1 – Structure of a binary tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Split mechanism and stopping rules 

As already mentioned, in regression trees the tree-growing process is based on a split 

mechanism that recursively splits the sample into two subsets characterised by increasing 

internal homogeneity with respect to the target variable values. In other words, for each 

node the tree-growing algorithm chooses the partition of data generating nodes “purer” 

than their parents. In general, this process stops when the lowest impurity level is reached 

(the limit case occurs when a generated node is “pure”) or when some stopping rules are 

met. These rules are generally settled by the analyst and relate to the maximum tree depth 

(i.e. the level reached by successive splitting starting from the root node), the minimum 

number of units in (parent and child) nodes, or the threshold for the minimum change in 

impurity provided by new splits. 
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In the regression tree-growing algorithm,  the impurity of a node is measured by the Least-

Squared Deviation (LSD) R(t), which is simply the within variance for the node t. It can be 

expressed as follows: 
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where N(t) is the number of sample units in the node t, iy  is the value of the response 

variable for the i-th unit and )(ty  is the mean (and the predicted value) of the response 

variable in the node t. 

The LSD criterion function for split s at the node t is defined as follows:  

 )()()(),( RRLL tRptRptRts   [2] 

where Lt  and Rt  are the left and right nodes generated by the split s, respectively, while 

Lp  and Rp  are the portions of units assigned to the left and right child node. The split s 

maximizing the value of ),( ts  is chosen. This value relates to the “improvement” in the 

tree, since it expresses the impurity reduction that can be obtained by generating the two 

child nodes. In other words the split providing the highest improvement in terms of tree 

homogeneity is chosen. 

3.3. The Pruning Process 

When the tree-growing process terminates due to some stopping rules, it often happens that 

the dimension of the generated tree is not appropriate (e.g. in terms of data homogeneity in 

final nodes). One critical problem relates to cases in which a very large tree is generated 

having a number of superfluous terminal nodes. In this case the generated tree is closely 

depending on the structure of training data and cannot be applied successfully to an 

external set of data.  For this reason, sometimes a pruning process is used in order to obtain 

an “optimal” dimension tree. In regression trees this process (described in detail in 

Breiman et al., 1984) is called Error-Complexity Pruning: once the tree has been 

generated, the Error-Complexity Pruning process consists in removing the “weakest” (i.e. 

superfluous) splits of the tree. Briefly, this method is based on a measure of both error and 

complexity (the number of nodes) for the generated binary tree, defined as follows: 

 TTRTR
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where T
~

 is the number of terminal nodes for the tree T, R(T) (=  Tt
tR~ )( ) is the error 

associated to the tree T, and   represents the additional cost, in terms of complexity, for 

each terminal node. The tree-growing process is carried out by successive splits in order to 

minimize R(T) without taking into account the increasing complexity of the tree. For this 

reason the initial step of the pruning algorithm consists in growing the tree with the 

maximum size ( maxT ), in order to capture all potentially important splits. Starting from 

maxT , a hierarchical sequence of maxT sub-trees )...( 21 rootTTT  , and a corresponding 

increasing sequence of    values ...)0( 21   , where )( kk TT  , is then generated, 

cutting out at each step the nodes whose additional cost (in terms of complexity) does not 

contribute significantly to the reduction of the tree error-complexity. The optimally sized 

tree, resulting from this process, is the smallest sub-tree of maxT  minimizing )(TR  (for 

further details on the pruning algorithm see Breiman et al., 1984). 

 

4. The application 

The application aims at evaluating the performance of imputation strategies in which 

regression trees and different imputation algorithms are combined together for predicting 

item non responses. The application has been developed as follows. 

For our evaluation purposes, the simulation approach has been adopted: given an initial set 

of complete data (true or original data) for a pre-defined target variable, the variable 

values have been contaminated by artificially generating missing values among them. In 

this way, the quality of imputations (in terms of capability of correctly predicting the true 

data) can be measured by simply comparing original and imputed data. Only the MCAR 

mechanism (Missing Completely At Random, see Rubin, 1987) has been simulated. Two 

different percentages (5% and 10%) of missing values have been generated in order to 

evaluate the effect of the missing response amount on the quality of imputations.  

For the target variable a pre-defined set of covariates have been identified. As further 

analysis case, different percentages of missing values have been simultaneously simulated 

on the target variable (10%) and on one of its covariates (5%). In this way the impact of 

missing values for covariates on the imputation process has been evaluated too.  



  

 

When all variables to be used for the tree-growing process have been identified, different 

data partitions have been generated through the Clementine 6.5 regression trees algorithms. 

For each algorithm/partition, two different imputation techniques have been used: the mean 

within cell and the random donor within cell techniques.  

In this general setting, the expression imputation strategy indicates a combination of each 

applied regression tree algorithm and each imputation technique. For each percentage of 

missing values, the evaluation of results produced by each imputation strategy has been 

performed through simple indicators (Chambers, 2000) measuring the quality of the 

performed imputations in terms of preservation of marginal and joint distributions. 

4.1 Regression Trees in Clementine 6.5 

Clementine (version 6.5) is an SPSS generalised software for data mining (SPSS, 2001c). 

It offers many modelling techniques, such as prediction, classification, segmentation and 

association detection algorithms, integrated by a visual programming interface. Clementine 

is designed to operate on computer systems running Windows 95, Windows 98, Windows 

2000 and Windows NT 4.0 with service pack 3 or higher. The data sources can be free or 

fixed-field ASCII data, ODBC data, SPSS or SAS imported data. 

Clementine allows using many parametric and non-parametric data mining and data 

analysis models, including Classification and Regression Trees (C&RT in the following). 

The C&RT algorithms implemented in Clementine allow generating regression trees 

through two different procedures: a standard pre-defined procedure (called Simple option), 

and a customized one, in which the so-called Expert options can be used to modify some 

parameters of the standard pre-defined algorithm. 

Using the Simple option the tree-growing algorithm runs using some default settings: the 

minimum number of units in a parent node (2% of total cases) and in a child node (1%), or  

the minimum change in impurity produced by each new split (0,0001). Using the Simple 

option only the maximum tree depth can be changed. 

When using the Expert options, alternative settings for the different steps of the algorithm 

can be specified. Each option corresponds to a different approach in the tree building up 

process. Relating to regression trees two options are available: 

 Stopping and Pruning. With this option, the tree is generated and then pruned in order 

to find the “optimally sized” sub-tree by using the pruning algorithm described in 



  

 

paragraph 3.3. The minimum number of units (both percentage and absolute values) in 

a parent or in a child node can be specified. 

 Impurity and Surrogates. This option allows to specify a different threshold (with 

respect to the default one) for the minimum change in impurity for each generic split. 

The maximum number of surrogates, i.e. variables automatically used by the algorithm 

when one or more records have missing values in the split variables, can be also 

specified. 

A Weighting option (not used in this application), allowing the control of records weighting 

settings, is available in the software. 

Once the tree-based model has been generated on training data, it can be applied to test 

data including the missing values for the output variable. For regression trees, in each 

terminal node the software automatically imputes each missing value by using the response 

variable mean. 

4.2 Data description 

Data used in the application correspond to a subset of anonymous observations surveyed in 

the U.K Annual Business Inquiry (ABI)
2
. The survey collects information on variables like 

turnover, employees and employment costs, taxes and purchases.  The data set consists of 

6,099 units, each corresponding to either a long (1,481 units) or a short (4,618 units) form, 

the latter asking for a restricted amount of information. In this application only short forms 

data have been used.  

After carefully examining data, we have chosen (as also suggested by ONS) to perform 

two separate analyses on two sub-groups of firms identified by using the registered 

turnover (TURNREG), corresponding to the business turnover resulting from 

administrative registers. The original data set has been thus divided into the subsets Small 

firms (TURNREG < 1 million £), consisting of 3,731 cases, and Large firms (TURNREG 

  1 million £), containing 887 cases. This data grouping allows to take into account the 

differences existing between large and small businesses which have reasonably to be 

considered as distinct subgroups of analysis. 

                                                 
2
 Data have been provided by the British Agency for Official Statistics (ONS) in the context of the EUREDIT 

project (www.cs.york.ac.uk/euredit/) supported by the European Union in the Fifth IST Program for Research 

and Development. 



  

 

4.3 Model settings 

A regression trees-based model requires a continuous output variable (i.e. the variable to 

be imputed) and a set of categorical covariates. In this case the output variable is the 

TURNOVER, while two complete (i.e. without missing values)  categorical variables have 

been used as model covariates: the class of economic activity for each business 

(CLASSACT),  and number of employees for each inquired business (CLASSEMP), 

whose categories are classes of employees. The covariates used in this application allow to 

take into account both high (CLASSEMP) and low (CLASSACT) correlations with the 

output variable TURNOVER. 

Concerning the variable CLASSACT, it has 7 categories, corresponding to the main 

branches of  economic activity, while the variable CLASSEMP has 5 categories in the 

Large case, and 3 categories in the Small dataset, according to the different internal 

composition of the two data sets (table 1).  

 

Table. 1 – Categorization of the variable EMPLOY into the variable CLASSEMP 

Small (TURNREG < 1 million £) Large (TURNREG >= 1 million £) 

N° of employees CLASSEMP N° of employees CLASSEMP 

< 10 1 < 10 1 

10 <= … < 20 2 10 <= … < 20 2 

>= 20 3 20 <= … < 50 3 

    50 <= … < 100 4 

    >= 100 5 

 

The low number of categories in both the two considered covariates should prevent the 

creation of imputation cells containing very few cases, which would lead to trees that don’t 

apply successfully to an external data set (i.e. a data set which differs from the training 

set). 

4.4 Missing values simulation procedure 

Once variables to be used in the analysis have been selected, a pre-defined amount of 

missing values has been artificially generated on TURNOVER in order to simulate a real 

situation in which missing data randomly contaminate the target variable. The simulation 

procedure has been carried out using the generalised software E.S.S.E. (Della Rocca et al., 

2000), that allows to generate errors and item non-responses on a set of complete data. 

This approach allows the evaluation of the performance of imputation methods through the 



  

 

comparison of the original complete data and the corresponding imputed ones. In E.S.S.E., 

the simulation can be carried out according to different error models (MAR, MCAR). In 

this application the following simulations have been performed: 

1. 10% of MCAR values generated on the output variable TURNOVER; 

2. 5% of MCAR values generated on the output variable TURNOVER; 

3. 10% of MCAR values generated on the output variable TURNOVER and 5% of 

MCAR values generated on the covariate CLASSEMP
3
. 

The contamination of an input variable aims at testing the performance of tree-growing 

processes in more complex and realistic situations, characterised by incomplete training 

data sets. The presence of covariates affected by missing data is automatically dealt with in 

Clementine 6.5 by using the so-called surrogates (see par. 4.1). 

After each simulation procedure the resulting perturbed data have been split into Small and 

Large data sets (see par. 4.2) before data modelling and imputation. 

4.5 Tree-growing algorithms. 

For both Small and Large subgroups, complete cases represent the training data on which 

the tree has to be estimated, while cases with missing values for the output variable 

TURNOVER represent test data on which the tree-model has to be applied. Only in case of 

missing values generated also on the covariate CLASSEMP, the training data set is an 

incomplete data set which needs to be treated as a complete one by using surrogates (see 

par. 4.1, Clementine 6.5 options). 

Once training and test data sets have been defined, the most suitable Clementine’s C&RT 

algorithm to be used on data has to be chosen. This is a very important phase of the 

application, involving many theoretical considerations about the tree-growing algorithms 

implemented in the software.  

In our experimental application, the Simple and the Stopping and pruning algorithms with 

different parameters settings (including a “pure” pruning model), have been applied to 

data. The basic idea underlying the choice of such tree-based models is to carry out the 

analysis by firstly applying a “basis” algorithm (using the Simple option, see section 4.1) 

and then more specific algorithms (using the Expert options) in which the parameters 

                                                 
3
 Missing values has been generated on the continuous variable “Number of Employees”, subsequently 

transformed in the categorical variable CLASSEMP. 



  

 

settings of the basic model have been modified in the appropriate way. Out of the available 

Expert options, in our application the Stopping and Pruning model came out the only one 

allowing the use of a tree-growing algorithm considerably different from that obtained by 

the Simple option. In particular, the Stopping and Pruning option was the only allowing the 

application of an effective pruning process. On the contrary, the Impurity and Surrogates 

model (allowing to set a different threshold for the minimum decrease in impurity and a 

different number of variables to be used as surrogates) has been rejected because it was not 

able to produce trees different from those generated by the Simple model. 

The tree-growing algorithms used in this application and their main characteristics are 

summarised in table 2. As it can be seen in the table, three different algorithms have been 

applied using the Stopping and Pruning option. Among them, two algorithms (Stopping & 

Pruning 1 and Stopping & Pruning2) represent variants of the Simple model obtained, 

respectively, by increasing and reducing the absolute minimum number of cases required 

in parent and in child nodes. It is important to underline that when setting a different 

minimum number of cases in nodes, both the corresponding default proportions in the 

Simple model and the size of the data sets (Small and Large) have to be taken into account. 

The third algorithm (Pure Pruning) aims at creating an optimally sized tree using a pruning 

procedure, which represents a tree-growing strategy substantially different from that 

followed by the other algorithms. 

 

 

Table 2 - Clementine's 6.5 tree-growing algorithms used in the application   

      

Using the Simple option:     

Model name 
Max tree 

depth 

Min change 

in impurity 

Min number of cases in 

parent nodes (percent.) 

Min number of cases in 

child nodes (percent.) 

Prune 

tree 

option 

SIMPLE 10 0.0001 2% 1% NO 

      

Using the Stopping and Pruning option:    

Model name 
Max tree 

depth 

Min change 

in impurity 

Min number of cases in 

parent nodes (abs. values) 

Min number of cases in 

child nodes (abs. values) 

Prune 

tree 

option 

STOPPING & PRUNING 1 10 0.0001 Small: 100 - Large: 100 Small: 50 - Large: 50 NO 

STOPPING & PRUNING 2 10 0.0001 Small: 30 - Large: 8 Small: 15 - Large: 4 NO 

PURE PRUNING  10 0.0001 Small: 30 - Large: 8 Small: 15 - Large: 4 YES 

 



  

 

4.6 Generated models 

Once a given tree model has been generated, it is possible to visualize its structure as in the 

example shown in figure 2. The figure illustrates the successive splits originated by a 

regression tree algorithm in Clementine (the covariate used in the split and the values 

defining the split rule are indicated) and some information about nodes like the number of 

cases in each node (in italics), the mean value of the target variable in each node (Ave), its 

change after the split (Effect), and the proportion of cases for which the splitting rule is true 

(confidence). Moreover, Clementine also provides for each terminal node of the tree the 

mean values to be used to impute the target variable in that node (marked values). 

In general we observed some differences between the generated models reflecting the 

different algorithms parameters settings.  In fact, except for the Small subset affected by 

10% of missing values on the target variable and by 5% on the CLASSEMP covariate, the 

procedure Stopping & Pruning 1 led to a contraction of the tree structure, especially in the 

Large subgroup, while when using the procedure Stopping & Pruning 2, in general more 

complex trees have been obtained.  

The Pure Pruning procedure has been used in order to estimate the effects of a pruning 

process on the models creation. Such procedure operates by carrying out the pruning 

process on the tree generated using the Stopping & Pruning 2 algorithm. The main result of 

the latter algorithm was that in all analysed cases, nearly all branches of the tree were  cut 

out. In other words, almost all of the generated splits were considered superfluous. In the 

more extreme cases, only the first binary split (always using the CLASSEMP variable) 

remained in the final tree, and sometimes also this split was removed, leading to the 

conclusion that any kind of stratification of the target variable with respect to the analysed 

covariates did not produce subsets of values more homogenous than the initial one. A 

similar result can be due to the particular structure of data, which originated some 

problems also during the models setting. This can be seen for example for the data set 

Small, where a little group of observations (115) turned out to be the most homogenous (so 

no further subdivisible) with respect to the variable CLASSEMP (see figure2) just after the 

first split carried out by Clementine, making the tree to grow up only in one direction. For 

this reason in models built by using the Stopping and Pruning option, very low thresholds 

for the minimum number of cases in parent or child nodes have been defined, obviously 



  

 

leading to a deeper growth of the tree, in part due to the superfluous splits then removed by 

the pruning process. 

Once models have been estimated on training data, they have been applied to test data, thus 

providing imputation cells for all the missing values of the target variable. 

 

Figure 2 –  An example of regression tree structure as shown in Clementine’s browser 

window.  
 

classemp [2.000000 1.000000] [Ave: 252.639, Effect: -47.856 ] (3171) 

    classemp [1.000000] [Ave: 204.682, Effect: -47.957 ] (2793) 

        classact [6.000000] [Ave: 444.5, Effect: +239.818 ] (104, 1.0) -> 444.5 

        classact [7.000000 5.000000 4.000000 3.000000 2.000000 1.000000] [Ave: 195.407, Effect: -9.275 ] (2689) 

            classact [4.000000 2.000000] [Ave: 207.486, Effect: +12.079 ] (1726) 

                classact [2.000000] [Ave: 205.366, Effect: -2.121 ] (1603, 1.0) -> 205.366 

                classact [4.000000] [Ave: 235.122, Effect: +27.636 ] (123, 1.0) -> 235.122 

            classact [7.000000 5.000000 3.000000 1.000000] [Ave: 173.758, Effect: -21.649 ] (963, 1.0) -> 173.758 

    classemp [2.000000] [Ave: 606.987, Effect: +354.348 ] (378) 

        classact [6.000000 4.000000] [Ave: 782.912, Effect: +175.925 ] (34, 1.0) -> 782.912 

        classact [7.000000 5.000000 3.000000 2.000000 1.000000] [Ave: 589.599, Effect: -17.388 ] (344) 

            classact [3.000000] [Ave: 499.629, Effect: -89.97 ] (70, 1.0) -> 499.629 

            classact [7.000000 5.000000 2.000000 1.000000] [Ave: 612.584, Effect: +22.985 ] (274) 

                classact [5.000000 1.000000] [Ave: 591.021, Effect: -21.563 ] (47, 1.0) -> 591.021 

                classact [7.000000 2.000000] [Ave: 617.048, Effect: +4.465 ] (227, 1.0) -> 617.048 

classemp [3.000000] [Ave: 1620.061, Effect: +1319.566 ] (115, 1.0) -> 1620.061 

4.7 Imputation techniques 

In each terminal node of each regression tree model obtained as shown in previous section, 

two different imputation techniques have been applied:  the mean within cell without 

residual term (mwc in the following) and the random donor within cell (rdwc in the 

following).  

Let Y be the target variable observed on a sample S of units si (i=1,...,n). In the mwc 

technique, all the yi corresponding to missing values of Y  in cell c are replaced by using 

the Y observed mean in c, say mean
c
(Yobs). In the rdwc technique, each missing yi is 

replaced by a value yj (ji) randomly selected among the Yobs in cell c. Chen et al. (2000) 

describe the adva5ntages relating to the use of donor methods, and provide evidence of 

some theoretical results on their validity. 

In Clementine the mwc technique is automatically performed by simply applying the 

generated models to test data. For each algorithm, the results of the imputation process can 

be analysed in a table showing the new distribution of the target variable.  

The rdwc method has been applied using an ad hoc SAS procedure. 



  

 

4.8 Evaluation measures 

The comparative evaluation of the applied imputation strategies has been performed by 

comparing the original (true) data and the final data produced by each imputation strategy. 

The evaluation has been lead by using some quality indexes available in the software 

IDEA (Index for Data Editing Assessment) (Della Rocca et al., 2003; Luzi et al., 2001). 

This tool allows the evaluation of the effects of editing and imputation procedures on a set 

of statistical survey through a number of indicators measuring the impact of the data 

treatment at two levels: micro (i.e. preservation of single values for each variable) and 

macro (i.e. preservation of marginal distributions and relations between variables).  

Out of the indicators available in the software, in this experiment the following measures 

have been considered for the evaluation purpose:  

- univariate characteristics (quartiles, standard deviation, maximum and minimum values, 

median, mode) of the target variable marginal distribution before and after imputations; 

-  the Kolmogorov-Smirnov index (KS), measuring the “distance” between the original and 

the final marginal distributions of the target variable; 

- the Pearson’s correlation matrix between the target variable and other survey variables, 

before and after imputations. 

4.9 Results and considerations  

In this section the results of the experimental application are illustrated and some general 

considerations are drawn. The evaluation of the imputation procedure obviously relates to 

results obtained for the target variable TURNOVER. 

 

4.9.1 Evaluation of the main effects on the marginal distribution of the target variable 

For each type of missing data simulation carried out in the application, tables 3, 4 and 5 

illustrate the values of the performance indicators measuring the effects on the 

TURNOVER distribution of the mwc and rdwc imputation techniques combined with 

different regression-trees algorithms. In the first two columns of each table, the distribution 

characteristics (quartiles, standard deviation, maximum and minimum values, median, 

mode) of original data are reported separately for Small and Large businesses. In the 

following columns the same indicators after the imputation process plus the KS index are 

shown. 



  

 

4.9.2 The Kolmogorov-Smirnov index 

An overall evaluation of the ability of each imputation strategy in restoring the original 

marginal distribution of the target variable can be done by considering the KS value. 

According to the KS index, it seems that for the three percentages of simulated missing 

data, all the imputation strategies give good results in terms of preservation of the marginal 

distribution (the index values don’t exceed 0,085). In particular, as expected, in case of 5% 

of missing values, results are better than in the other two missing data levels (due to the 

intuitive fact that a lower amount of missing values reduces the risk of introducing 

distortions on the overall data distributions through imputation). Also the different 

composition of Small and Large businesses data sets seems to influence the imputation 

results: with rdwc imputation the highest values of KS are obtained for the Large data set 

while with mwc the highest values of KS are those corresponding to the Small data set. 

In general, the performance of strategies involving the rdwc technique is slightly better 

than those using the mwc one, mostly because of the deterministic nature of the latter 

imputation method.  

In particular we can notice that in case of 10% of missing values on the only variable 

TURNOVER (table 3) the better results with rdwc have been obtained with the Simple 

model (KS equal to 0,004 for Small businesses and 0,008 for Large ones). With 5% of 

missing values (table 4) it seems to be preferable to apply the rdwc method in combination 

with the tree generated by a pruning process (Pure Pruning model). Considering the case 

TURNOVER 10% of missing values and CLASSEMP 5% of missing values (table 5), the 

better model supporting rdwc is the Stopping & Pruning 1 (KS equal to 0,005 for Small 

and 0,010 for Large), i.e. the model leading to trees wider than those created by the basic 

model Simple. 

4.9.3  Preservation of the distribution mean 

Concerning the preservation of the mean, in case of TURNOVER with 10% of perturbed 

values (table 3), good results have been obtained with both the applied imputation 

techniques. Indeed, for the Small data set, the rdwc imputation seems to provide estimates 

slightly better than those turned out from the mwc procedures. On the contrary, for Large 

businesses the mwc method often leads to estimates substantially better than those 



  

 

produced by the rdwc method, in particular using a tree smaller than the one generated 

with the Simple model (Stopping & Pruning 1) or a pruned tree (Pure Pruning).  

The  analysis carried out on data affected by  5% of missing  values  on TURNOVER 

(table 4) shows a general  improvement in the sub-group means under both imputation 

methods. It must be underlined that in some cases rdwc results are slightly better for both 

Small and Large businesses. 

When both TURNOVER and the CLASSEMP covariate are perturbed (table 5), we 

observe a general better performance of rdwc, particularly in the Small data set and under 

models generated with the Simple and Stopping & Pruning 1 algorithms. It has to be noted 

that in this case, both imputation techniques produce an evident positive bias on means in 

both Large and Small sub-samples, while in case of 10% missing values on only the 

TURNOVER item, the resulting bias was every time negative. 

4.9.4  Effects on variability  

Another important element to be taken into account when evaluating imputation is 

represented by the analysis of the effects it produces on the variability of the target variable 

distribution. Here the adopted measure for variability is the Standard Deviation (STD). 

The only evident effect on the distribution is represented by the consistent reduction of 

data variability produced by all strategies on the Small data set when the percentage of 

missing values is 10%. In this case, the most reasonable explanation relates to the 

distortion introduced on the target distribution during the error-simulation phase: as we can 

see in table 3, some critical distribution values, like the maximum value (56,000), have 

been turned into missing values. In this case, neither the rdwc nor the mwc imputation 

methods were obviously able to restore the original data variability.  

Out of this particular case, we observe a general good performance of both the applied 

imputation techniques in terms of preservation of the distribution shape. 

In case of 10% missing values on only the TURNOVER, in Large businesses all 

imputation strategies produce a slight negative bias in the STD. Note that in this sub-set of 

units, the distortion is lower in the mwc than in the rdwc method, except for the pure 

pruning scheme, probably because of the higher data variability characterising the terminal 

nodes in the Pure Pruning scheme. 



  

 

Of course, better results are obtained when the percentage of missing values is low, (table 

4): in this case the better result corresponds to tree-models built up by using pure pruning 

algorithms (Pure Pruning), while both the imputation techniques produce positive bias in 

Large businesses when the Stopping & Pruning 2 algorithms is adopted.  

On the contrary, when also the covariate CLASSEMP is perturbed (table 5) we notice good 

results for the Small data set with all used algorithms, while in Large businesses the rdwc 

algorithm produces a remarkable increase of the STD with respect to the mwc technique 

under all the tree algorithms. This fact could be explained taking into account the 

stochastic nature of the method combined with the higher variability of large businesses 

and the biasing effects on predicting the target variable when surrogates are used in the 

model. 

In general, the rdwc method performs better than the mwc in terms of preservation of 

median and quartiles, mainly due to its stochastic nature. 

Out of the application where the maximum was removed (10% of missing values on 

TURNOVER), imputation strategies preserve variability and shape better in the Small case 

than in the Large one under all the imputation strategies. We can explain this fact taking 

into account the high variability of data in the Large sub-set, in which variations are more 

difficult to control. 

4.9.5 Effects on relations between variables 

Another key element to be considered when evaluating imputation procedures is 

represented by the effects they produce on relations between the output variable and other 

target survey variables. To this aim, for each missing data level, the changes occurred in 

correlations between variables (measured by the Pearson correlation index) have been 

evaluated. Variables Turnover, Total purchase (PURTOT), Total taxes (TAXTOT) and 

Registered turnover (TURNREG) have been considered. Tables 6, 7 and 8 show these 

correlations before (first two columns) and after (remaining columns) imputation. 

Because of the fact that these variables were no used neither in the regression tree model, 

nor in the imputation models, we expect biasing effects on their relationships with the 

output variable subject to imputation. On the other hand, in the regression tree model we 

were forced to use variables free of missing values and errors, in order avoid that the 

Clementine algorithm selected “surrogates”, in case of covariates affected by missing 



  

 

values, in a not controlled way. What we want to measure is the possible levels of biases 

on data relationships that we risk to have in this type of applications. 

Results obtained in case of 10% of missing values on variable TURNOVER (table 6) give 

rise to many discussions. The most peculiar case relates to the Small data set. While we 

observe a low reduction of the correlation level between Turnover and Total purchase 

(with the mwc surprisingly performing better than the rdwc technique) and between a light 

increase of the correlation level (originally very low in the Small case) between Turnover 

and Registered turnover, considerable distortions on relationships between Turnover and 

Total taxes have been introduced by all imputation strategies. In fact the correlation index 

decreases from 0,7383 (in the original data set) to values that do not exceed 0,0579 (in the 

correct data set). Taking into account that the same result characterises all combinations 

tree algorithm/imputation method, and that such situation represents an “isolated" case in 

the analysis, we can conclude that the distortion has to be largely considered as a 

consequence of the removal of maximum (just seen in the previous paragraphs) during the 

missing simulation procedure. Out of this particular case, relationships between variables 

involved in the analysis are slightly biased by all the applied procedures both for Small and 

Large businesses.  

In case of 10% of missing values on the only variable TURNOVER (table 6), the lowest 

bias corresponds to variable Total taxes in Large businesses. Note that the correlation 

between the output variable and the Registered turnover, originally higher in the Large 

sub-set, is slightly positively biased in the Small stratum while it results slightly decreased 

in Large businesses. 

A general improvement of results when the percentage of the missing values on 

TURNOVER diminished from 10% to 5% (table 7) was obviously expected. On the other 

hand, low bias in relations can be observed also after perturbing cases of the covariate 

(table 8) used in the tree algorithm. In general, we observe that in both these two last 

applications the most relevant effect produced by imputations consisted in a slight 

reduction of the correlation between variables, more evident when the covariate is affected 

by missing values and a pruning procedure is used to generate the tree (Pure Pruning 

model). As previously underlined, this is mainly due to the fact that the tree generated by a 

pruning process is in general more generalised, i.e. it applies more successfully to data sets 

different from those used for the “training” of the model, but at the same time it supplies a 



  

 

very small number of imputation cells leading to poorer results in terms of preservation of 

marginal distribution and relationships. 

 

Table 3 – Preservation of distribution and aggregates, Kolmogorov-Smirnov Index

Variable: TURNOVER

Percentage of simulated missing values :10%

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 299,065 5.277,073 299,116 5.151,601 298,957 5.240,313 299,379 5.122,241

STD 1.299,484 8.391,659 915,115 8.156,523 930,733 8.131,587 916,046 8.134,787 931,001 8.116,460

Max 56.000,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000

Q3 370,000 5.835,000 356,000 5.913,000 369,000 5.848,000 356,000 5.835,000 370,000 5.913,000

Median 168,000 2.638,000 184,000 2.589,000 170,000 2.638,000 184,000 2.649,000 170,000 2.588,000

Q1 87,000 1.560,000 94,000 1.566,000 87,000 1.535,000 94,000 1.566,000 87,000 1.561,000

Min 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000

Mode 100,000 1.200,000 205,000 2.541,000 200,000 1.000,000 205,000 2.451,000 200,000 1.500,000

KS - - 0,061 0,024 0,004 0,008 0,061 0,034 0,004 0,009

Table 3

(continues)

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 299,456 5.223,177 299,571 5.128,652 300,436 5.259,192 301,795 5.178,346

STD 1.299,484 8.391,659 916,946 8.157,323 930,611 8.106,073 911,472 8.121,587 933,620 8.145,127

Max 56.000,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000 50.355,000 113.405,000

Q3 370,000 5.835,000 356,000 5.913,000 371,000 5.835,000 330,000 5.835,000 375,000 5.922,000

Median 168,000 2.638,000 184,000 2.589,000 170,000 2.638,000 203,000 2.918,000 169,000 2.673,000

Q1 87,000 1.560,000 94,000 1.566,000 86,000 1.535,000 94,000 1.642,000 86,000 1.542,000

Min 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000

Mode 100,000 1.200,000 205,000 2.541,000 120,000 1.500,000 300,000 2.918,000 80,000 1.300,000

KS - - 0,060 0,024 0,005 0,009 0,085 0,064 0,007 0,010

Mean Within Cell Random Donor Mean Within Cell Random Donor

Stopping & Pruning 1

Mean Within Cell Random Donor

Original Data Stopping & Pruning 2 Stopping & Pruning 3

Original Data

Mean Within Cell Random Donor

Simple

 

 

 
Table 4 – Preservation of distribution and aggregates, Kolmogorov-Smirnov Index

Variable: TURNOVER

Percentage of simulated missing values:5%

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 315,088 5.275,024 312,046 5.242,158 315,080 5.275,405 312,020 5.243,976

STD 1.299,484 8.391,659 1.299,306 8.379,891 1.299,339 8.379,266 1.299,294 8.379,706 1.299,202 8.377,023

Max 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000

Q3 370,000 5.835,000 367,000 5.750,000 370,000 5.750,000 367,000 5.750,000 370,000 5.827,000

Median 168,000 2.638,000 180,000 2.649,000 167,000 2.632,000 180,000 2.651,000 167,000 2.638,000

Q1 87,000 1.560,000 90,000 1.561,000 86,000 1.560,000 90,000 1.561,000 86,000 1.561,000

Min 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000

Mode 100,000 1.200,000 100,000 1.454,000 100,000 1.000,000 204,000 2.431,000 100,000 1.200,000

KS - - 0,027 0,014 0,005 0,005 0,027 0,011 0,004 0,005

Table 4

(continues)

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 315,332 5.286,534 312,191 5.262,092 314,949 5.280,682 311,996 5.236,271

STD 1.299,484 8.391,659 1.299,570 8.413,229 1.299,424 8.520,012 1.297,633 8.373,426 1.299,275 8.375,911

Max 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000

Q3 370,000 5.835,000 367,000 5.750,000 369,000 5.740,000 350,000 5.750,000 369,000 5.750,000

Median 168,000 2.638,000 180,000 2.624,000 167,000 2.624,000 184,000 2.783,000 168,000 2.632,000

Q1 87,000 1.560,000 90,000 1.561,000 86,000 1.550,000 90,000 1.600,000 87,000 1.563,000

Min 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000

Mode 100,000 1.200,000 204,000 1.454,000 100,000 1.000,000 315,000 2.987,000 100,000 1.300,000

KS - - 0,028 0,014 0,005 0,006 0,039 0,027 0,003 0,005

Original Data Stopping & Pruning 2 Stopping & Pruning 3

Mean Within Cell Random Donor Mean Within Cell Random Donor

Original Data Simple Stopping & Pruning 1

Mean Within Cell Mean Within CellRandom Donor Random Donor

 



  

 

 

 

Table 5 - Preservation of distribution and aggregates, Kolmogorov-Smirnov
IndexVariable: TURNOVER

Percentage of simulated missing values: TURNOVER10%, CLASSEMP 5%

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 319,181 5.408,554 313,382 5.350,803 319,181 5.410,717 313,382 5.419,693

STD 1.299,484 8.391,659 1.291,346 8.377,239 1.292,534 8.520,492 1.291,346 8.347,023 1.292,534 8.793,853

Max 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000

Q3 370,000 5.835,000 361,000 5.947,000 367,000 5.913,000 361,000 5.835,000 367,000 5.948,000

Median 168,000 2.638,000 191,000 2.847,000 168,000 2.652,000 191,000 2.847,000 168,000 2.706,000

Q1 87,000 1.560,000 97,000 1.564,000 87,000 1.560,000 97,000 1.631,000 87,000 1.560,000

Min 1,000 0,000 2,000 200,000 2,000 200,000 2,000 200,000 2,000 200,000

Mode 100,000 1.200,000 209,000 3.543,000 150,000 1.200,000 209,000 3.543,000 150,000 1.000,000

KS - - 0,063 0,041 0,005 0,011 0,063 0,041 0,005 0,010

Table 5

(continues)

Small Large Small Large Small Large Small Large Small Large

Mean 313,158 5.250,788 318,860 5.414,926 312,010 5.337,310 319,849 5.410,268 315,190 5.326,779

STD 1.299,484 8.391,659 1.291,236 8.376,211 1.292,198 8.524,563 1.287,056 8.335,942 1.291,949 8.603,165

Max 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000 56.000,000 113.405,000

Q3 370,000 5.835,000 361,000 5.947,000 367,000 5.913,000 332,000 5.835,000 376,000 5.913,000

Median 168,000 2.638,000 191,000 2.808,000 167,000 2.632,000 204,000 3.127,000 173,000 2.632,000

Q1 87,000 1.560,000 97,000 1.573,000 86,000 1.542,000 97,000 1.639,000 87,000 1.526,000

Min 1,000 0,000 2,000 200,000 2,000 200,000 2,000 200,000 2,000 200,000

Mode 100,000 1.200,000 209,000 3.897,000 80,000 1.000,000 320,000 3.393,000 120,000 1.500,000

KS - - 0,062 0,035 0,008 0,009 0,085 0,070 0,009 0,014

Original Data Simple Stopping & Pruning 1

Mean Within Cell Random Donor Mean Within Cell Random Donor

Original Data Stopping & Pruning 2 Stopping & Pruning 3

Mean Within Cell Random Donor Mean Within Cell Random Donor

 



  

 

Table 6 – Preservation of relationships between variables (Pearson correlation index)

Variable: TURNOVER

Percentage of simulated missing values: 10%

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,8097 0,9547 0,7943 0,9437 0,8098 0,9539 0,7941 0,9447

TAXTOT 0,7383 0,6212 0,0569 0,6223 0,0506 0,6159 0,0568 0,6228 0,0505 0,6119

TURNREG 0,1621 0,9660 0,2372 0,9460 0,2360 0,9377 0,2370 0,9461 0,2365 0,9387

Table 6(continues )

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,8103 0,9548 0,8097 0,9480 0,8085 0,9516 0,7884 0,9396

TAXTOT 0,7383 0,6212 0,0574 0,6224 0,0579 0,6189 0,0551 0,6205 0,0508 0,6071

TURNREG 0,1621 0,9660 0,2372 0,9462 0,2267 0,9420 0,2200 0,9439 0,2151 0,9341

Dati originali Simple Stopping & Pruning 1

Mean Donor Mean Donor

Dati originali Stopping & Pruning 2 Stopping & Pruning 3

Mean Donor Mean Donor

 

 

Table 7 – Preservation of relationships between variables (Pearson correlation index)

Variable: TURNOVER

Percentage of simulated missing values: 5%

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,9750 0,9784 0,9742 0,9768 0,9750 0,9783 0,9744 0,9771

TAXTOT 0,7383 0,6212 0,7384 0,6208 0,7382 0,6212 0,7383 0,6207 0,7381 0,6216

TURNREG 0,1621 0,9660 0,1568 0,9658 0,1542 0,9643 0,1567 0,9657 0,1545 0,9648

Table 7(continues )

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,9749 0,9773 0,9743 0,9689 0,9747 0,9782 0,9734 0,9772

TAXTOT 0,7383 0,6212 0,7382 0,6182 0,7382 0,6084 0,7386 0,6210 0,7377 0,6217

TURNREG 0,1621 0,9660 0,1572 0,9644 0,1544 0,9556 0,1505 0,9655 0,1495 0,9645

Dati originali Simple Stopping & Pruning 1

Mean Donor Mean Donor

Dati originali Stopping & Pruning 2 Stopping & Pruning 3

Mean Donor Mean Donor

 

 

Table 8 – Preservation of relationships between variables (Pearson correlation index)

Variable: TURNOVER

Percentage of simulated missing values: TURNOVER 10%, CLASSEMP 5%.

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,9658 0,9601 0,9644 0,9466 0,9658 0,9647 0,9644 0,9189

TAXTOT 0,7383 0,6212 0,7420 0,6156 0,7406 0,6071 0,7420 0,6175 0,7406 0,5881

TURNREG 0,1621 0,9660 0,1517 0,9488 0,1517 0,9402 0,1517 0,9531 0,1517 0,9158

Table 8(continues )

Small Large Small Large Small Large Small Large Small Large

PURTOT 0,9760 0,9783 0,9651 0,9599 0,9630 0,9469 0,9647 0,9646 0,9608 0,9414

TAXTOT 0,7383 0,6212 0,7420 0,6154 0,7408 0,6072 0,7426 0,6171 0,7402 0,6037

TURNREG 0,1621 0,9660 0,1512 0,9485 0,1475 0,9404 0,1399 0,9525 0,1407 0,9367

Dati originali Simple Stopping & Pruning 1

Mean Donor Mean Donor

Dati originali Stopping & Pruning 2 Stopping & Pruning 3

Mean Donor Mean Donor

 



  

 

5. Concluding remarks 

 

In this paper the performance of some imputation methods, supported by the use of 

regression trees, has been evaluated through an experimental application on experimental 

business data. In the application, starting from a complete set of business survey data, 

different amounts of MCAR item non-responses have been artificially generated on a pre-

defined target variable, in order to simulate a raw data set contaminated by missing values: 

this allows to evaluate the quality of imputations by comparing the original “true” data 

with the corresponding predicted ones. On the artificial raw data set, different tree-models 

have been applied by using the algorithms available in the SPSS tool for data mining 

Clementine 6.5. Among each terminal node of each regression tree, the mean within cell 

(mwc) and random donor within cell (rdwc) imputation techniques have been used to 

compensate for missing data in nodes.  

The analysis of results suggests that for the different missing data scenarios all imputation 

strategies give good results in terms of preservation of the marginal distribution of the 

target variable. 

As expected, by diminishing the percentage of missing values on the target variable, results 

are remarkably improved because of the reduced risk of introducing distortions on data 

distributions through imputation. Furthermore, using covariates contaminated by missing 

values does produce higher biasing effects on results than those obtained in the other 

scenarios, particularly in terms of distribution mean and variability. 

As expected, strategies involving the rdwc technique perform slightly better than those 

using the mwc one in terms of preservation of distribution characteristics (like quartiles, 

maximum and minimum values), mostly because of its stochastic nature. On the other 

hand, this random nature often implies higher biasing effects on the target variable 

standard deviation. In terms of preservation of means, the two approaches show low 

biasing effects in all the simulation scenarios and under all the regression tree models. The 

analysis concerning the preservation of data relationships between the target variable and 

some other survey main variables (Total purchase, Total taxes, Registered turnover), show 

that correlation levels are not highly distorted in all the experimented imputation strategies. 

Looking at the regression trees algorithms generated in the application, we found that using 

the Simple option it’s really easy to create quite robust trees. On the other hand, with the 



  

 

pure pruning option more generalised trees can be created: many of the splits in the tree 

growing process were considered “weak splits”, i.e. not significantly improving the tree 

homogeneity, so they were cut out in the pruning process. In our application this fact 

resulted in a poorer imputation quality than in the simple algorithm because the pruned 

trees often consisted of either a unique node, or too few terminal nodes to be effectively 

used as imputations cells. 

Furthermore, the choice of carrying out two different analyses for Small and Large 

businesses has put in evidence the effects produced by the different structure of training 

data on the tree-growing process. In particular, when data are characterised by a low 

internal homogeneity (as in the Large businesses case) it is more difficult to build any type 

of tree. 

In general, results confirm that regression trees algorithms represent a valid 

methodological support in the imputation process: the modelling effort seems to be 

balanced by satisfactory results in terms of univariate and bivariate statistics with all the 

applied imputation techniques. Further studies are needed particularly in three directions: 

1) evaluating the performance of imputation strategies in terms of biasing effects on 

estimates precision, by measuring the non sampling variance component due to missing 

data and imputation; 2) assessing the robustness and the performance of these models 

when more covariates containing missing data are used; 3) applying other imputation 

techniques (such as regression or nearest-neighbour imputation). 
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