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Abstract

Statistical Matching is the art of combining information from different sources. In
particular it tackles the problem of variables not jointly observed. This situation
leads to handle the problem of drawing conclusions when just partial knowledge of
the phenomenon is available. Thus, uncertainty on conclusions arises naturally, un-
less strong and non-testable hypotheses have been assumed. Hence the main goal
of statistical matching can be reinterpreted as the study of the key aspects of uncer-
tainty in this context, and what conclusions can be taken. In this paper we give a
formalization of the concept of uncertainty in statistical matching when the variables
are categorical, and formalize the key elements to be investigated. An estimator
of the elements characterising uncertainty is suggested. This analysis leads to state
some inferences also in this context. Furthermore, the introduction and the effect on
uncertainty of logical constraints is studied. All the analyses have been performed
according to the likelihood principle. An application on real data of the proposed
tools and a comparison with other approaches already defined has been carried out.

Key words: Data fusion, Synthetical matching, Constrained maximum likelihood esti-
mation, EM algorithm.

1 Introduction

Information plays a key role for understanding phenomena. In some cases it may be
obtained by combining two or more data sources: some examples are database marketing
(Kamakura and Wedel, 1997 and 2003) and economic research via microsimulation (e.g.
the Social Policy Simulation Database created at Statistics Canada, Singh, Mantel, Kinack
and Rowe, 1993, and references therein). Another particularly suitable application field
is Official Statistics because of the high number of files maintained in National Statistical
Institutes (NSIs).

Integration of data from different sources can be performed by means of three different
methodologies: merging, record linkage and statistical matching. While the first two
aim at linking the same units from two or more different files, the third one faces the
problem of integration when the files do not contain the same units. The main target of
statistical matching is to give joint information on variables observed in different sources.
This integration problem may be represented by the following situation. There are two
different sources,A andB, two groups of variables never jointly observed,Y in A andZ
in B, and one group of variables available in both data sources,X (see Fig. 1).
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Almost all the papers on statistical matching aimed at integrating the files at the unit
level in order to obtain a comprehensive database with all the variables (i.e. a synthet-
ical dataset). These techniques have been developed since the 1970s (see references in
Rässler, 2002), and may be broadly divided in two large groups. The first one contains
those techniques (implicitly) based on a specific model:Y andZ are probabilistically in-
dependent conditionally onX (Conditional Independence Assumption, CIA henceforth).
When this model is not adequate, the integrated synthetical dataset may be significantly
different from the truth and when the usual estimators of parameters are applied they may
be heavily biased (Rodgers, 1984, Paass, 1986, Barry, 1988, Goel and Ramalingam, 1989,
Singhet al., 1993, Renssen, 1998). The second group of techniques faces this problem
using auxiliary information on(Y, Z) (e.g. Singhet al. 1993, and references therein). In
particular, Singhet al. (1993) show by simulation studies how the accuracy of results of
the matching procedure can be improved in this setting.

However, both the groups of techniques are dependent on assumptions that cannot
be tested. Actually many distributions on(X, Y, Z) are compatible with the available
partial information, i.e. many differentworlds may have generated the observed data,
and those worlds are indistinguishable. On the contrary, the two groups of techniques are
constrained to just a single world: in the first we assume that the world is that described by
the CIA, in the second we describe the closest world (w.r.t. the Kullback-Leibler distance,
see Csiźar, 1975) to that of the auxiliary information (e.g. previous year) and coherent
with data currently observed. Furthermore, the latter, while an important special case,
is not always feasible (Ingram, O’Hare, Scheuren and Turek, 2000) because the required
external information is either on the parameters on the statistical relationships between
(Y, Z) or on the(Y, Z) distribution.

In this paper we describe a different approach to statistical matching. This approach
consists in assessing allthe possible worlds, i.e. all the parameters’ values consistent with
the available information. At first (Section 2) we analyse the case of marginal complete
information on(X, Y ) and(X, Z) and discuss what we intend for uncertainty. Then (Sec-
tion 3) we consider the case when marginal information on(X, Y ) and(X, Z) is provided
by two independent samples. In this case, uncertainty is estimated by Maximum Likeli-
hood, i.e. all the possible worlds maximising the likelihood are equally informative and
are taken into consideration. We also suggest the use of the elements characterising un-
certainty in order to draw some conclusions (decisions) on parameters’ values. In order to
exclude some non-possible worlds, it is important to introduce logical constraints (when
available), i.e. constraints characterising the phenomenon. In Section 4 we will consider
structural zeros and inequality constraints between pairs of distribution parameters. Their
introduction implies, as expected, a decrease of the uncertainty on the parameters.

This way of dealing with the statistical matching problem has some similarities to
those in Rubin (1986), Moriarity and Scheuren (2001), and Rässler (2002), that refer to
the continuous case. It is also worth to note that the concept of uncertainty has been in-
vestigated in other scientific contexts, see for instance Walley (1991) and Manski (1995).
Finally in section 5 we develop a toy-example in the context of NSI to better show advan-
tages and drawbacks of the proposed method. In the last section, concluding remarks and
some directions for further research are presented.

All the considerations in the next sections have been developed whenX, Y andZ are
univariate variables. The extension to the multivariate context is straightforward, provided
the blocks of observed data are as in Fig. 1.



Figure 1: Typical situation for statistical matching in a unit (row) by variable (column) matrix. Spaces
in grey correspond to observed data, while white spaces are missing data. The first block of data
corresponds to source A, while the second to source B.

2 Uncertainty in a statistical matching context

This section underlines that the statistical matching context is inevitably characterised
by uncertainty, i.e. even in the optimal case of complete knowedge on the(X, Y ) and
(X, Z) distributions, it is not possible to draw unique and certain conclusions on the over-
all distribution(X, Y, Z). Actually in a real context, just two samples from respectively
(X, Y ) and(X, Z) are available. The statistical analysis for this context is discussed in
section 3.

Let us consider the triplet(X, Y, Z) with respectivelyI, J , andK categories,

∆ = {(i, j, k) : i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K},

whose distribution is:

θ∗ijk = P (X = i, Y = j, Z = k) i, j, k ∈ ∆. (1)

If the overall distribution (1) is unknown, the distribution{θ∗ijk} may be one in the fol-
lowing set:

Θ =

{
θθθ : θijk ≥ 0;

∑
i,j,k

θijk = 1

}
. (2)

Actually the distribution{θ∗ijk} is totally uncertain.
Let us now assume that the marginal distributions for the two pairs(X, Y ) and(X, Z)

are perfectly known:
θ∗ij., i, j ∈ ∆; (3)

θ∗i.k, i, k ∈ ∆. (4)

Information in (3) and (4) restricts the set of possible distributionsΘ to the following
subset: 

∑
k θijk = θ∗ij. i, j ∈ ∆∑
j θijk = θ∗i.k i, k ∈ ∆

θijk ∈ Θ.
(5)

Each set (2) and (5) represents uncertainty, i.e. multiplicity of plausible solutions given
the available information. In particular (5) may be considered as the description of the
uncertainty connected to the statistical matching problem when complete knowledge on
the marginal distributions is available.

Both (2) and (5) have the following characteristics:

1. each parameterθijk has associated an intervalθL
ijk ≤ θU

ijk; in particular in set (2)
θL

ijk = 0 andθU
ijk = 1 for all (i, j, k), while in set (3)θL

ijk > 0 andθU
ijk < 1 possibly

for some(i, j, k);



2. the true, but unknown, parameter lies in the previous intervalθL
ijk ≤ θ∗ijk ≤ θU

ijk;

3. the frequency of all the plausible parameter values forms a polynomial distribution,
mijk(θ), θL

ijk ≤ θ ≤ θU
ijk. For example, when the marginal distributions are known,

the polynomial distributionmijk(θ) is computed on all the distributions in (5) and
the degree of the polynomial depends on the number of categories and the number
of constraints (in this case the two marginal distributions(X, Y ) and(X, Z)), while
the coefficients depend on the marginal distributions for(X, Y ) and(X, Z).

These characteristics represent the uncertainty on each single parameter. In particular a
key role is assumed by the distributionmijk(θ) and its dispersion: the less it is dispersed,
the less we are uncertain about the parameter value. Hence we underline that, in this
context, it is not only important to assess the width of the interval of equally plausible
(given the marginals) values (as it has been described in Rässler, 2002). Let us consider
two parameters,θijk andθi′j′k′, and assume that the interval of equally plausible values
have the same width:

θU
ijk − θL

ijk = θU
i′j′k′ − θL

i′j′k′ .

Let us cut a givenα% of the tails of the distributionsmijk(θ) andmi′j′k′(θ), so that the
trimmed interval is the shortest possible. If the new trimmed interval forθijk is narrower
than the one forθi′j′k′, we may say thatθijk is less uncertain thanθi′j′k′. In fact, discarding
an equal number of equally plausible distributions for both the parameters leads to a more
intense reduction of the interval width for the first parameter. With an abuse of notation the
percentages of the cut tails can be denominated aserror frequency, that is the frequency of
distributions that, given the available marginal constraints, may be the true but unknown
one, and are not considered in the chosen interval.

Uncertainty in terms ofmijk(θ) may suggest different decisions. If the decision is in
terms of an interval(a, b) ⊂ (θL

ijk, θ
U
ijk), it is important to compare the error frequency∫ a

θL
ijk

mijk(θ) dθ +

∫ θU
ijk

b

mijk(θ) dθ (6)

with the gain given by the reduction of the interval width

1− (b− a)/(θU
ijk − θL

ijk). (7)

Onceα is fixed, the shortest interval(a, b) is determined by the regionΓ = {θ : mijk(θ) ≥
c} wherec is chosen such that1− α =

∫
Γ
mijk(θ) dθ.

The dispersion ofmijk(θ) can suggest also a punctual approximation of the true pa-
rameterθ∗ijk. For instance, a reasonable approximation forθ∗ijk can be the average of
mijk(θ). Let θ̄ijk be this average value:

θ̄ijk =

∫ θU
ijk

θL
ijk

θmijk(θ) dθ. (8)

It is easy to see thatθθθ = {θ̄ijk} describes a distribution (each parameter is non-negative
and their sum is 1). A useful description of the goodness of the approximationθ̄ijk is the
dispersion ofmijk(θ), for each single parameter. As a limit case, when the dispersion is
null, the marginal distributions are sufficient for determiningθ∗ijk.

There are practical situations where logical contraints are available. In these contexts
it is necessary to use these additional partial constraints in order to exclude impossible
distributions in (5), thus reducing uncertainty. This aspect will be studied in Section 4.



3 The statistical model

Let us considern i.i.d. realisations of(X,Y, Z). Dealing with discrete variables from
the multinomial distribution in (1) and denoting the vector of observed frequencies with

n = {nijk, (i, j, k) ∈ ∆}

wherenijk is the number of units in the sample with(X = i, Y = j, Z = k), then the
completelikelihood in the present context obviously is:

L(θθθ|n) =
∏
i,j,k

θ
nijk

ijk , θθθ ∈ Θ. (9)

The statistical matching context in Fig. 1 happens when then statistical units are divided
in two subgroupsA andB (two independent subsamples) of respectivelynA andnB units,
nA+nB = n. Let us assume thatZ is not observed on the units inA andY is not observed
in B. According to R̈assler (2002, p. 75), we suppose that this missing data mechanism
is ignorable. Under this assumption, in the situation of Fig. 1, marginalisation of the
complete data likelihood (9) gives theobserveddata likelihood (Little and Rubin, 1983):

L(θθθ|nA,nB) =
∏
i,j

(θj|iθi..)
nA

ij.

∏
i,k

(θk|iθi..)
nB

i.k , θθθ ∈ Θ, (10)

whereθj|i = θij./θi.., θk|i = θi.k/θi.., nA andnB have the same meaning asn. Note that
the factorization in (10) is a straightforward application of the Factorization Lemma in
Rubin (1974). Although (10) is a function of the overall distributionθθθ ∈ Θ, the right
hand side depends explicitly only on some marginal parameters. The maximum of (10)
with respect to these parameters is uniquely determined by:

θ̂j|i =
nA

ij.

nA
i..

, θ̂k|i =
nB

i.k

nB
i..

, θ̂i.. =
nA

i.. + nB
i..

n
, (i, j, k) ∈ ∆. (11)

The previous statements allow us to find the final estimates for the following parameters:

θ̂ij. =
nA

ij.

nA
i..

nA
i.. + nB

i..

n
, θ̂i.k =

nB
i.k

nB
i..

nA
i.. + nB

i..

n
, θ̂i.. =

nA
i.. + nB

i..

n
,

(i, j, k) ∈ ∆.
However we are interested in estimating the overall distributionθθθ. The maximum of the
observed likelihood function (10) inθijk is not unique. Every distributionθθθ = {θijk} that
satisfies the following set of equations:

∑
k θijk = θ̂ij. =

nA
ij.

nA
i..

(
nA

i..+nB
i..

n
)∑

j θijk = θ̂i.k =
nB

i.k

nB
i..

(
nA

i..+nB
i..

n
)

θijk ≥ 0,
∑

i,j,k θijk = 1

(12)

is an MLE. The set composed by all the MLEs forms a region calledlikelihood ridge. It
is easy to see that the likelihood ridge is the MLE of the set (5), and consequently may
be used for estimating the uncertainty of the statistical matching process. Given that the
likelihood ridge is composed by maximum likelihood estimates, all the distributions in



the likelihood ridge are equally informative, given the data. A consequence of the prop-
erties of likelihood estimators is that uncertainty is estimated according to the likelihood
principle.

One of the most important features of (12) is that it is dependent on the samplesnA

andnB through the maximum likelihood estimatesθ̂ij. andθ̂i.k, (i, j, k) ∈ ∆. The sample
variability of the likelihood ridge (12) decreases whennA andnB diverge to+∞, due
to the consistency of the MLEs of the marginal distributionsθ̂ij. and θ̂i.k, (i, j, k) ∈ ∆.
In other words, the likelihood ridge converges (almost surely) to the set of distributions
in (5) that describes the uncertainty connected with the statistical matching context when
completeknowledge on(X, Y ) and(X, Z) is available. Another consequence is that we
can use the MLE counterpart ofθU

ijk, θL
ijk andmijk(θ), in the following θ̂U

ijk, θ̂L
ijk and

m̂ijk(θ). All these estimators are consistent, and can be usefully considered for the com-
putation of (6), (7) and (8). Since uncertainty is a factor strongly characterising statistical
matching, the most important thing is to reduce uncertainty, i.e. reduce the dispersion of
the distributionsm(θ). One possibility is offered by logical constraints (Section 4).

We also underline that the likelihood ridge (12) contains the solutions under some of
the approaches already defined for statistical matching. For instance, under the CIA the
parameters of the distributionθθθ assume the form:

θijk =
θij.θi.k

θi..

. (13)

Consequently, the (unique) maximum likelihood estimate is

θ̂ijk =
nA

ij.

nA
i..

(
nB

i.k

nB
i..

)(
nA

i.. + nB
i..

n

)
, ∀ i, j, k,

and this distribution is clearly inside the likelihood ridge (12).

4 Logical constraints

There are situations when it is possible to introduce logical constraints. We intend for
logical constraints those rules that make some of the distributions inΘ illogical for the
investigated phenomenon. Thus their introduction is needed in order to eliminate non-
possible worlds. Various are the examples of logical constraints. Two frequent cases, that
we will use in the next paragraphs, are:

• existence of some quantities: e.g. it cannot be accepted that a unit in the population
is both ten years old and married

• inequality constraints: e.g. a person with a degree has higher probability of being a
manager rather than a worker.

For the statistical model described in section 3, they can be expressed as:

θijk = 0, for some(i, j, k) (14)

θijk ≤ θi′j′k′ , for some(i, j, k), (i′, j′, k′). (15)

Constraint (14) is usually calledstructural zero(see, e.g., Agresti, 1990). This constraint
occurs when :



1. (i, j, k) contains at least a pair of incompatible categories;

2. each pair in(i, j, k) is plausible but the triplet is incompatible.

Note that great caution should be posed on the definition of the set of logical con-
straints. It may happen that the constraints are not compatible each other, i.e.Θ is re-
stricted to the empty set (see Bergsma and Rudas, 2002, for more details and references
therein). From now on, we suppose that the chosen logical constraints are compatible.

The main effect of these constraints is the possible reduction of the likelihood ridge.
It is clear that the size of the reduction is dependent on the amount of information in-
troduced. In some circumstances, information carried by logical constraints can be so
informative that, using them in addition to the observed marginal distributions(X, Y )
and(X, Z), it is possible to reduce the likelihood ridge to a unique distribution. This hap-
pens, for instance, when(J − 1)(K − 1) independent structural zero constraints are set
for eachX = i , for i = 1, . . . , I (i.e. maximum dependence amongY andZ conditional
to X). Structural zeros are also very effective because, with the exception of limit cases,
distributions{θijk} ∈ Θ satisfying the CIA become illogical. In fact, whenθijk is set to
0 for some(i, j, k), the CIA (i.e. parameters as in (13)) holds only when eitherθ̂ij. = 0

and/orθ̂i.k = 0, otherwise that distribution is outside the restricted parameter space, and
cannot be considered in the estimation phase.

Generally speaking, let us suppose that the imposed logical constraints restrictΘ to
a subspaceΩ ⊂ Θ which is closed and convex (any combination of structural zeros and
inequality constraints leads to such restriction). The problem of the maximization of the
likelihood function when constraints are imposed may be solved following two different
strategies. These strategies refer to these situations: 1)Ω has a non-empty intersection
with the unconstrained likelihood ridge (12); 2)Ω has an empty intersection with the
unconstrained likelihood ridge (12).

In the first case the likelihood ridge reduces to the set of solutions of:
∑

k θijk = θ̂ij. =
nA

ij.

nA
i..

nA
i..+nB

i..

n∑
j θijk = θ̂i.k =

nB
i.k

nB
i..

nA
i..+nB

i..

n

θθθ ∈ Ω.

(16)

In the second case it happens that the set of equations in (16) has not any solutions, i.e.
Ω does not contain any derivative of the observed data likelihood (10) with respect toθθθ
equal to zero. In other words, the relative maximum(s) of the likelihood (10) may be only
on the border of the subspaceΩ. In this case we propose to use an iterative algorithm in
order to find the maximum inθθθ of (10) constrained toθθθ ∈ Ω.

The likelihood maximisation problem in a proper closed and convex subset has been
studied by many authors by means of many different approaches (e.g. see Judge, Griffiths,
Hill and Lee, 1980, Chapter 17). We adopt a version of the “projection method” (Judgeet
al., p. 749) described in Winkler (1993) that makes use of the EM algorithm (Dempster,
Laird, and Rubin, 1979). It consists of the following steps:

1. initialize the algorithm with âθθθ
0
∈ Ω

2. if at iterationt, t ≥ 1, the EM unconstrained estimateθ̂θθ
t

does not satisfy the con-
straints, such solution is “projected” to the boundary of the closed and convex sub-
spaceΩ; otherwise it is left unchanged.



Table 1: Response categories for the variables considered in the example

Variables Transformed response categories

Age (AGE) “1”=15-17 years old; “2”=18-22; “3”=25-64; “4”=65 and more

Education Level (EDU) “C”=None or compulsory school; “V”=Vocational school; “S”’= Secondary school; “D”=Degree

Professional Status (PRO) “M”= Manager; “E”= Clerk; “W”= Worker

Such approach is convenient in our context because the likelihood in (9) is a mixture of
multinomial distributions. In this case, a theorem by Haberman (theorem 4, 1977; see also

Winkler, 1993) suggests the following: ifθ̂θθ
t−1

andθ̂θθ
t
, t ≥ 1, are successive estimates, and

θ̂θθ
t−1

∈ Ω while θ̂θθ
t
6∈ Ω, thenθ̂θθ

t
should be replaced by the linear combination ofθ̂θθ

t−1
andθ̂θθ

t

so thatαθ̂θθ
t−1

+(1−α)θ̂θθ
t
lies on the boundary ofΩ (0 ≤ α ≤ 1). Given thatΩ is closed and

convex, suchα exists and is unique. Additionally, the theorem by Haberman states that
the likelihood of the successive M step solutions of this modified EM algorithm (Winkler
calls this method: EMH) is non-decreasing. Judgeet al. (1980) and Winkler warn that this
algorithm may stuck at a solution on the boundary ofΩ which is not a local maximum.
Most of the times it is not difficult to determineα. In fact, structural zero constraints (14)
may be easily fulfilled setting to zero the correspondingθ̂0

ijk in the initialisation step of
the EM algorithm, for details see Schafer (1997, pp. 52-53). Also inequality constraints
are easily fulfilled. In fact, inequality (15) is satisfied when

α =
θ̂t

i′j′k′ − θ̂t
ijk

θ̂t−1
ijk − θ̂t−1

i′j′k′ − θ̂t
ijk + θ̂t

i′j′k′

.

If more than one inequality constraint is imposed, the smallestα should be considered.
We remark that the multinomial model in (9) is saturated, consequently each M step

in the EM algorithm gives solutions in closed form. However, if a different loglinear
model is assumed, the ECM algorithm can be adopted instead of the EM algorithm, as in
Winkler (1993).

5 An example

In order to show how to introduce logical constraints and the corresponding advan-
tages and drawbacks, we have developed a toy-example in the context of Official Statis-
tics where logical constraints are frequently used. A subset of 2,313 employees (people at
least 15 years old) has been extracted from the 2000 pilot survey of the Italian Population
and Households Census. Only three variables have been analyzed: Age (AGE), Educa-
tional Level (EDU) and Professional Status (PRO). For the sake of simplicity and without
loss of information for our aim, the original variables have been transformed by grouping
homogeneous response categories. The results of this grouping are shown in Tab. 1.

To reproduce the situation of Fig. 1, the original file has been randomly split in two
almost equal sub-sets. The variable Educational Level has been removed from the first
sub-set (file A), containing 1,148 units, and the variable Professional Status has been
removed from the second sub-set (file B), consisting of the remaining 1,165 observations.

Tab. 2 shows the true relative frequencies of the original dataset for each cell. Struc-
tural zeros are represented by “-”. For instance a 17 years old person cannot have a



Table 2: True cell counts ( nijk) and relative frequencies ( θijk), and corresponding CIA estimates ( θ̂ijk)

Cell AGE EDU PRO nijk θijk θ̂ijk

1 1 C M - - -

2 2 C M - - -

3 3 C M - - 0.0540

4 4 C M - - 0.0048

5 1 V M - - -

6 2 V M - - -

7 3 V M - - 0.0143

8 4 V M - - -

9 1 S M - - -

10 2 S M - - -

11 3 S M 142 0.0614 0.0649

12 4 S M 4 0.0017 0.0013

13 1 D M - - -

14 2 D M - - -

15 3 D M 220 0.0951 0.0220

16 4 D M 5 0.0022 0.0009

17 1 C E - - -

18 2 C E - - 0.0022

19 3 C E - - 0.1336

20 4 C E - - 0.0009

21 1 V E - - -

22 2 V E 1 0.0004 0.0009

23 3 V E 123 0.0532 0.0350

24 4 V E 0 0 0

25 1 S E - - -

26 2 S E 8 0.0035 0.0022

27 3 S E 653 0.2823 0.1604

28 4 S E 3 0.0013 0.0004

29 1 D E - - -

30 2 D E - - -

31 3 D E 87 0.0376 0.0545

32 4 D E 0 0 0

33 1 C W 15 0.0065 0.0065

34 2 C W 27 0.0117 0.0078

35 3 C W 759 0.3281 0.1466

36 4 C W 12 0.0052 0.0017

37 1 V W 0 0 0

38 2 V W 7 0.0030 0.0035

39 3 V W 90 0.0389 0.0385

40 4 V W 0 0 0

41 1 S W - - -

42 2 S W 12 0.0052 0.0073

43 3 S W 143 0.0618 0.1755

44 4 S W 0 0 0.0004

45 1 D W - - -

46 2 D W - - -

47 3 D W 2 0.0009 0.0597

48 4 D W 0 0 0.0004

Tot. 2313 1.0000 1.0000



Table 3: Distribution of Professional Status vs Age in file A

Professional Status

Age M E W Tot.

1 - - 9 9

2 - 5 17 22

3 179 443 486 1108

4 6 1 2 9

Tot. 185 449 514 1148

Table 4: Distribution of Education Level vs Age in file B

Education Level

Age C V S D Tot.

1 6 0 - - 6

2 14 6 13 - 33

3 387 102 464 158 1111

4 10 0 3 2 15

Tot. 417 108 480 160 1165

degree. Tab. 3 and 4 show respectively the distribution of Age vs Professional Status in
file A, and Age vs Educational Level in file B, after the original data-set has been split-
ted. Note that each structural zero in a marginal table implies a set of structural zeros on
the joint distribution. But the joint distribution has some additional structural zeros that
cannot be inferred from the marginal tables 3 and 4 because they refer to structural zeros
of the variables (PRO,EDU). This happens, for instance, in cells 3 and 4 that correspond
to managers (PRO = “M”) but with at maximum a compulsory school educational level
(EDU =“C”).

If the two files are matched by means of a technique based only on the common vari-
able Age, without considering any auxiliary information about the relationship existing
between the two variables Educational Level and Professional Status, the final output
would give estimates under the CIA. In our case, results under the CIA are reported in the
last column of Tab. 2. As it can be observed, the CIA produces unrealistic estimates for
some cells. In particular, it gives non zero estimated probabilities for certain events that in
real life cannot happen, i.e. structural zeros for (PRO,EDU). On the contrary, as expected,
structural zeros are preserved when observed in the marginals tables 3 and 4, e.g. cells 9,
25 and 41 corresponding to the structural zero (AGE = “1”), (EDU = “S”).

In order to explore the likelihood ridge, we have decided to run the EM algorithm with
different random starting points:

S0 starting point in the full spaceΘ;

S1 starting point in the spaceΩ resctricted by structural zeros;

S2 starting point in the spaceΩ resctricted by structural zeros and the following inequal-
ity constraint:
P(AGE =“3”, EDU =“D”, PRO =“M”)≥P(AGE =“3”, EDU =“D”, PRO =“E”).



Figure 2: Likelihood ridge for cell 27 when no constraints (left), structural zeros (center) and the
additional inequality constraint (right) are imposed. The vertical bar is the true probability.

The last inequality states that, a person with Age in class “3” with Educational Level
in class “D” has a higher probability of being a Manager (PRO =“M”) (cell 15) rather
than a Worker (PRO =“E”) (cell 31). In this last case we have used a modified version of
EM so to satisfy both structural zeros and the inequality constraint regarding these cells.

Tab. 5 reports the simulation extremes of the likelihood ridge found by running EM
100,000 times for each of the above mentioned different starting configurations. As ex-
pected, when no restrictions were imposed on the starting point (S0), EM produces non-
null estimates in correspondence of the structural zeros as under the CIA. In this case the
CIA solution is always included in the interval found through EM. On the contrary, when
structural zeros are introduced in the starting point (S1), EM produces zero estimated
probabilities in correspondence of structural zeros. Moreover, for non-null probabilities
it can be observed how the introduction of this kind of auxiliary information results in a
general reduction of the ranges of estimated cell probabilities. When, in addition to the
structural zeros, the inequality constraint involving cells 15 and 31 is introduced (S2) the
results change quite markedly. The introduction of this inequality constraint makes the
likelihood ridge shrink (see e.g. Fig. 2 and 3).

In general, in comparison with the initial situation of absence of auxiliary information
about the phenomena under study (S0), an overall reduction of ranges for most of the esti-
mated probabilities can be observed. When the final ranges (S2) of estimated probabilities
are compared with those of S1 it comes out that about a half of them remains unchanged
while for the others a decrease occurs. This reduction is really marked for cell 31 where
the maximum for this estimated probability reduces from 0.1364 to 0.0678. On the other
hand, for cell 15 the maximum remains unchanged while the lower value increases from
0 to 0.0260. For cells 33-36 it can be observed that the introduction of structural zeros is
so informative (in terms of degrees of freedom) that makes the EM converge to a unique
value, in all cases close to the true ones.

The width is not the only element to consider as an evaluation measure of the uncer-
tainty on the parameters. The density of each single parameters in the likelihood ridge
is another important aspect. We have approximated such density with the frequency dis-
tribution relative to the 100,000 simulations. In general, the dispersion reduces, also for
those cells where the width of the interval does not change from S1 to S2.

In figures 2 and 3 we represent the evolution of this density in the three simulation
context here considered for cells 15 and 27.

The joint analysis of the range and dispersion is essential to understand the uncer-



Figure 3: Likelihood ridge for cell 15 when no constraints (left), structural zeros (center) and the
additional inequality constraint (right) are imposed. The vertical bar is the true probability.

tainty. Fig. 2, shows how the final distribution (S2) of the parameter in the likelihood
ridge is totally different if compared to the initial one (S0), and in particular it is more
concentrated. In other words, there is at the same time a shrinkage of the interval of
values for the parameter and a higher concentration in its distribution. In Fig. 3, the dis-
persion and width of the interval again decreases from S1 to S2. This does not happen
when S2 is compared with S0, although the effect of the constraints is still important. In
fact, in this case the S2 distribution is more concentrated near the true value than S0.

The introduction of auxiliary information reduces uncertainty but does not eliminate
it. However, as already introduced in (Section 4), a further reduction of uncertainty can
be obtained by trimming a number of extreme solutions. For example, for cell 27 the cut
of 5% of EM solutions in the tail of its distribution produces a reduction of about 50% of
the range. Obviously we performed this operation on single parameters without caring of
what happens to other cells; in fact the distributions whose parameter value for a cell is
extreme does not necessarily have extreme values for other cells.

Finally, in the last column of Tab. 6 we have reported the average value (θ̄ijk) of the
100,000 estimates respectively for S1 (that will be used in the next paragraph) and for S2,
as representative parameters values among those in the ridge.

As a last remark, logical constraints do not only help in reducing uncertainty for ines-
timable parameters, but also may improve the MLE for estimable parameters (i.e. the ones
with a unique MLE, in our example the ones for the marginal distributions (AGE, PRO)
and (AGE, EDU)). In particular, the MLE for estimable parameters has the following
behaviour:

• for those samples whose likelihood ridge is compatible with the constraints (i.e.
some distributions in the ridge satisfy the constraints), the MLE of the estimable
parameters remains unchanged in the constrained and unconstrained case;

• for those samples whose likelihood ridge is not compatible with the constraints, the
MLE of the estimable parameters is forced to respect the constraints.

Hopefully, in the second case each constrained maximum likelihood estimate is moved
towards the true parameter.

We have shown this last situation in our example, where some structural zeros (im-
posed in S1) are not compatible with the unconstrained likelihood ridge (12) when the
samples in tables 3 and 4 are observed. For instance, let us consider

θijk = P (AGE = “4”, PRO = “M”, EDU = “C”).



Table 5: Range of probabilities estimates in 100,000 runs of EM with three different starting settings
compared with the true counts ( nijk) and frequencies ( θijk)

S0 S1 S2

Cell AGE EDU PRO nijk θijk Min Max Min Max Min Max

1 1 C M - -

2 2 C M - -

3 3 C M - - 0.0000 0.1549

4 4 C M - - 0.0035 0.0067

5 1 V M - -

6 2 V M - -

7 3 V M - - 0.0000 0.0839

8 4 V M - -

9 1 S M - -

10 2 S M - -

11 3 S M 142 0.061 0.0000 0.1549 0.0186 0.1550 0.0186 0.1290

12 4 S M 4 0.002 0.0000 0.0021 0.0024 0.0031 0.0024 0.0031

13 1 D M - -

14 2 D M - -

15 3 D M 220 0.095 0.0000 0.1260 0.0000 0.1363 0.0260 0.1364

16 4 D M 5 0.002 0.0000 0.0014 0.0013 0.0021 0.0013 0.0021

17 1 C E - -

18 2 C E - - 0.0000 0.0054

19 3 C E - - 0.0000 0.3261

20 4 C E - - 0.0000 0.0012

21 1 V E - -

22 2 V E 1 0.000 0.0000 0.0043 0.0000 0.0043 0.0000 0.0043

23 3 V E 123 0.053 0.0000 0.0880 0.0014 0.0881 0.0015 0.0881

24 4 V E 0 0 0 0 0 0 0 0

25 1 S E - -

26 2 S E 8 0.004 0.0000 0.0054 0.0011 0.0054 0.0011 0.0054

27 3 S E 653 0.282 0.0000 0.3776 0.1591 0.3776 0.2279 0.3780

28 4 S E 3 0.001 0.0000 0.0012 0.0000 0.0007 0.0000 0.0007

29 1 D E - -

30 2 D E - -

31 3 D E 87 0.038 0.0000 0.1362 0.0000 0.1364 0.0000 0.0678

32 4 D E 0 0 0.0000 0.0011 0.0000 0.0007 0.0000 0.0007

33 1 C W 15 0.006 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065

34 2 C W 27 0.012 0.0047 0.0101 0.0101 0.0101 0.0101 0.0101

35 3 C W 759 0.328 0.0000 0.3278 0.3342 0.3342 0.3342 0.3342

36 4 C W 12 0.005 0.0000 0.0023 0.0052 0.0052 0.0052 0.0052

37 1 V W 0 0 0 0 0 0 0 0

38 2 V W 7 0.003 0.0000 0.0043 0.0000 0.0043 0.0000 0.0043

39 3 V W 90 0.039 0.0000 0.0880 0.0000 0.0866 0.0000 0.0865

40 4 V W 0 0 0 0 0 0

41 1 S W - -

42 2 S W 12 0.005 0.0040 0.0094 0.0040 0.0083 0.0040 0.0083

43 3 S W 143 0.062 0.0000 0.3926 0.0000 0.0866 0.0000 0.0866

44 4 S W 0 0 0.0000 0.0021 0 0 0 0

45 1 D W - -

46 2 D W - -

47 3 D W 2 0.001 0.0000 0.1361 0.0000 0.0855 0.0000 0.0859

48 4 D W 0 0 0.0000 0.0014 0 0 0 0



Table 6: True probabilities ( θ), extremes of the likelihood ridge estimates (min and max), extremes
of the 95% trimmed interval (95% lv and 95% uv), gain of the interval (95% lv, 95% uv) with respect
to the interval (min, max), average values in the ridge for ( θ̄ S2) for the S2 case. All the values are
computed over the 100,000 runs of EM

Cell ETA EDU PRO θ Min Max 95% lv 95% uv Gain θ̄

11 3 S M 0.0614 0.0186 0.1290 0.0446 0.1174 0.3412 0.0850

12 4 S M 0.0017 0.0024 0.0031 0.0024 0.0031 0.0729 0.0027

15 3 D M 0.0951 0.0260 0.1364 0.0376 0.1104 0.3412 0.0700

16 4 D M 0.0022 0.0013 0.0021 0.0014 0.0021 0.0729 0.0018

22 2 V E 0.0004 0.0000 0.0043 0.0000 0.0037 0.1486 0.0017

23 3 V E 0.0532 0.0015 0.0881 0.0413 0.0881 0.4599 0.0730

24 4 V E 0 0 0 0 0 0

26 2 S E 0.0035 0.0011 0.0054 0.0017 0.0054 0.1486 0.0037

27 3 S E 0.2823 0.2279 0.3780 0.2345 0.3099 0.4974 0.2698

28 4 S E 0.0013 0.0000 0.0007 0.0001 0.0007 0.0729 0.0004

31 3 D E 0.0376 0.0000 0.0678 0.0097 0.0640 0.1987 0.0408

32 4 D E 0 0.0000 0.0007 0.0000 0.0007 0.0729 0.0003

33 1 C W 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065

34 2 C W 0.0117 0.0101 0.0101 0.0101 0.0101 0.0101

35 3 C W 0.3281 0.3342 0.3342 0.3342 0.3342 0.3342

36 4 C W 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052

37 1 V W 0 0 0 0 0 0

38 2 V W 0.0030 0.0000 0.0043 0.0006 0.0043 0.1486 0.0026

39 3 V W 0.0389 0.0000 0.0865 0.0000 0.0467 0.4599 0.0150

40 4 V W 0 0 0 0 0 0

42 2 S W 0.0052 0.0040 0.0083 0.0040 0.0076 0.1486 0.0057

43 3 S W 0.0618 0.0000 0.0866 0.0062 0.0813 0.1331 0.0459

44 4 S W 0 0 0 0 0 0

47 3 D W 0.0009 0.0000 0.0859 0.0000 0.0590 0.3134 0.0257

48 4 D W 0 0 0 0 0 0



Table 7: Comparison among some probability estimates and the corresponding true probabilities

True MLE (S0) MLE (S1)

P(PRO = M, AGE = 4) 0.0039 0.0069 0.0044

P(EDU = S, AGE = 4) 0.0030 0.0021 0.0031

P(EDU = D, AGE = 4) 0.0022 0.0014 0.0021

P(EDU = C, AGE = 4) 0.0050 0.0069 0.0052

The unconstrained MLEs are

θ̂ij. =
6

9
× 9 + 15

2313
, θ̂i.k =

10

15
× 9 + 15

2313
, θ̂i.. =

9 + 15

2313
.

From the standard inequality

max{0, θij. + θi.k − θi..} ≤ θijk ≤ min{θij., θi.k}

it holds that

θ̂ijk ≥
6

9
× 9 + 15

2313
+

10

15
× 9 + 15

2313
− 9 + 15

2313
> 0,

which is not compatible with the constraint so far introduced that (AGE =“4”, EDU =
“C”, PRO =“M”) is a structural zero. As a consequence, this structural zero restrictsΘ
to a setΩ whereθij. cannot be equal to its unconstrained maximum likelihood estimate
θ̂ij.. In fact, the constrained MLE of this parameter is moved towards the true value. In
Tab. 7 it is shown the effect of all the imposed structural zeros (S1) to some parameters
estimates. Note that the constrained MLEs for these marginal parameters are unique and
may be obtained marginalising the corresponding estimatesθ̄ijk.

6 Conclusions

In the last years, the main goal of the statistical matching procedures may be rein-
terpreted as the efficient use and combination of all available and relevant information.
However, in the context of statistical matching the available information is in terms of
partial knowledge of the phenomenon (e.g. two independent samples on some marginal
distributions). Therefore, we can just make conclusions under uncertainty. Whenever it
is possible to use also auxiliary information, we can draw conclusions on the parameters
with a lower degree of uncertainty. Extreme cases are those when particular models can
be assumed, as the CIA, or external information like that in Singhet al. (1983). In these
cases it is possible to provide a unique conclusion on the joint distribution.

When either the CIA or external auxiliary information are not usable, uncertainty on
conclusions can be rarely avoided. We propose to analyse it throughout the descprition
of all the plausible solutions, i.e. all those distributions coherent with the observed data
according to the likelihood principle. In this context we have focused on some aspects
of uncertainty and we have proposed some statistics in order to draw conclusions on the
phenomenon at different levels, for instance either regarding single parameters of the
distribution, or the entire distributions.

We also describe the situation when a particular auxiliary information is available:
logical constraints. Logical constraints can be very useful in order to decrease uncertainty



on parameters value. The usage of logical constraints is not immediate, and an algorithm
for introducing them in the statistical matching procedure has been proposed.

Finally we remark that all the analyses of uncertainty due to the partial knowledge of
the phenomenon investigated is made with respect to the likelihood principle.

Since the concept of uncertainty and partial knowledge has been deeply investigated
in other contexts than stastical matching, like for instance artificial intelligence, we feel
it is very important to analyse the common aspects and the solutions proposed in these
contexts. The contamination with other frameworks are not only worthy for the study of
uncertainty, but also for the use of logical constraints, e.g. Coletti and Scozzafava (2002)
and Vantaggi (2003). Further researches will be devoted to the inspection of these other
scientific contexts.
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