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Abstract. Individual risk estimation was one of the issues that the European Union

project CASC targeted. The software µ-Argus contains now a routine, that has been

implemented by CBS Netherlands in cooperation with ISTAT, for computing the

Benedetti-Franconi or individual risk of disclosure. This note proposes an alternative

expression for the Benedetti-Franconi risk, that can be exploited to produce more

stable numerical evaluations. Such an expression provides an interesting relation

with the Gauss Hypergeometric function.

1 The individual risk

The definition of the individual risk measure is based on the concept of re-identification disclosure (e.g. Chen
and Keller-McNulty 1998, Fienberg and Makov 1998, Skinner and Holmes 1998, Duncan and Lambert 1986,
Willenborg and de Waal 2001), and is appropriate for samples of microdata stemming from social surveys. By
re-identification we mean that the unit in the released file and a unit in the register that an intruder has access
to belong to the same individual in the population. The underlying hypothesis is that the intruder will always
try to match a record and a unit in the register using public domain variables (key variables) only. In social
data, categorical key variables allow us to tackle the problem of disclosure limitation via the concept of unique or
rare combinations in the sample. A combination is a cell in the contingency table obtained by cross-tabulating
the key variables. A key issue is to be able to distinguish between combinations that are at risk, for example
sample uniques corresponding to rare combinations in the population, and combinations that are not at risk,
for example sample uniques corresponding to combinations that are common in the population. To this aim, a
step of inference from the sample to the population is performed. Instead of focusing on the sample frequency
of combinations of key variables, the individual risk of disclosure is defined as the probability that a sampled
record is re-identified, i.e. recognised as corresponding to a particular unit in the population. This value can
then be estimated for each record in the released file on the basis of the observed sample. In the last few years
a number of proposals have been made: Fienberg and Makov (1998), Skinner and Holmes (1998) and Elamir
and Skinner (2003) define, with different motivations, a log linear model for the estimation of the individual
risk. Benedetti and Franconi (1998) propose a methodology to estimate a measure of risk per record using the
sampling weights, as the usual instrument that national statistical institutes adopt to allow for inference from
the sample to the population. Further discussion of the approach is in Di Consiglio, Franconi and Seri (2003),
Polettini (2003), Rinott (2003). A related approach is described in Carlson (2002).

1.1 Some notation

Let the released file be a random sample s of size n drawn from a finite population P consisting of N units. For
a generic unit i in the population, we denote w−1

i its probability of being included in the sample. Under the
hypothesis that the key variables are discrete, cross-tabulating the key variables produces a set of combinations
{1, . . . ,K}. A combination k is defined to be the k-th cell in the cross-tabulation. The set of combinations
defines a partition of both the population and the sample and the sample values of the key variables on unit i
will classify such a record into one combination. We denote by k = k(i) the cell into which the sampled record
i falls. Let fk and Fk denote the size of the k-th cell in the sample and population, respectively. Retaining only
the observed combinations -combinations with zero sample frequency being omitted- does not alter the above
partition of the sample.
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1.2 Definition of the individual risk

Assume for simplicity that there is complete agreement between the sample and the external archive available
to the intruder, as far as the key variables are concerned (for a more general setting, see Polettini 2003). We
first note that if we were to know the population frequency of the k-th combination, Fk, we would define the
re-identification risk simply by 1

Fk
, for each record that is classified in combination k (i.e. ∀i : k(i) = k). The

population frequencies are generally unknown, therefore an inferential step is to be performed. In the proposal
by Benedetti and Franconi (1998) the uncertainty on Fk is accounted for in a Bayesian fashion by introducing
the distribution of the population frequencies given the sample frequencies. The risk is then measured as the
(posterior) mean of 1/Fk with respect to the distribution of Fk|fk:

rk = E

(
1
Fk

|fk

)
=

∑
h≥fk

1
h

Pr (Fk = h |fk ) . (1)

To determine the probability mass function of Fk|fk, the following superpopulation approach is introduced (see
Bethlehem, Keller and Pannekoek 1990, Rinott 2003, Polettini 2003):

πk ∼ [πk] ∝ 1/πk, πk > 0, k = 1, . . . ,K ,

Fk|πk ∼ Poisson(Nπk), Fk = 0, 1, . . . , (2)
fk|Fk, πk, pk ∼ binomial(Fk, pk) , fk = 0, 1, . . . , Fk .

Under these assumptions, the posterior distribution of Fk|fk is negative binomial with success probability pk and
number of successes fk. In general, the probability mass function of a negative binomial variable Fk counting
the number of trials before the j-th success, each with probability pk, is the following:

Pr (Fk = h|fk = j) =
(

h− 1
j − 1

)
pj

k (1− pk)h−j
, h ≥ j .

In Benedetti and Franconi (1998) it is shown that under the negative binomial distribution the risk (1) can be
expressed as

rk = E(F−1
k |fk) =

∫ ∞

0

{
pk exp (−t)

1− qk exp (−t)

}fk

dt , (3)

where qk = 1− pk.
Substitution of an estimate of pk in (3) can lead to an estimate of the individual risk of disclosure (1).
Given Fk, the maximum likelihood estimator of pk under the binomial model in (2) is p̂k = fk/Fk. Fk being

not observable, Benedetti and Franconi (1998) propose to use

p̂k =
fk∑

i∈k(i)

wi
, (4)

where
∑

i∈k(i)

wi is an estimate of Fk based on the sampling design.

2 An alternative expression of the individual risk of disclosure

Benedetti and Franconi (1998) propose to use the transformation y = (1− qk exp (−t))−1 to obtain the following
expression:

rk =
(

pk

qk

)fk
∫ 1/pk

1

(y − 1)fk−1

y
dy,

but this is numerically unstable for values of pk close to 0 and 1. Using the expression above, the authors
propose an approximation, based on the Binomial theorem. The approximation has the same problems as (4)
for pk close to the extremes of the unit interval.

Instead, the transformation exp(−t) = y in (3) gives the integral

rk = pfk

k

∫ 1

0

tfk−1(1− tqk)−fkdt. (5)



The previous formula can be expressed via the integral representation the Hypergeometric
function 2F1(a, b; c; z) as

rk =
pfk

k

fk
2F1(fk, fk; fk + 1; qk) (6)

where

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt

is the integral representation (valid for (<(c) > <(b) > 0) of the Gauss Hypergeometric series

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
=

Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

zn

n!
; (7)

for definition and properties, see Abramowitz and Stegun (1965). The Gauss Hypergeometric Series (7) has
circle of convergence the unit circle |z| = 1. The series may be divergent (<(c − a − b) ≤ −1), convergent
(<(c− a− b) > 0), conditionally convergent (−1 ≤ <(c− a− b) < 0), except for |z| = 1.

Estimation of the individual risk can be accomplished by computation of the integral in (6). To this aim,
special properties of the Hypergeometric function can be exploited; for example, it is easily seen that for fk = 1
the function equals 2F1(1, 1, 2, qk) = − log(pk)/qk, so that the risk becomes

rk =
pk

1− pk
log

1
pk

.

For fk = 2 we have

rk =
p2

k

2 2F1(2, 2, 3, qk) = p2
k

(qk − 1) log(pk)− qk

q2
k(qk − 1)

=
pk

(1− pk)2
[pk log pk + 1− pk] .

Similarly for fk = 3:

rk =
p3

k

3 2F1(3, 3, 4, qk) =
p3

k

3
3qk(3qk − 2)− 6(qk − 1)2 log(1− qk)

2(qk − 1)2q3
k

=
pk

2q2
k

[
qk(3qk − 2)− 2p2

k log pk

]
.

In the definition of the individual risk methodology it is assumed that for each k qk, pk ∈ (0, 1). Recall that
p̂k = fk∑

i:k(i)=k wi
, wi being the sampling weights. Whereas by definition 0 < pk < 1, estimates of this quantity

might attain the extremes of the unit interval. Although we never deal with p̂k = 0 (corresponding to fk = 0),
when p̂k = 1 we have 2F1(fk, fk, fk + 1, 0) = 1, so that the individual risk equals 1/fk.

3 Approximating the individual risk

In order to obtain an approximation to the individual risk for large fk, contiguity relations for the
Hypergeometric function (see Abramowitz and Stegun 1965) were exploited. In particular,

2F1(fk, fk, fk + 1, 0) =
1

(1− qk)fk−1 2F1(1, 1, fk + 1, qk).

Using the series representation (7) of the Hypergeometric function we get

2F1(fk, fk, fk + 1, pk) =
1

(1− qk)fk−1

(
1 +

qk

fk + 1
+

22q2
k

2(fk + 1)(fk + 2)
+

62q3
k

6(fk + 1)(fk + 2)(fk + 3)
+ . . .

)
=

1
(1− qk)fk−1

(
1 +

qk

fk + 1
+

22q2
k

2(fk + 1)(fk + 2)
+ O(f−3

k )
)

. (8)

For large fk the risk can therefore be approximated by

rk ≈
pk

fk

(
1 +

qk

fk + 1
+

22q2
k

2(fk + 1)(fk + 2)

)
. (9)

In most cases, the first order approximation

rk ≈
pk

fk

(
1 +

qk

fk + 1

)
(10)



will be satisfactory. In practice, estimated pk, qk that depend on the observed frequencies fk are used in formulas
(9) and (10), therefore the order of magnitude of the remainders is of order O(f−2

k ) and O(f−1
k ) respectively.

The first approximation is therefore recommended for moderate fk. A simple check can be conducted on the
term 6q̂3

k/[(fk + 1)(fk + 2)(fk + 3)]: when this is not negligible, the first approximation is more accurate and
recommended.

The approximation always leads to underestimating the risk. The error depends on the remainder. When
using approximation (9) the error is of order O(f−2

k ). Alternatively, a better accuracy may be achieved by
introducing additional terms in the representation: adding terms up to the third power of qk, the error has
order of magnitude O(f−3

k ), and so on. In general, in order to achieve an absolute error of approximation lower
than ε with an observed frequency fk, the order of the polynomial to be used for the approximation has to be
an integer j such that

j > − log(ε)
log(fk)

Therefore an appropriate choice of the order of the approximating polynomial makes it possible to achieve the
desired accuracy.

The approximations provided are based on the series representation of the Hypergeometric function
2F1(1, 1, fk + 1, qk). Its series representation is divergent when fk ≤ 0, therefore divergence is never of concern
in practice. Absolute convergence of the series is guaranteed for fk > 1.
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