
Safety Rules in Statistical Disclosure Control for

Tabular Data

Giovanni M. Merola

Istituto Nazionale di Statistica, Dept. MPS

via C. Balbo 16, 00184, Roma, Italy

e-mail: gmmerola@istat.it

Abstract

We consider different safety rules currently used in Statistical Disclosure

Control for tabular data. We generalize these rules and show how they can all

be expressed as bounds on the relative error of estimation for partial sums.

Thus we relate the Dominance rule to thep-rule and(p, q)-rule. Then we

consider safety rules based on a different estimating procedure, showing that

these are of the same kind of the previous ones. These different safety rules

are then compared to each other and to the previous ones.
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1 Introduction

Statistical Disclosure Control (SDC) is used to protect confidential information

that is to be released. It is mainly applied by official statistical institutes but also

by other data providers, such as, for example, those dealing with clinical statis-

tics. We consider SDC applied to tables with cells containing sums of nonnegative

contributions, which are the values taken by a variable for each unit belonging to

a cell. Such tables are the most common ones and also the easiest to violate. Cell

totals are not considered confidential unless their knowledge allows the disclosure

of confidential individual contributions. In most cases, contributions are not con-

sidered confidential unless they can be matched with the identity of the contribu-

tor. Often, large contributions can be matched more easily than others; therefore,



care must be taken with cells containing few dominating contributions. Generally,

cells with few contributions require stricter protection, as also do cells containing

enterprise data, for which the likelihood of a systematic attack is higher. Such

considerations, however, are beyond the scope of this paper and we consider pro-

tecting any given latent information in a cell, regardless of its identifiability. We

are concerned with the stage of SDC in which cells at risk are identified, hence

not with the later protection stage.

Let C be a generic cell of a magnitude table withn nonnegative contributions

zi, for which the total

z =
n∑

i=1

zi

is to be released. Without loss of generality, the contributions are indexed in

nonincreasing order, so thatz1 ≥ z2 ≥ · · · ≥ zn ≥ 0. For generality we do not

exclude the possibility that one or more, but not all, contributions could be zero.

When not needed, we will drop the reference to the cellC, with the understanding

that all quantities considered refer to the same cell. The sum of them ≤ n largest

contributions will be denoted as

tm =
m∑

i=1

zi

and the sum of the(n − m) lowest contributions withrm =
∑n

i=m+1 zi, so that



z = tm + rm = tm + zm+1 + rm+1. It is always verified that

m

n
z ≤ tm ≤ z. (1)

The risk of disclosure for a cell can be measured with respect to different criteria.

Given a measure of risk, safety rules set a bound on the acceptable risk and a

cell is considered at risk, orsensitive, if its contributions do not meet the safety

conditions set by the rule. A safety rule almost always applied is the 3-rule, by

which cells with less than three contributions are at risk. The rationale for this

rule is that: if n = 1, releasing the total is equivalent to declaring the value

to be protected and any intruder knowingn can estimate exactlyz1; if n = 2,

anyone of the two respondents of that cell knowingn can estimate exactly the

other contribution. Taking one of the respondents to be the intruder makes realistic

the assumption of an intruder with knowledge of one contribution. Note that ifn is

not known the intruder cannot estimate exactly a contribution in either case. The

3-rule relies only on the number of respondents of a cell and it is often applied

together with other rules based also on the values of the contributions, such as

the widely accepted(m, k)-dominance rule (Cox 1981). By this rule, a cell is not

sensitive if the sum of the firstm contributions is less than100k percent of the

total. That is, if

tm
z

< k, (2)



with k real in(0, 1). The rationale for this rule, is the identifiability of large out-

liers, mentioned above. However, there does not seem to be agreement on which

values of the parametersm andk should be chosen. In the current practice the

choice is left to the protector’s perception of concentration; common values are

m = 2, 3 and0.6 ≤ k ≤ 0.8. de Wolf (2001) notes that a cell with minimal con-

centration, that is withn equal contributions, should not be considered at risk. In

this case, lettinḡz = z/n denote the mean contribution,tm = mz̄ and, therefore,

the parameters should always be chosen such thatk ≥ m/n. This agrees with the

lower bound in Equation (1). If the value ofk had to be chosen with respect to

some measures of concentration, it would vary with respect to the ratiom/n.

The 3-rule prevents the exact prediction of one contribution. In thep-rule (Cox

1981) a cell is safeguarded from predictive disclosure putting a lower bound on the

absolute relative error of estimation of one contribution by one of the respondents

of the cell. By this rule, the intruder knowing a contributionzK would estimate a

contributionzi with ẑi = z − zK . Denoting withRE(zi; zK) the absolute relative

error of estimation for such scenario, it can be shown that it is minimal when the

second respondent estimates the largest contribution. Thus thep-rule is expressed

as

RE(z1; z2) =
|z − z2 − z1|

z1

< p, (3)



where the thresholdp > 0 is real. Thep-rule was actually used for the protection

of the 1992 US Economic Census data (Jewett 1993, cited in Willenborg and

de Waal 2000). Theprior-posterior rule (Cox 1981), or(p, q)-rule, widens the

scenario of thep-rule assuming that the intruder estimates the reminder(z− zK −

zi) with 100q percent of error. Thus a contributionzi is estimated bŷzi = z −

zK − (1 + q)(z− zK − zi). Like for thep-rule, the lowest absolute relative error of

estimation is obtained by the second contributor estimatingz1. The prior-posterior

rule is thus defined as

RE(z1; z2, q) =
|z − z2 − (1 + q)(z − z2 − z1)− z1|

z1

< p, (4)

wherep > |q|, because it is required that the a-posteriori precision is not better

than the a-priori precision.

In the next section we generalize and cast the currently used safety rules into

the same predictive framework, establishing relations among them. In Section 3

we consider measures of risk for an intruder assuming uniform distribution of the

quantities to be estimated, obtaining other safety rules. In Section 4 we compare

the various safety rules and give some concluding remarks.



2 Dominance Rule and Sensitivity of Sums of Con-

tributions

SDC for tabular data’s operational tools are sensitivity measures. These are func-

tions of the contributions of the cell that take positive value if the corresponding

safety rule is not satisfied. Since they are only used as indicators of a safety rule

being satisfied or not, proportional sensitivity measures are equivalent. A general

class of such measures is that oflinear sensitivity measures(LSM) (Cox 1981).

For our purposes a linear sensitivity measure is a function

S(C) =
n∑

i=1

λizi + d, (5)

with λi, i = 1, . . . , n, andd real, for which a cellC is sensitive ifS(C) > 0. Note

that we can also writeS(C) =
∑n

i=1 [λi + d/(nzi)] zi. For example, a LSM for

the safety rulen > m, that generalizes the 3-rule stated above, can be built taking

as weightsλi = −1/zi, i = 1, . . . , n; so thatS(C) = m+
∑n

i=1−zi/zi = m−n.

A LSM is subadditive ifS(Ci ∪ Cj) ≤ S(Ci) + S(Cj), whereCi andCj are

two cells of the same table. Subadditivity ensures that the union of two or more

nonsensitive cells is also nonsensitive, hence it is important because it ensures

that the whole table is nonsensitive if all of its cells are nonsensitive. A safety rule

with subadditive LSM is subadditive. It can be shown that a LSM with weightsλi



is subadditive if and only ifλ1 ≥ λ2 ≥ · · · ≥ λn (Cox 1981). Therefore, the LSM

for the rulen > m is subadditive. Equivalent forms of the LSM corresponding to

the(m, k)-dominance rule in Equation (2) are

S = tm − kz = (1− k)tm − krm ∝ (1− k)

k
tm − rm. (6)

This LSM, in the form (5), has weights proportional toλj = (1− k) for j ≤ m

and toλj = −k for j > m, hence it is subadditive.

In this section we consider predictive disclosure risk, which, like in thep-

rule, is measured by the minimal achievable absolute relative error of estimation.

Different rules are defined with respect to different predictive scenarios. Predictive

scenarios differ for the intruder’s prior knowledge, predictive aim,s, and estimate,

ŝ. Safety rules bound the disclosure risk with a thresholdp > 0 and will be

denoted as

Pp(s; · · · ) : min
scenario

RE(s; · · · ) = min
scenario

|ŝ− s|
s

> p,

where(· · · ) indicate parameters of the predictive scenario. When not needed,

we will drop the subscript for the lower bound, with the understanding that the

quantities are defined for anyp > 0. A rule P is implied by another ruleP ′ if

it is always satisfied whenP ′ is satisfied. A sensitivity measure corresponding to

the rulePp(s; · · · ) will be denoted asSp(s; · · · ). Henceforth, when not otherwise



specified, we will refer to sensitivity measures in the form:Sp(s; · · · ) = ps −

|ŝ − s|, as these forms referred to the sames enjoy the inverse ordering of the

correspondingRE in different scenarios.

In this section we consider different predictive scenarios in which an intruder

is interested in estimating a sum ofm < n contributions of a cell, denoted gener-

ically by sm, and estimates this sum with its maximal possible value in the sce-

nario; therefore, the corresponding rules will be generically referred to asM -rules.

The prior knowledge of the intruder will be summarized by some parameters but

the basic knowledge of the cell total,z, and that the number of contributions is

larger than some integerm, is always assumed and will be omitted in the notation.

The simplest situation that we consider is that of an intruder with only basic

knowledge who estimatessm with ŝm = z. If the safety ruleP (sm) is adopted the

following proposition holds:

Proposition 2.1 Safety ruleP (sm) : min{sm} RE(sm) ≥ p, wheresm is the sum

of anym < n contributions of a cell and̂sm = z, has LSMS(sm) = ptm − rm,

which is subadditive and equivalent to the(m, k)-dominance in Equation (6) with

k = 1
1+p

.

Proof. The sums ofm contributions are bounded such thatrn−m+1 ≤ sm ≤ tm,



thus, by settinĝsm = z,

RE(sm) =
z − sm

sm

=
z

sm

− 1 ≥ rm

tm
= RE(tm).

Hence, the sum ofm contributions that gives lowest relative error of estimation

in this scenario is the sum of them largest ones,tm. The LSM for this rule is

obtained from the conditionRE(tm) < p and it is

S(sm) = ptm − rm, (7)

which is equivalent to the LSM for the(m, k)-Dominance in (6) withk = 1/(1 + p)

and, thus, is subadditive.

q.e.d.

SinceP (sm) is equivalent to the(m, k)-dominance we will simply call it Domi-

nance. The choice ofk in the(m, k)-dominance gives lower boundp = (1−k)/k

in the Dominance. The values ofp corresponding to different choices ofk in the

(m, k)-dominance rule, shown in Table 1, show that the values commonly chosen

for k correspond to values ofp between1
4

and 1
3
.

k 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p 99 9 4 2.33 1.5 1 0.67 0.43 0.25 0.11 0

Table 1: Values ofk in the(m, k)-dominance rule corresponding to different val-

ues ofp in the Dominance rule.



The equivalence of the two rules is confirmed by another consideration. From

Equation (1) follows thatRE(tm) ≤ (n−m)/m. Hence, for this rule to make

sense,p should always be chosen such thatp < (n − m)/m. Substitutingk =

1/(1 + p) in the latter inequality we obtain the boundn ≥ bm/kc, set for the

Dominance. Elsewhere (e.g. Cox 1981 and Willenborg and de Waal 2000), the

(m, k)-Dominance is interpreted in a predictive context in terms of the relative

error of estimation forz1 when a coalition ofm−1 contributors intrudes, however

in a somewhat less convincing way.

Scenarios for stricter safety rules allow for the intruder to be one of the re-

spondents. Consider generalizing thep-rule to estimatingsm with ŝm = z − zK .

Denoting withγK = zK/z, the estimate can be written asŝm = (1− γK)z. Adopt-

ing the usual safety rule gives the following proposition.

Proposition 2.2 Let the generalizedp-rule beP (sm; zK) :

min{sm,zK} RE(sm; zK) ≥ p, wheresm is any sum ofm < n contributions for

givenm, zK does not contribute tosm and ŝm = z − zK . This rule is equivalent to

the Dominance rule (2) with boundk = (1− γK)/(1 + p); its SLM is subadditive

and equal toS(sm; zK) = ptm − rm+1. The same rule withm = K − 1 would be

obtained for givenK and variablem < K.



Proof. Obviously, it holds thatsm + zK ≤ tm+1, ∀ K andsm, therefore

RE(sm; zK) =
z − zK − sm

sm

≥ z − tm+1

tm+1 − zK

≥ z − zm+1 − tm
tm

= RE(tm; zm+1).

min{sm,K} RE(sm; zK) is thus achieved forsm = tm andK = m + 1. Therefore,

the safety rule is satisfied whenRE(tm; zm+1) > p, that is when

tm
z
≤ (1− γK)

1

1 + p
. (8)

It easily seen that the corresponding LSM isS(sm; zK) = ptm − rm+1 which can

be expressed in the form (5) withd = 0 and weightsλi = p for i ≤ m, λm+1 = 0

andλi = −1 for i > m + 1, from which follows the subadditivity. If we had,

instead, fixed the rankK of the known contribution and left undeterminedm < K,

we would have obtained the same LSM, expressed asptK−1 − rK , by the same

argument as above.

q.e.d.

Thep-rule in (3) is a particular case of the above rule form = 1.

The generalization of the(p, q)-rule to the estimation of a sum ofm contribu-

tions is considered in the following proposition.

Proposition 2.3 Let the generalized(p, q)-rule beP (sm; zK , q) :

min{sm,K} RE(sm; zK , q) ≥ p, wheresm is any sum ofm < n contributions for



givenm, zK does not contribute tosm and ŝm = z − zK − (1 + q)(z − zK − sm)

with 0 < |q| < p. The rule is equivalent to the Dominance rule (2) with bound

k = 1/[1 + (p/|q|)] and to the generalizedp-rule with thresholdp′ = p/|q|; its

LSM is subadditive and equal toSp(sm; zK , q) = ptm − |q|rm+1. The same rule is

obtained for fixedK and variablem < K.

Proof. The absolute estimation error for this scenario is equal to|ŝm − sm| =

|z − zK − (1 + q)(z − sm − zK)− sm| = |q|(z − sm − zK). Fromsm + zK ≤ tm+1

follows that

RE(sm; zK , q) =
|q|(z − sm − zK)

sm

≥ |q|(z − tm+1)

sm

≥

|q|(z − tm+1)

tm
= RE(tm; zm+1, q).

Thus, also in this scenario, the minimal absolute relative error of estimation is

achieved forsm = tm andK = m + 1, so that the safety rule is satisfied when

RE(tm; zm+1, q) > p, that is when

tm
z
≤ (1− γK)

1

1 + p′
, (9)

wherep′ = p/|q|. The equivalence with the generalizedp-rule follows comparing

the above safety condition with that in (8); the subadditivity of the rule follows

from its equivalence with a subadditive rule. The LSM is easily obtained from (9)



and it isSp(sm; zK , q) = ptm− |q|rm+1. If we had, instead, fixed the rankK of the

known contribution and left undeterminedm < K, we would have obtained the

same LSM, expressed asptK−1 − |q|rK , for the same argument as above.

q.e.d.

The scenario for the generalized(p, q)-rule may be restricted to considering only

q > 0, because the LSM is symmetric aboutq = 0. Whenq = 0 the intruder

knows exactly the remainder(z − tm+1) andRE(tm; zm+1, q = 0) = 0. When

|q| = 1, the rule reduces to the generalizedp-rule; in this case the intruder esti-

mates the remainderz− sm− zK with zero or with twice its value. Note thatq can

never be less than−1 because the intruder wouldn’t estimate the remainder with

a negative number. Also note that the scenario of the generalized(p, q)-rule is

slightly different from the originalprior-posterior ambiguity rulesscenario (Cox

1981). In fact, we simply setq to be the relative error for the remainder, as op-

posed to being the relative error for each of its contributions. This scenario yields

the same safety rule but, unlike the other, does not require the prior knowledge of

n by the intruder.

The predictive scenarios we considered so far are nested into each other, for

increasing prior knowledge is allowed to the intruder. The connections among the

corresponding rules are stated in the following corollary.



Corollary 2.4 The following properties for the safety rules in Propositions (2.1),

(2.2) and (2.3) hold good:

a) Pp(sm) is implied byPp(sm; zK), which is implied byPp(sm; zK , q) if |q| ≤

1; each of these rules applied tosm implies itself for any sum of less contri-

butions,sJ, J < m, with samep;

b) Pp(sm) impliesPp(sJ; zK) andPp(sJ; zK , q) if |q| ≥ tm−1/tm, for all indices

J < m;

c) The parameters of the predictive scenarios are such that: i)P (sm; zK) is

never satisfied ifp ≥ (n−m− 1)/m; ii) P (sm; zK , q) is never satisfied if

p/|q| ≥ (n−m− 1)/m or 2m > n− 1 or tm > rm+1.

Proof. Since0 ≤ γK < 1, the safety bound for the generalizedp-rule in (8)

is always lower than that for the Dominance rule in(2) for equalp andm. Thus

Pp(sm) is implied byPp(sm; zK). When|q| < 1 the value ofp′ in (9) is higher than

p, hence the safety bound is lower than that in (8) for (8), which is thus implied.

When|q| > 1 the converse is true. From this implication and the above follows

that also the Dominance rule is implied by the generalized(p, q)-rule for samem

andp and|q| < 1.



For the nonnegativity of the contributions it is always true thattm ≥ tm−1 and

rm ≤ rm−1. Thus,

RE(tm) =
rm

tm
≤ rm−1

tm−1

= RE(tm−1)

for all 2 < m ≤ n, hencePp(sJ) is implied byPp(sm) for all J ≤ (m − 1)]. The

same argument applies to the generalizedp-rule and(p, q)-rule, considering that

RE(tm; zm+1) = r(m+1)/tm andRE(tm; zm+1, q) = |q|r(m+1)/tm. Property (a) is

thus proved.

Clearly, RE(tm) = rm/tm ≤ rm/tm−1 = RE(tm−1; zm) for all 2 < m ≤

n, thusP (sm) implies P (sJ; zK) for all J in [1, (m − 1)]. RE(tm−1; zm, q) =

|q|rm/tm−1 is not lower thanRE(tm) if and only if |q| ≥ tm−1/tm < 1, in which

casePp(sm−1; zm, q) is implied byPp(sm). The implication for all sums of less

contributions,sJ, J < m, follows from property (a), proving property (b).

Since the contributions are nonincreasing, it holds thattm ≥ mzm+1 and

rm+1 ≤ (n − m − 1)zm+1. HenceS(sm; zK) ≥ [pm − (n − m − 1)]zm+1,

from which follows thatP (sm; zK) is never satisfied ifpm > n−m− 1, which

can be rearranged to give (i). Whence, since LSMSp(sm; zK , q) is equivalent to

Sp/|q|(sm; zK), it follows thatSp(sm; zK , q) is never satisfied ifp/|q| > (n−m− 1)/m.

Since it must also be|q| < p, from inequality (1) follows thatS(tm; zm+1, q) >

p(2m−n+1)z̄. Therefore,P (sm; zK , q) cannot be satisfied if2m > (n−1), which



proves the second of (ii). Also because|q| ≤ p, S(sm; zK , q) = ptm−|q|rm+1 > 0

if tm > rm+1 and the last of (ii) is thus proved.

q.e.d.

This proposition links the safety rules so far discussed. Since the generalized

(p, q)-rule is obtained allowing more prior information to the intruder than in the

generalizedp-rule, it seems logical to always choose|q| < 1, so to obtain a tighter

bound. The safety of all sums of less contributions, hence also of the individual

values, gives motivation for the use of safety rules that consider the estimation of

sums of contributions. Property b) gives a justification for the general preference

for the Dominance rule over the otherM -rules. Properties in c) show that the

values ofp in theM -rules cannot be chosen completely independently ofm and

n.

3 Safety Rules for Estimation Under Uniform As-

sumptions

In the M -rules any sum ofm contributions is always estimated with its highest

possible value. Hence, the minimal relative error is achieved forsm = tm. In

this section we assume that the intruder is explicitly interested in estimatingtm



and that uses his prior knowledge to bound its value within the boundst−m ≤ t+m,

such thatt−m ≤ tm ≤ t+m. Furthermore, we assume that the ignorance about

the remaining quantities is modelled assuming thattm is uniformly distributed

within [t−m, t+m] and that the estimate is obtained minimizing the mean squared

error of estimation. In this way, repeating the procedure many times the intruder

expects low squared error. The estimatet̂ that minimizes the mean squared error

∫ t+m
t−m

(t̂m − tm)2/(t+m − t−m)dtm is

t̂m =
t−m + t+m

2
, (10)

for a well known property of the mean. We consider the usual safety rules for this

estimating procedure, which will be generically referred to asU -rules and denoted

asP (tm; U, · · · ).

The safety conditions set by theU -rule for an intruder with only basic knowl-

edge are stated in the following proposition.

Proposition 3.1 Let an intruder with only basic knowledge estimatetm as in (10).

Thent̂m = z/2 and safety rulePp(tm; U) : |t̂m − tm| < ptm is not satisfied when

1

2(1 + p)
≤ tm

z
≤ 1

2(1− p)
. (11)

The rule cannot be satisfied iftm < rm andp > (n− 2m)/2m or if tm > rm and

p > 1/2.



Proof. The intruder knowing onlyz can only boundtm such that0 ≤ tm ≤ z.

Substituting these values in (10) gives

t̂m =
z

2
. (12)

If tm < rm thent̂m = z/2 > tm. In this case safety rulePp(tm; U) is satisfied if

z/2− tm > ptm, from which is easy to derive the safety condition

tm
z

<
1

2(1 + p)
.

From the lower boundtm ≥ m/n in Equation (1), follows that this condition

cannot be satisfied ifp > (n− 2m)/2m.

If tm > rm, which is always true if2m > n, then t̂m = z/2 < tm. In this

case, safety rulePp(tm; U) is satisfied whentm − z/2 = (tm − rm)/2 > ptm,

from which it is easy to derive the condition

tm
z

>
1

2(1− p)
.

From the upper boundtm ≤ z in Equation (1), follows that this condition cannot

be satisfied ifp > 1/2. This means that iftm ≥ rm thenRE(tm; U) < 1/2.

Applying both inequalities yields the required interval.

q.e.d.

The following proposition sets the safety conditions against an intruder know-

ing the number of contributions in the cell.



Proposition 3.2 Let an intruder knowing the number of contributions,n, estimate

tm by (10). Then the estimate ist̂m = (z + mz̄)/2 and safety rulePp(tm; U, n) is

not satisfied when

n + m

2n(1 + p)
≤ tm

z
≤ n + m

2n(1− p)
. (13)

The rule can neither be satisfied if(n−m)tm < (n+m)rm andp > (n−m)/2m

nor if (n−m)tm > (n + m)rm andp > (1−m/n)/2.

Proof. From the knowledge of the cell mean̄z, applying inequality (1),tm can

be bounded asmz̄ ≤ tm ≤ z. Substituting these values in (10) gives

t̂m =
z

2
+

mz̄

2
=

(
n + m

2n

)
z. (14)

If (n + m)z > 2ntm then t̂m > tm and safety ruleRE(tm; U, n) > p is satisfied

if (n + m)z > 2n(1 + p)tm, that is when

tm
z

<
m + n

2n(1 + p)
.

From the lower boundtm/z ≥ m/n in Equation (1) follows that this condition

cannot be satisfied ifp > (n−m)/2m.

If (n+m)z ≤ 2ntm thent̂m < tm and the safety rule is satisfied if(n+m)z >

2n(1− p)tm, that is when

tm
z

>
m + n

2n(1− p)
.



From the upper boundtm ≤ z in Equation (1) follows that this condition cannot be

satisfied ifp > (1−m/n)/2, hence never ifp > 1/2. Applying both inequalities

yields the required interval.

q.e.d.

The scenario in which an intruder knows the contributionzm+1 is considered in

the next proposition.

Proposition 3.3 Let an intruder knowingzK = zm+1 estimatetm by (10). Then

the estimate iŝtm = (z + (m − 1)zK)/2 and safety rulePp(tm; U, zm+1) is not

satisfied if

1 + (m− 1)γK

2(1 + p)
≤ tm

z
≤ 1 + (m− 1)γK

2(1− p)
, (15)

whereγK = zK/z. The safety rule cannot be satisfied if(tm− rm)/2 ≤ (m− 1)zK

and p > (n − 2m + n(m − 1)γK)/2m or if (tm − rm)/2 ≤ (m − 1)zK and

p > 1/2− [γK(m− 1)/2].

Proof. From the knowledge ofzK , tm can be bounded asmzK ≤ tm ≤ z − zK ,

becausezi ≥ zm+1 for i < m + 1. Substituting these values in (10) gives

t̂m =
z

2
+

(m− 1)

2
zK =

(
1 + (m− 1)γK

2

)
z (16)

If tm/z ≤ [1−(m−1)γK ]/2 thent̂m > tm. In this case, safety ruleP (tm; U, zm+1) >



p is satisfied when

tm
z

<
1 + (m− 1)γK

2(1 + p)
.

From the lower boundtm ≥ m/n in Equation (1) follows that this condition

cannot be satisfied ifp > [n− 2m + n(m− 1)γK ]/2m.

Whent̂m < tm the safety rule is satisfied if

tm
z

>
1 + (m− 1)γK

2(1− p)
.

From the upper boundtm ≤ z in Equation (1) follows that this condition cannot

be satisfied ifp > 1/2 − [(m − 1)γK/2], hence never ifp > 1/2. Applying both

inequalities yields the required interval.

q.e.d.

The union of the previous two scenarios, that is an intruder knowing bothn and

zm+1, is considered in next proposition.

Proposition 3.4 Let an intruder knowingzK = zm+1 andn estimatetm by (10).

Then ifzK > z̄ the estimatêtm and the safety conditions are the same as in Propo-

sition (3.3). IfzK ≤ z̄ then the estimate iŝtm = z − (n−m + 1)zK/2 and safety

rule Pp(tm; U, K, n) is not satisfied if

2− (n−m + 1)γK

2(1 + p)
≤ tm

z
≤ 2− (n−m + 1)γK

2(1− p)
. (17)



The safety rule cannot be satisfied when2rm > (n −m + 1)γK andp > [2(n −

m)−γK(n−m+1)]/2m or when2rm < (n−m+1)γK andp > γK(n−m+1)/2n

or m > (n− 1)/2.

Proof. If zK > z̄ thentm can be bounded asmzK ≤ tm ≤ z − zK and the safety

conditions must be the same as forPp(tm; U, K). In this case the knowledge ofn

is redundant. IfzK ≤ z̄ thentm can be bounded asz− (n−m)zK ≤ tm ≤ z− zK ,

where the lower bound is derived fromtm ≥ z− zK −max{rK}. In this case both

pieces of information contribute to the lower bound.

WhenzK ≤ z̄ the estimate oftm is

t̂m = z − (n−m + 1)

2
zK =

[
2− (n−m + 1)γK

2

]
z. (18)

If 2rm > (n−m + 1)γK thent̂m > tm and safety rulePp(tm; U, K, n) is satisfied

if

tm
z

<
2− (n−m + 1)γK

2(1 + p)
.

From the lower boundtm ≥ m/n in Equation (1) follows that this condition

cannot be satisfied ifp > [2(n−m)−n(n−m+1)γK ]/2m. If 2rm > (n−m+1)γK

thent̂m < tm and safety ruleRE(tm; U, n) > p is satisfied if

tm
z

>
2− (n−m + 1)γK

2(1− p)
.



From the upper boundtm ≤ z in Equation (1) follows that this condition cannot

be satisfied ifp > γK(n−m + 1)/2, hence never ifp > 1/2 or if m > (n− 1)/2.

Applying both inequalities yields the required interval.

q.e.d.

The above propositions show that for theU -rules cells are at risk if the ratiotm/z

is inside an interval. As it can be easily seen, this implies that the rules are not

subadditive.

We propose to adopt theU -rules restricted to being satisfied only iftm/z is

lower than the lower bound. In so doing we obtain subadditive rules of the Dom-

inance kind. Observing that the lower bound for acceptably largetm/z ratios

increases rapidly withp andm to the maximal value 1, such restriction will often

be implied by the conditions themselves. Furthermore, this restriction agrees with

the idea of protecting large contributions because they are more easily identifiable.

Thus, for the restrictedU -rules, that will be denoted asPR(tm; U, · · · ), cells are

safe only iftm is overestimated and the absolute relative error of estimation is less

than the thresholdp.

The safety conditions satisfying theM -rules and the restrictedU -rules are

shown in Table 2, together with the restrictions on the values of the parameters.



rule bound restrictions

P (sm) tm
z

< 1
(1+p)

p < (n−m−1)
m

P (sm; zK)
tm
z
≤ (1−γK)

1+p
p < (n−m−1)

m

P (sm; zK , q)
tm
z
≤ (1−γK)

1+ p
|q|

p
|q| < (n−m−1)

m
, 2m > n− 1

PR(tm; U) tm
z

< 1
2(1+p)

p < (n−2m)
2m

PR(tm; U, n) tm
z

< n+m
2n(1+p)

p < (n−m)
2n

PR(tm; U, K) tm
z

< 1+(m−1)γK

2(1+p)
p < (n−2m)+(m−1)γK

2m

PR(tm; U, K, n)∗ tm
z

< 2−(n−m+1)γK

2(1+p)
p < 2(n−m)−n(n−m+1)γK

2m

Table 2: Comparison of different safety rules, safety bounds and restrictions on the

parameters. The asterisk indicates that the bound applies ifγK < 1/n, otherwise

the bound above applies.

4 CONCLUSIONS

The Dominance and the generalizedp-rule assume that the intruder always esti-

matessm with its maximum possible value, setting the remainder equal to zero.

In passing, note that this is equivalent to setting the absolute relative error of esti-

mation of the remainder constantly equal to one. The generalized prior-posterior

rule allows for a positive estimate of the remainder and the value ofq can be used

to lower the bound ontm/z set by the other rules. However, the difficulty of



quantifying this prior knowledge for a generic intruder and the restrictions on the

parameters given in Corollary (2.4), may restrict considerably the application of

the generalized prior-posterior rule. Furthermore, the restrictions indicate that in

theM -rules the value ofp andq cannot be chosen completely arbitrarily but are

bounded by the values ofm andn. The restrictedU -rules give upper bounds for

the ratiotm/z that depend on the prior information the intruder is allowed to have.

For an intruder with only basic knowledge the bound ontm/z set byP (tm; U) rule

will be half of that for the correspondingM -rule. The bounds set by the restricted

U -rules will not always be lower than those set by the correspondingM -rules, a

comparison is given in Table 3. The safety conditions set by theU -rules are not

always stricter the more prior knowledge is allowed to the intruder. In particular, it

turns out that in many cases the lowest bound is that of thePR(tm) rule. This fact

is explained by the estimation criterium adopted by the rules. It can be observed

that the more prior knowledge is allowed the wider are rejection intervals for the

completeU -rules.

Finally, we would like to stress the fact that we have only considered rules

protecting from the disclosure of sums of observations, without considering the

further use that the intruder could make of these estimates, such as estimating the

single contributions. In fact, safety conditions could be obtained assuming one or



> · zK U, U, n U, zK

zK N

U N γK > 1
2

U, n N γK > (n−m)
n

A

U, zK γK > 1
(m−1)

γK > 1
(m+1)

A γK > m
n(m−1)

U, n, zK
∗ N N N γK < (n−m)

n(n−m+1)
A

Table 3: Conditions for which theM -rules and restrictedU -rules with parameters

as in the row labels yield higher upper bounds for the ratiotm/z than the rules

with parameters as in the column labels.N stands fornever, A for always and

the asterisk denotes thatγK < 1/n.

another estimating procedure for the single contributions. It would be difficult to

decide upon which estimating procedure to assume and, in many cases, one would

obtain very strict safety conditions. TheU -rules, applied with an appropriate value

of p, should provide a reasonable protection against disclosure risk.
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