Safety Rules in Statistical Disclosure Control for

Tabular Data

Giovanni M. Merola
Istituto Nazionale di Statistica, Dept. MPS
via C. Balbo 16, 00184, Roma, Italy

e-mail: gmmerola@istat.it

Abstract

We consider different safety rules currently used in Statistical Disclosure
Control for tabular data. We generalize these rules and show how they can all
be expressed as bounds on the relative error of estimation for partial sums.
Thus we relate the Dominance rule to theule and(p, ¢)-rule. Then we
consider safety rules based on a different estimating procedure, showing that
these are of the same kind of the previous ones. These different safety rules

are then compared to each other and to the previous ones.
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1 Introduction

Statistical Disclosure Control (SDC) is used to protect confidential information
that is to be released. It is mainly applied by official statistical institutes but also
by other data providers, such as, for example, those dealing with clinical statis-
tics. We consider SDC applied to tables with cells containing sums of nonnegative
contributions, which are the values taken by a variable for each unit belonging to
a cell. Such tables are the most common ones and also the easiest to violate. Cell
totals are not considered confidential unless their knowledge allows the disclosure
of confidential individual contributions. In most cases, contributions are not con-
sidered confidential unless they can be matched with the identity of the contribu-

tor. Often, large contributions can be matched more easily than others; therefore,



care must be taken with cells containing few dominating contributions. Generally,
cells with few contributions require stricter protection, as also do cells containing
enterprise data, for which the likelihood of a systematic attack is higher. Such
considerations, however, are beyond the scope of this paper and we consider pro-
tecting any given latent information in a cell, regardless of its identifiability. We
are concerned with the stage of SDC in which cells at risk are identified, hence
not with the later protection stage.

Let C be a generic cell of a magnitude table witmhonnegative contributions

z;, for which the total
z = Z Zi
i=1

is to be released. Without loss of generality, the contributions are indexed in
nonincreasing order, so that > z, > --- > z, > 0. For generality we do not
exclude the possibility that one or more, but not all, contributions could be zero.
When not needed, we will drop the reference to theCellith the understanding
that all quantities considered refer to the same cell. The sum ofitken largest

contributions will be denoted as

m

=1

n

and the sum of thén — m) lowest contributions with,,, = > .,

z;, SO that



Z2=1tm+Tm =tm + Zms1 + rma1. Itis always verified that

n, <tn <z (1)
n

The risk of disclosure for a cell can be measured with respect to different criteria.
Given a measure of risk, safety rules set a bound on the acceptable risk and a
cell is considered at risk, @ensitive if its contributions do not meet the safety
conditions set by the rule. A safety rule almost always applied is the 3-rule, by
which cells with less than three contributions are at risk. The rationale for this
rule is that: ifn = 1, releasing the total is equivalent to declaring the value
to be protected and any intruder knowingcan estimate exactly;; if n = 2,
anyone of the two respondents of that cell knowingan estimate exactly the
other contribution. Taking one of the respondents to be the intruder makes realistic
the assumption of an intruder with knowledge of one contribution. Note thasif

not known the intruder cannot estimate exactly a contribution in either case. The
3-rule relies only on the number of respondents of a cell and it is often applied
together with other rules based also on the values of the contributions, such as
the widely accepte@n, k)-dominance rule (Cox 1981). By this rule, a cell is not
sensitive if the sum of the first: contributions is less than00k percent of the

total. That is, if

<k, (2)



with k& real in (0, 1). The rationale for this rule, is the identifiability of large out-
liers, mentioned above. However, there does not seem to be agreement on which
values of the parameters and k& should be chosen. In the current practice the
choice is left to the protector’s perception of concentration; common values are
m = 2,3 and0.6 < k£ < 0.8. de Wolf (2001) notes that a cell with minimal con-
centration, that is witlh equal contributions, should not be considered at risk. In
this case, letting = z/n denote the mean contributiof, = mz and, therefore,
the parameters should always be chosen suctkthatn /n. This agrees with the
lower bound in Equation (1). If the value &éfhad to be chosen with respect to
some measures of concentration, it would vary with respect to therréltio

The 3-rule prevents the exact prediction of one contribution. Ipthde (Cox
1981) a cell is safeguarded from predictive disclosure putting a lower bound on the
absolute relative error of estimation of one contribution by one of the respondents
of the cell. By this rule, the intruder knowing a contributignwould estimate a
contributionz; with z;, = z — z¢. Denoting withRE(z;; z«) the absolute relative
error of estimation for such scenario, it can be shown that it is minimal when the
second respondent estimates the largest contribution. Thusrthe is expressed
as

lr—zm |

RE(z;20) = ———— < p, 3)

21



where the thresholg > 0 is real. Thep-rule was actually used for the protection

of the 1992 US Economic Census data (Jewett 1993, cited in Willenborg and
de Waal 2000). Therior-posterior rule (Cox 1981), or(p, q)-rule, widens the
scenario of the-rule assuming that the intruder estimates the remitderz, —

z;) with 100¢ percent of error. Thus a contributian is estimated by; = 2 —

2z« — (14 ¢q)(z — 2z« — ;). Like for thep-rule, the lowest absolute relative error of
estimation is obtained by the second contributor estimatinghe prior-posterior

rule is thus defined as

(1 IV _
RE(Zl;ZQ7q):|Z 29— (14 q)(z — 20 — 21) — 2|

<p, (4)
21

wherep > |q|, because it is required that the a-posteriori precision is not better

than the a-priori precision.

In the next section we generalize and cast the currently used safety rules into
the same predictive framework, establishing relations among them. In Section 3
we consider measures of risk for an intruder assuming uniform distribution of the
guantities to be estimated, obtaining other safety rules. In Section 4 we compare

the various safety rules and give some concluding remarks.



2 Dominance Rule and Sensitivity of Sums of Con-

tributions

SDC for tabular data’s operational tools are sensitivity measures. These are func-
tions of the contributions of the cell that take positive value if the corresponding
safety rule is not satisfied. Since they are only used as indicators of a safety rule
being satisfied or not, proportional sensitivity measures are equivalent. A general
class of such measures is thatliokar sensitivity measurgd.SM) (Cox 1981).

For our purposes a linear sensitivity measure is a function

with \;, i = 1,...,n, andd real, for which a cell’ is sensitive ifS(C') > 0. Note

that we can also writ&'(C') = > | [\; + d/(nz;)] z;. For example, a LSM for

the safety rules > m, that generalizes the 3-rule stated above, can be built taking
asweights\; = —1/z;, i =1,...,n;s0thatS(C) = m+>_1 | —zi/z = m—n.

A LSM is subadditive ifS(C; U C;) < S(C;) + S(C;), whereC; andC; are

two cells of the same table. Subadditivity ensures that the union of two or more
nonsensitive cells is also nonsensitive, hence it is important because it ensures
that the whole table is nonsensitive if all of its cells are nonsensitive. A safety rule

with subadditive LSM is subadditive. It can be shown that a LSM with weights



is subadditive ifand only if; > Xy > --- > ), (Cox 1981). Therefore, the LSM
for the rulen > m is subadditive. Equivalent forms of the LSM corresponding to

the (m, k)-dominance rule in Equation (2) are

(1-k)
k

S =ty —kz=(1—-k)ty —kr, x to — T (6)

This LSM, in the form (5), has weights proportionalXp = (1 — k) for j <m
and to); = —k for j > m, hence it is subadditive.

In this section we consider predictive disclosure risk, which, like ingthe
rule, is measured by the minimal achievable absolute relative error of estimation.
Different rules are defined with respect to different predictive scenarios. Predictive
scenarios differ for the intruder’s prior knowledge, predictive ainand estimate,

3. Safety rules bound the disclosure risk with a threshold- 0 and will be

denoted as

Pp(S;"')Z min RE(s;...): min ‘S_S’>p’

scenario scenario S

where (- --) indicate parameters of the predictive scenario. When not needed,
we will drop the subscript for the lower bound, with the understanding that the
quantities are defined for any > 0. A rule P is implied by another rulé®’ if

it is always satisfied wheR”’ is satisfied. A sensitivity measure corresponding to

the ruleP,(s; - - - ) will be denoted a5, (s; - - - ). Henceforth, when not otherwise



specified, we will refer to sensitivity measures in the forf(s;---) = ps —
|5 — s|, as these forms referred to the samenjoy the inverse ordering of the
corresponding? F in different scenarios.

In this section we consider different predictive scenarios in which an intruder
is interested in estimating a sumaf < n contributions of a cell, denoted gener-
ically by s,,, and estimates this sum with its maximal possible value in the sce-
nario; therefore, the corresponding rules will be generically referredid-asles.

The prior knowledge of the intruder will be summarized by some parameters but
the basic knowledge of the cell total, and that the number of contributions is
larger than some integet, is always assumed and will be omitted in the notation.

The simplest situation that we consider is that of an intruder with only basic
knowledge who estimates, with $,, = z. If the safety ruleP(s,,) is adopted the

following proposition holds:

Proposition 2.1 Safety ruleP(s,,) : ming,,y RE(sn,) > p, wheres,, is the sum
of anym < n contributions of a cell and,,, = z, has LSMS(s,,,) = pt,, — T,

which is subadditive and equivalent to the, k)-dominance in Equation (6) with

Proof. The sums ofn contributions are bounded such that .1 < s,, < t,,,



thus, by setting,,, = z,

Hence, the sum of: contributions that gives lowest relative error of estimation
in this scenario is the sum of the largest onest,,. The LSM for this rule is

obtained from the conditioRE(t,,) < p and it is

S(8m) = ptm — T'm, 7)

which is equivalent to the LSM for then, k)-Dominance in (6) wittk = 1/(1 + p)

and, thus, is subadditive.

g.e.d.
Since P(s,,) is equivalent to thém, k)-dominance we will simply call it Domi-
nance. The choice d@fin the (m, k)-dominance gives lower bound= (1 —k)/k
in the Dominance. The values pfcorresponding to different choices bfin the
(m, k)-dominance rule, shown in Table 1, show that the values commonly chosen

for & correspond to values pfbetween; ands.

k1001 01 02 03 04 05 06 07 08 09 1

pl 9 9 4 233 15 1 067 043 025 011 O
Table 1: Values of: in the (m, k)-dominance rule corresponding to different val-

ues ofp in the Dominance rule.



The equivalence of the two rules is confirmed by another consideration. From
Equation (1) follows thaiRE(t,,) < (n —m)/m. Hence, for this rule to make
sensep should always be chosen such that (n — m)/m. Substitutingk =
1/(1 + p) in the latter inequality we obtain the boumd> |[m/k|, set for the
Dominance. Elsewhere(g. Cox 1981 and Willenborg and de Waal 2000), the
(m, k)-Dominance is interpreted in a predictive context in terms of the relative
error of estimation for; when a coalition ofn. — 1 contributors intrudes, however
in a somewhat less convincing way.

Scenarios for stricter safety rules allow for the intruder to be one of the re-
spondents. Consider generalizing fheule to estimatings,, with s, = z — 2.
Denoting withv, = z«/z, the estimate can be written &s = (1 — ~)z. Adopt-

ing the usual safety rule gives the following proposition.

Proposition 2.2 Let the generalizeg-rule be P(s,,; z«) :

ming,,, -1 RE(sm; 2) > p, wheres,, is any sum ofn < n contributions for

givenm, z¢ does not contribute te,, ands,, = z — z«. This rule is equivalent to
the Dominance rule (2) with bourid= (1 — ~)/(1 + p); its SLM is subadditive
and equal taS(s,,; z«) = pty, — rme1. The same rule withe = K — 1 would be

obtained for giverx and variablem < K.



Proof. Obviously, it holds that,, + z« < t,,.1, V K ands,,, therefore

Z—2k— S z—1 Z2—z —t
RE(Sm;ZK) _ K m 2 m+1 Z m+1 m
Sm tm+1 — 2k tm

ming,, «} RE(sn,; 2¢) is thus achieved fos,, = t,,, andk = m + 1. Therefore,

the safety rule is satisfied whdt\F (¢,,; z,,+1) > p, that is when

tm 1

— < (1 — .
z_( 7K)1—|—p

(8)

It easily seen that the corresponding LSMSiSs,,; 2« ) = ptm — rme1 Which can
be expressed in the form (5) with= 0 and weights\; = pfori < m, \,,.1 =0
and )\, = —1 fori > m + 1, from which follows the subadditivity. If we had,
instead, fixed the rank of the known contribution and left undetermined< K,
we would have obtained the same LSM, expressegtas — r«, by the same

argument as above.

g.e.d.
Thep-rule in (3) is a particular case of the above rule/for= 1.
The generalization of th@, ¢)-rule to the estimation of a sum of contribu-

tions is considered in the following proposition.

Proposition 2.3 Let the generalizefp, ¢)-rule be P(s,,; 2, q) :

ming, «3 RE(sm; 2¢,q) > p, Wheres,, is any sum ofn < n contributions for



givenm, z, does not contribute te,, ands,, = z — zx — (1 + ¢)(z — 2k — Sm)
with 0 < |g| < p. The rule is equivalent to the Dominance rule (2) with bound

k = 1/[1+ (p/|q|)] and to the generalizeg-rule with thresholdy’ = p/|q|; its

LSM is subadditive and equal £),(s,,.; 2, ¢) = ptm — |¢|rm+1. The same rule is

obtained for fixek and variablem < K.

Proof. The absolute estimation error for this scenario is equddfo— s,,| =

|z — 2k = (14 q) (2 — S — 2«) — Sm| = |q](z — 8m — 2«). Froms,,, + zx < t;11

follows that
RE(Sm;2¢,q) = |9l(z = sm — %) > |q](2 = tmi1) >
Sm Sm
— tm
’q,(zt +1) _ RE(tm;Zm+1,q).

Thus, also in this scenario, the minimal absolute relative error of estimation is
achieved fors,, = t,, andk = m + 1, so that the safety rule is satisfied when

RE(tm; zm+1,9) > p, thatis when

t, 1
< (1—%)@, 9)

z
wherep’ = p/|q|. The equivalence with the generalizedule follows comparing

the above safety condition with that in (8); the subadditivity of the rule follows

from its equivalence with a subadditive rule. The LSM is easily obtained from (9)



and itisS,(sm; 2«, ¢) = ptm — |g|Tm+1- 1f we had, instead, fixed the ramkof the
known contribution and left undetermined < K, we would have obtained the

same LSM, expressed a& 1 — |¢|r«, for the same argument as above.

g.e.d.

The scenario for the generalizéd ¢)-rule may be restricted to considering only
q > 0, because the LSM is symmetric abeut= 0. Wheng = 0 the intruder
knows exactly the remaindét — ¢,,.1) and RE(t,; 2m+1,¢ = 0) = 0. When
lg| = 1, the rule reduces to the generalizedule; in this case the intruder esti-
mates the remainder— s,,, — 2z with zero or with twice its value. Note thatcan
never be less than1 because the intruder wouldn’t estimate the remainder with
a negative number. Also note that the scenario of the generalizegtrule is
slightly different from the originaprior-posterior ambiguity rulescenario (Cox
1981). In fact, we simply set to be the relative error for the remainder, as op-
posed to being the relative error for each of its contributions. This scenario yields
the same safety rule but, unlike the other, does not require the prior knowledge of
n by the intruder.

The predictive scenarios we considered so far are nested into each other, for
increasing prior knowledge is allowed to the intruder. The connections among the

corresponding rules are stated in the following corollary.



Corollary 2.4 The following properties for the safety rules in Propositions (2.1),

(2.2) and (2.3) hold good:

a) Py(sy,) is implied byP,(s.,; z«), which is implied byP,(s,,; z, q) if |¢| <
1; each of these rules applied tg, implies itself for any sum of less contri-

butions,s,, J < m, with samep;

b) P,(s.,) implies P,(s,; z«) and P,(sy; z¢, q) if |q| > t,,—1/t.,, for all indices

J<m,

c) The parameters of the predictive scenarios are such thaf’(y,; z«) is
never satisfied ip > (n —m — 1)/m; ii) P(sm; 2, q) IS never satisfied if

p/lgl > (n—m —1)/mor2m>mn—10rt, > ryi.

Proof. Since0 < 7« < 1, the safety bound for the generalizedule in (8)

is always lower than that for the Dominance rule in(2) for equahdm. Thus
P,(s.,) is implied byP,(s.,; zx). When|q| < 1 the value of’ in (9) is higher than

p, hence the safety bound is lower than that in (8) for (8), which is thus implied.
When|q| > 1 the converse is true. From this implication and the above follows
that also the Dominance rule is implied by the generalized)-rule for samen

andp and|q| < 1.



For the nonnegativity of the contributions it is always true that- ¢,,_; and

Tm < Tm—1. ThUS,

for all 2 < m < n, henceP,(s,) is implied by P,(s,,) for all 3 < (m — 1)]. The
same argument applies to the generalizedle and(p, ¢)-rule, considering that
RE(tm; Zmt1) = Tmt1)/tm @VWARE ()} 2m41, Q) = |q|7(m+1)/tm- Property (a) is
thus proved.

Clearly, RE(t,,) = rim/tm < Tm/tm—1 = RE(t,_1;2,) forall 2 < m <
n, thus P(s,,) implies P(s,;z¢) for all 3in [1,(m — 1)]. RE(tm—1;2m,q) =
|q|7m/tm—1 iS NOt lower thanR E(t,,,) if and only if |¢| > t,,—1/t,, < 1, in which
caseP,(sm—1; Zm, q) is implied by P,(s,,). The implication for all sums of less
contributionss;, J < m, follows from property (a), proving property (b).

Since the contributions are nonincreasing, it holds that> mz,,.; and
Tme1 < (n—m — D)zp. HenceS(sy;2¢) > [pm — (n — m — 1)] 241,
from which follows thatP(s,,; z«) is never satisfied ipm > n —m — 1, which
can be rearranged to give (i). Whence, since LSNis,,.; 2, ¢) iS equivalent to
Sp/la(8m; 2¢), it follows thatS, (s,; 2, ¢) is never satisfied if /|¢| > (n —m — 1)/m.
Since it must also bgy| < p, from inequality (1) follows thatS(¢,,; zm+1,9) >

p(2m—n+1)z. Therefore P(s,,; 2«, ¢) cannot be satisfied #m > (n—1), which



proves the second of (ii). Also because< p, S(sm; 2«, q) = ptm — |q|rms1 >0

if ¢, > r,,.1 and the last of (ii) is thus proved.

g.e.d.
This proposition links the safety rules so far discussed. Since the generalized
(p, q)-rule is obtained allowing more prior information to the intruder than in the
generalizegh-rule, it seems logical to always chodgé < 1, so to obtain a tighter
bound. The safety of all sums of less contributions, hence also of the individual
values, gives motivation for the use of safety rules that consider the estimation of
sums of contributions. Property b) gives a justification for the general preference
for the Dominance rule over the othéf-rules. Properties in ¢) show that the
values ofp in the M-rules cannot be chosen completely independently. @nd

n.

3 Safety Rules for Estimation Under Uniform As-

sumptions

In the M-rules any sum ofn contributions is always estimated with its highest
possible value. Hence, the minimal relative error is achieved foe t,,. In

this section we assume that the intruder is explicitly interested in estimating



and that uses his prior knowledge to bound its value within the boypds ¢!,

such thatt,, < ¢, < ti. Furthermore, we assume that the ignorance about
the remaining quantities is modelled assuming thais uniformly distributed
within [¢,.. ] and that the estimate is obtained minimizing the mean squared
error of estimation. In this way, repeating the procedure many times the intruder
expects low squared error. The estimatkeat minimizes the mean squared error
o = tm)?/(ty — t) o TS

. t- +th
b = m+ m’
2

(10)

for a well known property of the mean. We consider the usual safety rules for this
estimating procedure, which will be generically referred t&/asiles and denoted
asP(t,;U,---).

The safety conditions set by tli&rule for an intruder with only basic knowl-

edge are stated in the following proposition.

Proposition 3.1 Let an intruder with only basic knowledge estimateas in (10).
Thent,, = 2/2 and safety ruleP,(t,,; U) : [t,, — tm| < pt,, is not satisfied when

1 t 1
<—<

2(1+ p) z — 2(1—p) (11)

The rule cannot be satisfiedtif, < r,,, andp > (n — 2m)/2m orif t,,, > r,, and

p>1/2.



Proof. The intruder knowing only can only bound,, such that) < ¢,, < z.

Substituting these values in (10) gives

~

tym =

z
—. 12

. (12)
If t,, < rn, thent,, = z/2 > t,,. In this case safety rulé,(¢,,; U) is satisfied if

z/2 — t,, > ptn, from which is easy to derive the safety condition

From the lower bound,, > m/n in Equation (1), follows that this condition
cannot be satisfied ff > (n — 2m)/2m.

If t,, > r,,, Which is always true i2m > n, thent,, = /2 < t,,. In this
case, safety rulé,(t,,; U) is satisfied whett,, — 2/2 = (t,, — rm)/2 > ptim,

from which it is easy to derive the condition

From the upper bount,, < z in Equation (1), follows that this condition cannot
be satisfied ifp > 1/2. This means that if,, > r,, thenRE(t,,;U) < 1/2.

Applying both inequalities yields the required interval.

g.e.d.
The following proposition sets the safety conditions against an intruder know-

ing the number of contributions in the cell.



Proposition 3.2 Let an intruder knowing the number of contributionsestimate
t.. by (10). Then the estimatedis = (z +mz)/2 and safety ruleP,(t,,; U, n) is

not satisfied when

n—+m t n-+m

Wity S = Sl p) a3

The rule can neither be satisfied it — m)t,, < (n+m)r,, andp > (n—m)/2m

nor if (n — m)t,, > (n+ m)r,, andp > (1 —m/n)/2.

Proof. From the knowledge of the cell meanapplying inequality (1)¢,, can

be bounded as:z < ¢, < z. Substituting these values in (10) gives

gm:m%:(wm)z. (14)
2n

If (n+m)z > 2nt,, thent,, > t,, and safety ruleRE(t,,; U,n) > p is satisfied

if (n4+m)z > 2n(1+ p)t,,, thatis when

tm m-+n

= " 2n(ltp)
From the lower bound,,/z > m/n in Equation (1) follows that this condition
cannot be satisfied ff > (n — m)/2m.
If (n+m)z < 2nt,, thent,, < t,, and the safety rule is satisfiedif +m)z >
2n(1 — p)t,,, that is when
tm, m-+n

—_ > —.
z ~ 2n(l—p)



From the upper boung, < z in Equation (1) follows that this condition cannot be
satisfied ifp > (1 — m/n)/2, hence never ip > 1/2. Applying both inequalities

yields the required interval.

g.e.d.
The scenario in which an intruder knows the contributign , is considered in

the next proposition.

Proposition 3.3 Let an intruder knowingyx = z,,.1 estimatet,, by (10). Then
the estimate ig,, = (z + (m — 1)2)/2 and safety ruleP,(t,,; U, zn.1) is not
satisfied if

L+ (m =Dy _ tm _ 14+ (m = 1)

2(1+ p) =7 S 20 —p)

(15)
wherey, = z¢/z. The safety rule cannot be satisfiedtif, — r,,,)/2 < (m — 1)z
andp > (n —2m + n(m — 1)w)/2m or if (t,, — rm)/2 < (m — 1)z and

p>1/2—=[w(m—1)/2].

Proof. From the knowledge of,, t,, can be bounded asz, < t,, < z — 2,

because; > z,,., fori < m + 1. Substituting these values in (10) gives

~ oz (m—=1) (14 (m—1)%
tm—§+ 5 zK—( 5 )z (16)

If t,,/2 < [1—(m—1)v]/2thent,, > t,,. Inthis case, safety rulB(t,,; U, z,,41) >



p is satisfied when
tm 14 (m—1)%

<
z 2(1+p)

From the lower bound,, > m/n in Equation (1) follows that this condition
cannot be satisfied jf > [n — 2m + n(m — 1)v]/2m.

Whent,, < t,, the safety rule is satisfied if

t_m>1+(m_1)'7t<
z 2(1-p)

From the upper bount,, < z in Equation (1) follows that this condition cannot
be satisfied ip > 1/2 — [(m — 1)7«/2], hence never ip > 1/2. Applying both

inequalities yields the required interval.

g.e.d.
The union of the previous two scenarios, that is an intruder knowingbatid

Zma+1, 1S considered in next proposition.

Proposition 3.4 Let an intruder knowingx = z,,,1 andn estimatet,,, by (10).
Then ifz, > Z the estimate,, and the safety conditions are the same as in Propo-
sition (3.3). Ifz < z then the estimate i, = z — (n — m + 1)2¢/2 and safety

rule P,(t,,; U, K, n) is not satisfied if

2—(n—m+ 1)y <tﬂ<2—(n—m+1)7,<
2(1+p) -z T 2(1—p) .

(17)




The safety rule cannot be satisfied wizep, > (n — m + 1)y andp > [2(n —
m)—vk(n—m-+1)]/2m orwhen2r,, < (n—m+1)y andp > y(n—m+1)/2n

orm > (n—1)/2.

Proof. If z« > z thent,, can be bounded asz, < t,, < z — z and the safety
conditions must be the same as foy(t,,,; U, K). In this case the knowledge of
is redundant. 1t < z thent,, can be bounded as— (n — m)z <t,, <z — z,
where the lower bound is derived fratp > z — 2, — max{r}. In this case both
pieces of information contribute to the lower bound.

Whenz, < z the estimate of,, is

fm:z—(n_m+1)zK: 2—(n—m+1)w%

2 2

(18)

If 2r,, > (n — m + 1) thent,, > t,, and safety ruleb,(t,,; U, K, n) is satisfied
if

tm - 2—(n—m+ 1)
z 2(1+p)

From the lower bound,, > m/n in Equation (1) follows that this condition
cannot be satisfied jf > [2(n—m)—n(n—m+1)y]/2m. If 2r,, > (n—m+1)

thent,, < t,, and safety ruleRE(t,,; U,n) > pis satisfied if

z 2(1 —p) '



From the upper bount], < z in Equation (1) follows that this condition cannot
be satisfied ifp > 7« (n —m + 1)/2, hence neverip > 1/2 orif m > (n—1)/2.

Applying both inequalities yields the required interval.

g.e.d.

The above propositions show that for ttierules cells are at risk if the ratig, /2
is inside an interval. As it can be easily seen, this implies that the rules are not
subadditive.

We propose to adopt thé-rules restricted to being satisfied onlytjf /= is
lower than the lower bound. In so doing we obtain subadditive rules of the Dom-
inance kind. Observing that the lower bound for acceptably lasge ratios
increases rapidly witlh andm to the maximal value 1, such restriction will often
be implied by the conditions themselves. Furthermore, this restriction agrees with
the idea of protecting large contributions because they are more easily identifiable.
Thus, for the restricte@-rules, that will be denoted aB*(t,,; U, - - - ), cells are
safe only ift,, is overestimated and the absolute relative error of estimation is less
than the threshold.

The safety conditions satisfying the/-rules and the restrictetf-rules are

shown in Table 2, together with the restrictions on the values of the parameters.



rule bound restrictions
tm 1 (n—m—1)
1—« n—m-—1
P(sm; 2) o < (0220 p < =l
1—k n—m—1
P(8m; 2 q) tij(H%) ‘%'<( - L om>n—1
PR(t,,:U) tn 1 < (n=2m)
m) z 2(1+p) p 2m
PR Um) |t < gins | p< ogm
R . tm 1+(m—1)v (n—2m)+(m—1)y«
P(tm,U,K) ?<2(Tp)7 p<T7
* m 2—(n—m+41)y« 2(n—m)—n(n—m+41)y

Table 2: Comparison of different safety rules, safety bounds and restrictions on the

parameters. The asterisk indicates that the bound apphies<f 1/n, otherwise

the bound above applies.

4 CONCLUSIONS

The Dominance and the generalizedule assume that the intruder always esti-

matess,, with its maximum possible value, setting the remainder equal to zero.

In passing, note that this is equivalent to setting the absolute relative error of esti-

mation of the remainder constantly equal to one. The generalized prior-posterior

rule allows for a positive estimate of the remainder and the valyecah be used

to lower the bound ort,,/z set by the other rules. However, the difficulty of



guantifying this prior knowledge for a generic intruder and the restrictions on the
parameters given in Corollary (2.4), may restrict considerably the application of
the generalized prior-posterior rule. Furthermore, the restrictions indicate that in
the M-rules the value op andq cannot be chosen completely arbitrarily but are
bounded by the values @t andn. The restricted/-rules give upper bounds for
the ratiot,,, /> that depend on the prior information the intruder is allowed to have.
For an intruder with only basic knowledge the bound gpz set byP(¢,,; U) rule
will be half of that for the correspondinty -rule. The bounds set by the restricted
U-rules will not always be lower than those set by the correspontiirgiles, a
comparison is given in Table 3. The safety conditions set by trales are not
always stricter the more prior knowledge is allowed to the intruder. In particular, it
turns out that in many cases the lowest bound is that of’thg,,) rule. This fact
is explained by the estimation criterium adopted by the rules. It can be observed
that the more prior knowledge is allowed the wider are rejection intervals for the
completeU-rules.

Finally, we would like to stress the fact that we have only considered rules
protecting from the disclosure of sums of observations, without considering the
further use that the intruder could make of these estimates, such as estimating the

single contributions. In fact, safety conditions could be obtained assuming one or



> 2k U, Un U, 2«
2k N
U N 7K>%
Un N wo> 2T A
Uz | %> w>mm A %> mmy
U,n, z* N N N < —m=m g

n(n—m+1)

Table 3: Conditions for which th#&/-rules and restrictetf -rules with parameters

as in the row labels yield higher upper bounds for the ratioz than the rules

with parameters as in the column label§.stands fomever, A for always and

the asterisk denotes that < 1/n.

another estimating procedure for the single contributions. It would be difficult to

decide upon which estimating procedure to assume and, in many cases, one would

obtain very strict safety conditions. Therules, applied with an appropriate value

of p, should provide a reasonable protection against disclosure risk.
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