US PPI Hedonic Models for Digital Services

Bonnie Murphy
Chief, Branch of Industry Pricing
U.S. Producer Price Index
33rd Voorburg Group Meeting
September 24-28, 2018

Wired Telecommunication

- NAICS 517311
- Broadband, telephone, cable television, etc.
- Reason for Quality Adjustments:
 - ► Technology and infrastructure improving and cost of production decreasing
 - Quality improvements/speed increases while prices decrease or go unchanged

Broadband Hedonic Model

- Introduced into the index December 2016
- Updated annually

 (as January data reaches final publication in June)
- Focuses on changes to download mbps
- Derived using internal BLS price data from Wired
 Telecommunications Carriers

Broadband Hedonic: Sample

For US PPI hedonic model:

- Used "broadband-only" items that were already active in the index
 - Both residential and business
 - For weighting, more items included from more dominant producers
- Alternative method: collect items and prices using producer websites
 - Information is often easily accessible for consumers
 - Can collect prices manually or by using a mining tool such as Python*

*company permission may be required

Broadband Hedonic: Model

- Used the R statistical language program to find and build:
 - ► Long-term relative (LTR)
 - Predicted price
 - Mean squared error
 - ► Log-log model using log-price as the dependent variable; download mbps and the varying producers used as the independent variables
- Excel or SAS can also be used

Broadband Initial Results

Broadband Model January 2016 ^{a,b,c}						
	Estimate	Std Error	t	Sig	VIF	
(Intercept)	2.8844	0.3072	9.39	0	-	
Log Download Mbps	0.3075	0.0977	3.147	0.005	23.684	
Residential	0.032	0.3352	0.095	0.925	86.0865	
Company A	0.5906	0.1025	5.762	0	4.9199	
Company B	0.7529	0.1539	4.892	0	18.3561	
Company C	0.7068	0.1551	4.557	0	5.1195	
Log Download: Residential	0.1411	0.1096	1.287	0.213	50.5616	
Log Download: Company B	-0.8863	0.1684	-5.263	0	16.9078	

a. Adjusted R-Squared=0.9400; F=59.17; Root Mean Squared Error=0.0933

b. Base Configuration: Business; Several Companies

c. Dependent variable: Log Price

$$Log P_{it} = \alpha_0 + \beta_2 \left(Log X_{2i} \right) + \beta_3 \left(Log X_{3i} \right) \dots \left(\beta_k Log X_{ki} \right) + \upsilon_i$$

Where:

 $Log P_{it}$ is the Log price of the *i* th model in period *t*

 α_0 is the intercept

 $Log X_i$ are the logged variables representing observed product characteristics

 $\beta_2 \dots \beta_k$ are the regression/slope coefficients

 v_i is the residual or error term

Practical Application

	Period 1	Period 2
Download Mbps	50	57.5
Price	\$100	\$100

Coefficient = 0.3075

Value of Quality Adjustment =

[Download speed change coefficient - 1] * Period 1 price

$$[(57.5/50)^{0.3075} - 1] * 100 = 4.3914$$

Cloud Computing

- NAICS 518210 Data processing, hosting, and related services
 - Split primarily into three branches laas, Saas, Paas
 - ► Quality adjustment focus is on laaS because it is the most malleable and is often the basis for the other two
- Why quality adjustment is needed:
 - ► The industry has become a mix of on-demand custom packages and flat-fee contracts.
 - Current base price adjustments are not able to account for all of the package changes

Cloud Computing Hedonic: Overview

- Not yet used in practice for quality adjustment
- Log-Log model
- Dependent variable: Log-price
- Independent variables [log of]:
 - **►** RAM
 - Storage
 - **▶** vCPU
 - Operating System
 - Producer

Cloud Computing Hedonic: Sample

- 210 items from leading producers
 - ▶ # of items from each producer is based on the significance of the producer in the industry
- Manually collected by US PPI analysts from publically available data (not from survey respondents like the broadband model)
 - Advantage: Large product sample with no added respondent burden

Cloud Computing Hedonic: Process

- Used the R statistical language program to find and build:
 - **►** LTR
 - ► Predicted price
 - Mean squared error
 - Prices obtained quarterly
- Excel or SAS can also be used

Results and Next Step

- Infrequent price change
 (similar to results found in the Byrne, Corrado, and Sichel paper
 "The Rise of Cloud Computing: Minding Your P's, Q's and K's")
- Price change tends to occur with product entry and exit

Next step:

Run and compare models in quarters that include product entry and exit and see if the results are different from quarters with no product change

Contact Information

Bonnie Murphy
Chief, Branch of Industry Pricing
U.S. Producer Price Index
murphy.bonnie@bls.gov

