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A general problem in sampling theory and 
survey design is how to best allocate a sample 
in order to minimize cost subject to a maxiis/m 
variance restriction. 

Neyman (1934) considered sample allocation 
applied to stratified sampling. In this case, 
the variance function for the estimated mean is 
easily partitioned into a sum of population- 
based constants divided by stratum sample sizes 
plus a term that does not depend on the stratum 
sample sizes. Neyman's model can be put in the 
form of a single variance function. 

V(Y)st) = F. w2(h) S2(h)/n(h) 
h 

- E w2(h) S2(h)/N(h) 
h 

= F w2(h)S2(h)/n(h) + Vo 
h 

The variance in,equality can be put in the form 
F V(h)/n (h) ~ V where V ~ = required variance - 
V o. The sample size subject to the variance 
constraint is minimized when the stratum sample 
slzes are proportional to the square root of the 
cc~plete variance ccmponents, V(h). Neyman 
applied a calculus approach to obtain the 
optimum solution. 

Stuart (1954) utilized the Cauchy-Schwarz 
inequality to obtain a simple approach to sample 
allocation with a variable cost function. In 
the case of a single variance constraint, 
either the variance or the cost may be fixed. 
The form of the solution for the sample sizes is 
the same in either case; only the constant of 
proportionality changes as a function of the 
particular constraint ~posed. 

Optimum allocation problems arise in sample 
designs other than stratified sampling. Unique 
solutions are available in the textbooks and 
literature for multistage sampling, cluster 
sampling, multi-phase sampling, and combinations 
thereof. Kish (1974) in a paper on optimal and 
proximal multipurpose allocation notes that 
proper isolation of population parameters and 
sample size parameters allows variance functions 
for most sample allocation problems to be 
expressed in a ccmmon form. Moreover, variances 
of common nonlinear estimates can generally be 
put in a corresponding form using appropriate 
linear approximation methods. 

In practice, very few surveys are ever 
conducted with the sole objectives of min/mizing 
the variance of a single estimate. Multiple 
estimates are most cc~monly needed for different 
domains or for different measures on the same 
sampling units. 

Sample allocation based on a single variance 
constraint model usually involves a process of 
prioritizing different estimates and selecting 
one on which to base the design. A more 
appealing strategy is to consider several 
different estimates simultaneously or to 
consider classifying the different estimates 

according to their variance properties and 
selecting the typical variance model from each 
class. One then proceeds to find a minimum cost 
design which meets the variance requirements for 
all of the selected estimates. Before 
describing the mechanics of this approach, I 
wish to discuss an alternate approach which 
starts with the concept of a fixed cost. 

The fixed cost approach is advocated by Kish 
(1974). Let me quote his view before I state 
mine: "Furthermore, I consider fixing Cf (total 
cost bound) more practical than trying to fix 
values for a set of Vg (variance bounds) and 
then to minimize Cf. This problem seems to have 
been solved with convex programming on several 
separate occasions, but I do not find this 
approach useful." 

I agree with Dr. Kish that there is little 
purpose in trying to understand a $2 social 
problem with a $i0 survey; you can multiply 
these dollar figures by a million to reflect the 
kind of survey research often conducted at the 
national level. However, as a matter of 
principle, I consider it unnecessary and 
wasteful to design and conduct a larger and more 
costly survey than the one that obtained the 
needed precision. Critical resources saved by 
controlling the size of the survey can be 
devoted to increasing the quality of the data or 
to enhancing the utilization of the data through 
more extensive analysis. The cost limitations 
approach to survey optimization is perhaps well- 
founded in practical experience. It may be 
observed that clients rarely have the resources 
to fund the ideal survey. Blind adherence to a 
cost limitations stratec/f could however also 
lead to the execution of a cost-feasible survey 
that lacked the capability of satisfying any of 
the research objectives. Since multiple variance 
constraints often lead to crossed purposes in 
sample allocation, a so-called "compromise 
allocation" between two opposing objectives can 
produce a design which meets neither objective. 
A client would be better counseled to select one 
objective and do it well or to seek the 
additional resources required to meet both 
objectives before starting the survey. Waters 
and Chester (1987) show graphically for a two- 
variable problem that the solution that 
minimizes cost and satisfies multiple 
constraints may not appear to be an obvious 
cc~prcmise. 

Cost limitations can be introduced into the 
design optimization process based on variance 
constraints by deciding which variance 
constraints can be relaxed while still 
preserving the major objectives of the study. 
To the extent that the variance models are good 
approximations to reality, this method of 
negotiating the total cost of a survey ensures 
that the analyses that can be supported by the 
information content of the resulting survey data 
base are consistent with pre-survey 
expectations. 

Having noted my disagreement with Dr. Kish's 
preference for a cost constraint approach, I 
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wish to acknowledge that the form of the 
solution for Dr. Kish's proximal multipurpose 
allocation is identical to the form of the 
solution obtained by starting with variance 
constraints. Indeed, Dr. Kish' s result 
triggered my exploration of this approach after 
becoming familiar with Kuhn-Tucker theory. Both 
solutions substitute a weighted sum of 
population variance components for a single 
population variance ccaponent in the single 
constraint solution. The values of the 
weighting function are motivated differently 
under the two approaches. 

As Kish also pointed out, the solution to the 
multiple variance constraint problem is not new. 
Exact solutions utilizing convex programming are 
discussed by Huddleston, Claypool, and Hocking 
(1970). Earlier graphic methods for small 
problems were developed by Dalenius (1957). In 
spite of the availability of exact methods, many 
approximate methods suitable for hand 
calculation are discussed in Cochran (1977). I 
am aware that the U.S. Department of Agriculture 
routinely uses the procedures of Huddleston et 
al in designing many of their surveys. More 
recently, James Bethel (1985) reported on an 
updated algorithm used at USDA. Statisticians 
at RTI have used the algorithm discussed in this 
paper for several survey designs including a 
sample allocation for a medical provider record 
check survey (Folscm, Chrcmy, and Williams, 
1979), a sample design for a youth attitude 
tracking study (Mason and ~tland, 1983), and 
an evaluation of alternate designs for future 
medical expenditure surveys (Cox and Folscm, 
1984). 

The algorithm I w i l l  be discussing is based on 
Kuhn-Tucker theory (Kuhn and Tucker, 1951; 
Simmons, 1975). This theory is used by Hughes 
and Rao (1979) for optimum allocation with some 
selected types of multiple constraints, mostly 
for cases involving several linear constraints 
and a single variance constraint. Kuhn-Tucker 
theory is also applied by Thompson (1962) to 
variance component estimation. Both of these 
applications involve a quick search of corner 
points under a set of linear constraints. 
Bethel' s (1985) algorithm also applies Kuhn- 
Tucker theory. 

The single variance constraint variance and 
cost models can be expressed as follows: 

H ,% 

Var(~) = V+ Vo = E V(h)/x(h) + V O 
h=l 

where 

V O = portion of variance that is not a 
function of sample size (may be 
positive or negative); 

V(h) = a non-negative function of population 
variance and weighting factors 
associated with the hth term of the 
variance; and 

x(h) = a sample size or a product of sample 
sizes (in a multistage design) 
associated with the hth term of the 
variance expression. 

Since Var(~) - V O = V, it is possible to 
A 

consider constraining Var(~) by considering only 

H 
V= E V(h)/x(h). 

h=l 

The most commonly used cost model can be put 
in the form: 

Cost = C + C O = 
H 
E C(h)x(h) + C O 

h-i 

where 

C o = fixed cost ccaponent (not a function of 
sample size) ; 

C(h) = a positive cost component associated 
with one unit of x(h); and 

x(h) = a function of sample sizes as defined 
above. 

Since Cost - C o = C, cost may be minimized in 
terms of the x(h) by considering only 

H 
C = E C(h)x(h). 

h=l 

The steps for solving the single variance 
constraint problem may be listed as follows: 

i. Require that V ~ V* where V* is specified 
by external requirements (e.g., based on a 
planned statistical hypothesis test or on 
requirements related to the length of 
confidence intervals). 

2. Given V*, choose x(h), h = 1,2,..., H, to 
minimize C, i.e., 

H 
Minimize C = E C(h)x(h) 

h=l 

subject to 

(1) 
H 
£ 

h=l 
V(h)/x(h) ~ V*, and 

(2) x(h) ~ 0 for h = 1,2,..., H. 

3. Solve by treating the variance constraint 
as an equality constraint and applying 
Lagrange multipliers approach or Cauchy- 
Schwarz solutions. This yields 
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x*(h) = [X V(h)/C(h) ]1/2 

H 
with X = [ £ ~(h)C(h) / V* ] 2 

h=l 
The multiple constraint problem is stated by 

adding an index, k, to the variance function. 

H 
V(k) = E V(k,h)/x(h) 

h=l 

The constraints take the form 

V(k) ~ V*(k) for k = 1,2,...,K. 

The cost model remains unchanged. 
is stated as 

H 
Minimize C = E C(h)x(h) 

h-I 

subject to 

The problem 

H 
E V(k,h)/x(h) g V*(k) for k=l,2,...,K, (1) 

h=l 
and 

(2) x(h) ~ 0 for h=l,2,..., H. 

The steps for solving this form of the 
multiple constraints problem are as follows: 

I. Specify constants. 

a. Cost ccmponents C(h), h=l, 2,..., H. 

b. Variance components V(k,h) h=l,2,..., H and 
k=l,2, . .., K. 

c. Variance bonds V*(k) k=l,2,..., K. 

d. Check constraints on constants 

(i) C(h) > 0 for h=l,2,..., H. 

(2) V(k,h) ~ 0 for h=l,2,..., H and 
k=l,2,..., K and 

H 
(3) E V(k,h) > 0 for k=l,2,..., K. 

h=l 

(4) V*(k) > 0. 

2. Set Xi(k ) = 1 for k=l,2,..., K for the 
first iteration (i=l). 

H 
3. Minimize F(x) = E C(h)x(h) 

h=l 

K H 
+ Z Xi(k ) E V(k,h)/x(h) 

k=l h=l 

~ Setting 8F(x)/Sx(h) = 0 for each x(h) 
yields 

4. 

K 

xi(h ) = [ E 
k=l 

Xi(k ) V(k,h)/C(h)]1/2 

Compute resulting variances and adjust 
Xi (k) values 

H 

Vi(k ) = E [V(k,h)/xi(h ) ] 
h=l 

Xi+l(k ) = Xi(k)[Vi(k)/V*(k ) ]2 

5. Increment i and repeat steps 3 and 4 until 
the Kuhn-Tucker conditions are satisfied. 
Note that three sets of conditions are met 
at each step by the form of the solution 
method. 

( 1 )  

(2) 
(3) 

8F(x)/Sx(h) = 0 for h=l,2,..., H. 
N 

Xi(k)~ 0 for k=l,2,..., K. 
xi(h ) ~ 0 for h=l,2,..., H. 

Kuhn-Tucker theory provides that if in addition 
to the above, 

(i) Vi(k)~ V* for k=l,2,..., K, and 

(2) Xi(k ) [V*(k) - Vi(k)] = 0 for 
k=l,2,..., K, 

then the solution obtained is one that minimizes 
cost subject to the constraints. 

Note in step 3 that the form of the solution 
for x(h) is identical to the form of the form of 
the solution in Kish's proximal solution method. 
In this case the weights, X i(k ) , derive from the 
iterative adjustment method which leads to the 
Kuhn-Tucker conditions for an optimum. In 
practice, many of the weights will be zero, 
identifying the slack constraints. One or more 
nonzero weights will identify the constraints 
that determine the solution. 

If K=I (the single constraint problem) or if 
V(k,h) > 0 for only one value k for all 
h=l,2,..., H, then an exact solution is reached 
after 2 iterations. Convergence can be obtained 
more quickly by zeroing out those X that appear 
to be converging toward 0. This can be done by 
operator intervention on an interactive 
cc~puting system or within the program itself. 

It is sometimes necessary to constrain certain 
sample sizes. Many of these constraints can be 
stated in terms of ratios. For example in 
double sampling, the second phase sample is a 
subsample of the first phase sample. If we 
designate them by x(2 ) and x( 1 ), respectively, 
the appropriate ratio constraint is to require 
that the ratio of x(2) to x(1) be less than 
unity. 

In a three-stage sample, x(3) could represent 
students sampled and x(2) could represent 
schools sampled. From practical considerations, 
we may wish to limit the number of students 
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sampled per school to be 30 or less, based on 
the size of classrooms usually available for a 
special testing program. This constraint could 
be stated as x(3)/x(2) ~ 30. Similarly if x(1) 
represented the number of districts sampled, we 
might want to sample at least 2 schools per 
district. To put this in the proper form, we 
would have to require that the number of 
districts per school be less than 1/2, i.e., 
x(1)/x(2) ~ .5. 

The general form of the problem with sample 
size ratio constraints involves adding an index 
j to define J constraints of the form R(j) 
R* ( 9 ) where 

R(j) = x[h(j,l)]/x[h(j,2)] 

The problem statement is then 

Minimize C = 
H 

r. C(h)x(h) 
h=l 

subject to 

(I) 
H 

r 
h=l 

V(k,h)/x(h)~ V*(k) for k = 1,2,...,K, 

(2) x(h) ~ 0 for h = 1,2,..., H, and 

(3) R(j) ~ R*(j) for j = 1,2,...J. 

The steps to obtaining a solution for this 
expanded problem are: 

I. Specify constants. 

a. Cost cc~ponents C (h), h=l, 2,..., H. 

0 

c. 

Variance components V(k,h) h=l,2,..., H 
and k=l,2, .... , K. 

Variance bonds V*(k) k = 1,2,..., K. 

0 

e. 

Ratio constraints require specifications 
of a numerator index, h(j, I) ; a 
denominator index, h ( j, 2 ); and the bound 
R*(j). 

Check constraints on constants (first 4 
steps as in the original problem) 

. 

3. 

(5) 1 ~ h(j,l) ~ H, i~ h(j,2)~ H, and both 
are integers. 

(6) R*(j) > 0. 

Set li(k)=l for k=l,2,..., K for the first 
first iteration (i=l). 

Set 7i(J) = 0 for j=l,2,..., J for the first 
iteration (i=l). 

H 

4. Minimize F(x)= r. C(h) 
h=l 

K H 

+ E ki(k) E V(k,h)/x(h) 
k=l h=l 

J 
+ E 7i(J) x[h(j,l)]/x[h(j,2)]. 

j=l 
Setting 8F(x)/Sx(h) = O for each x(h) yields 

x~ (h) =ik=_~l ki (k) V(k,h) 

% 

+ E 7i(j ) x[h(j,l)]} 
j)h(j,2)=h 

~{C(H) + E ~ (j)/x[h(j,2)]} 
jJh(j,l) =h 

5. Compute resulting variancesandadjust %i(k) 
values 

H 
Vi(k ) = r. [V(k,h)/xi(h) ] 

h=l 

ki+l(k ) = ki(k)[Vi(k)/V*(k ) ]2. 

6. Compute Ri(j) = xi[h(j,l)/xi[h(j,2)] 

(a) If 7i(J) = 0 and R(j) ~ R*(j), no action 
is required. 

(b) If 7i(J ) = 0, and R(j ) > R* (j), initialize 

7i(J) = i. 

c. If 7i(J) > 0, adjust 7i(J) as 

7i++i (J) = 7i(J) [Ri(j)/R*(J)]2. 

7. Increment i and repeat steps 3 through 5 
until the Kuhn-Tucker conditions are 
satisfied. 

A simple example in three-stage sampling 
illustrates the method and the use of notation. 
Suppose n ( 1 ), n (2), and n ( 3 ) represent the 
number of first-stage units, second-stage units 
per first-stage unit, and third-stage units per 
second-stage unit, respectively. Then 

x(1) = n(1) 
x(2) = n(1) n(2) 
x(3) = n(1) n(2) n(3) 
Example 1: 

Constants are specified to define the problem as 
follows: 

a. Cost c~nents: C(h) = I, for h = 1,2,3. 

b. variance components: V(k, h) 

h=l h=2 h=3 
k-i .--6[ ~i~ 
k=2 .I0 .i0 .80 
k=3 .05 .05 .90 
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c. Variance bounds 

V*(1) = .05, V*(2) = .075, V*(3) = .05. 

Partial solutions based on applying each 
constraint, k, individually are: 

k X(1) x(2) x(3) ~ C 
1 2.79 i0.45 25.74 779.65 38.98 
2 6.44 6.44 18.21 414.47 31.08 
3 6.24 6.24 26.48 779.41 38.98 

A combined solution which satisfies all the 
constraints is obtained after 31 iterations. 

x(1) x(2) x(3) c 
4.83 8.83 26.49 40.15 

Values of Ai(k) and Vi(k ) for i=31 are shown 
below. The variance bounds V* (k) are shown 
for cc~%rison with computed variances. 

_k !s~(k) vs,(k) V*(k) 
1 420.46 .05000 • 05 
2 0.00 • 06222 • 075 
3 382.45 .04998 .05 

Note that constraint 2 (k=-2) is a slack 
constraint; the multiplier A31 (2) is zero and 
the computed variance, V 31 (2), is strictly 
less than the specified constraint value, 
v*(2). 
Example 2: 

A second example adds ratio-type 
constraints. Suppose we require that n (3) ~ 2 
and n (2) k 2. This translates to x(2 )/x(3 ) 
,5 and x(I)/x(2 ) ~ . 5. The same constants are 
used to specify the problem as in example 1 
except that additional ratio constraints, 
R* (j), are added 

h(j,~) h(j,2) 
j=l 2 3 .5 
j=2 i 2 .S 

A combined solution is obtained after 228 
iterations 

x(~) x(2) ~ c 
4 . 5 0  9 • 0 0  2 7  • 0 0  4 0 . 5 0  

As expected, adding constraints increases 
costs. Values of Ai (k), V i(k) compared to 
V*(k), 7i(J), and Ri(j) cc~pared to R*(j) are 
shown below: 

k 228(k) V 228k(k) 
1 0.46 .04926 .05 
2 0.00 .06296 .075 
3 809.55 .05000 .05 

j 7228(J) R 228(J) R*(j) 

1 0.46 .50000 .50 
2 0.00 .33333 .50 

In this case, the design is determined by the 
variance constraints with k = 1 and k = 3 and 
by the ratio constraint with j = I. 
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