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Sample Allocation in Multivariate Surveys

JAMES BETHEL!1

ABSTRACT

The optimum allocation to strata for multipurpose surveys is often solved in practice by establishing linear
variance constraints and then using convex programming to minimize the survey cost. Using the Kuhn-
Tucker theorem, this paper gives an expression for the resulting optimum allocation in terms of Lagrangian
multipliers. Using this representation, the partial derivative of the cost function with respect to the k-th
variance constraint is found to be —2eg (x*)/vg, where g(x*) is the cost of the optimum allocation
and where o and v, are, respectively, the k-th normalized Lagrangian multiplier and the upper bound
on the precision of the k-th variable. Finally, a simple computing algorithm is presented and its convergence
properties are discussed. The use of these results in sample design is demonstrated with data from a survey
of commercial establishments.
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1. INTRODUCTION

The problem of optimum sample allocation in surveys with multiple study objectives was
first discussed by Neyman (1934) in his development of the theory for solving the univariate
optimum allocation problem. Since then, many researchers have studied the multivariate
problem and several approaches have been suggested, most of which fall into one of two cate-
gories. The first involves forming a weighted average of the stratum variances and finding the
optimal allocation for the ‘‘average variance’’ which results. Dalenius (1953), Yates (1960),
Folks and Antle (1965), Hartley (1965), and Kish (1976) discuss methods related to this
approach. The second basic technique is to require that each variance satisfy an inequality con-
straint and then use convex programming to obtain the least cost allocation which satisfies all
the constraints. Dalenius (1957), Yates (1960), Kokan (1963), Hartley (1965), Kokan and Khan
(1967), Chatterjee (1968,1972), Huddleston, Claypool, and Hocking (1970), Bethel (1985), and
Chromy (1987) all discuss the use of convex programming in relation to the multivariate optimal
allocation problem. Each approach has its advantages and disadvantages. The ‘‘weighted
average’”’ method is computationally simple, intuitively appealing, and can be solved under
a fixed cost assumption, but the choice of the weights is arbitrary and the optimality properties
are not clear. The ‘“‘convex programming’’ approach gives the optimal solution to the defined
problem but the resulting cost may not be acceptable so that a further search is usually required
for an optimal solution which falls within the budgetary constraints.

In this paper, a closed expression for the optimal allocation subject to linear inequality con-
straints will be given in terms of Lagrangian multipliers. In this framework, two results easily
follow which substantially overcome the disadvantages of the convex programming approach.
The first is that scaling the optimal multivariate allocation results in an allocation which is
optimal under constraints which are proportionate to the original ones. Thus, if the optimal
solution is too costly, it can be scaled down to the allowable budget directly and the effects
of this on the precision of sample estimates can be directly determined. The second result is
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a simple expression for the partial derivatives of the cost of the sampling allocation with
respect to the variance constraints. These quantities, called ‘‘shadow prices’’, show the sen-
sitivity of the cost to variance constraints and are useful in assessing the cost effectiveness
of the sample design.

The problem of solving the convex optimization still remains. Much has been written on
methods for solving programming problems of this type and there are many software packages
available for doing so. Some special programming considerations will be discussed here, how-
ever, and a simple method will be presented. This algorithm, essentially a steepest descent
procedure, is convergent, straightforward to program, and easy to use, since no initial values
are required. An example will be presented which demonstrates this algorithm and the other
techniques discussed above.

2. THE ALLOCATION MODEL

Consider the case of stratified random sampling with 7 strata and J variables. Suppose it
is required that the j-th variable satisfy

1
Var(y)) = Y WiSi/n; < v}, (1)
i=1

where Si n, and W? are, respectively, the variance of the j-th response variable, the sample

allocation, and the proportion of the population that fall in the i-th stratum, and where v;
is an arbitrary, positive constant. In this paper it will be assumed that the finite population
correction factors are negligible. In practice, it is expected that the effects of this assump-
tion, which will be discussed in more detail in Section 7 , would be limited.

Let

X; = l/n,- ifn,- =1
= oo otherwise
and assume the cost function
I
g(x) = Z cilx, ¢ >0,i=12,...,1 )

i=1
A constant term for fixed costs could be included, but this would not affect the minimiza-
tion process and is deleted here to simplify the notation. Define the constants

a; = wiSE/v? 3)

which will be referred to as ‘‘standardized precision units’’. Notice that a; = 0. Using this
notation, the optimal allocation problem can be expressed as follows:

Minimize g(x)
subjectto  a/x <1, j=1,2,...,J @)
x>0

where g; is the j-th column vector of the matrix A = {a;]).
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Kokan (1963) discusses this allocation model extensively and shows how it can be adapted
to cover many common sample allocation problems, including cluster sampling and double
sampling. Kokan and Khan (1967) give further analytical results in this context; Arthanari and
Dodge (1981) restate Kokan and Khan’s results. In related work, Kish (1976) describes a class
of ““linear forms’’ which occur frequently in survey research and to which many of the results
developed here will apply.

3. THE OPTIMUM ALLOCATION

The optimum allocation for a single variable is well known. In that case J = 1, and the
minimum of g(x) subject to a/x < 1 with x > 0, denoted by x*, is given by

I
Xt = ey <¢a—1 ) \/—Ckakl) ifa, >0,1<i=<I

! )
= o otherwise.

In this section, formula (5) will be extended to the situation where J > 1.

The function g in (2) is strictly convex for x > 0, and the constraints given by (4) are linear,
so that the basic results in convex programming apply here without difficulty. That an optimal
solution always exists was demonstrated by Kokan and Khan (1967). As above, denote the
optimal solution by x*. It follows from the Kuhn-Tucker Theorem (1951) that there exist
A; = 0 such that

J
velx*) + Y Nag =0 6
j=1

A <aj’x* - 1) =0 0]

forj = 1,2, ..., J.1f x > 0satisfies Ef=1 A ajfx < Ele A, then, combining (6) and (7),

(V denotes the gradient) and

A

J J J
—x'Vg(x*) = E N ax < E N = E N aix* = —x*’ vg(x*). ®
j=1 j=1 j=1
By convexity, g(x) — g(x*) = (x — x*)’ ¥V g(x*) (for all x > 0 with x* > 0). Thus, from
)]

g(x) —g(x*) = (x — x*)" Vv g(x*) = 0.

It follows that x* is the minimum of g(x) subject to the conditions

J J
Y Nax = Y Nforallx > 0.
j=1 Jj=1

Since the minimization of g is unaffected by positive multiplicative constants, x* also mini-
mizes g(x) subject to the constraints that ), }=1 afaix < landx > 0, where af = N;/ ¥ f=1 Aj.
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The extension of formula (5) to an expression for the optimum multivariate allocation now
consists of applying the former to the weighted sum Ef=1 afa;:

J I J J
X,*—': \/E,/ \/ E aj*aij E Jck E C{}‘aij if E o; > 0, l=i=<]I
i=1 k=1 j=1 i=1 )
= o otherwise.

Notice that since x* minimizes g(x) subject to a/x < 1, withx > Ofor | < j < J, it
follows that mx* minimizes g (mx) subject to the constraints aj(mx) = m, withx > 0for 1
=< j < J. Thus, as noted earlier, constraints on variances (or CV’s) can be scaled by a factor
m (or Vm) if survey costs are too high.

Formula (9), of course, is computationally useful only if the af are known. However, this
formula is useful for deriving the shadow prices and for developing an algorithm for obtaining
x* and the of.

4. SENSITIVITY OF SURVEY COST TO VARIANCE CONSTRAINTS

In many optimization problems, it is useful to know how the optimal solution behaves when
the constraints are perturbed slightly. This can be especially true in survey research, where trade-
offs between costs, survey operations and precision requirements are frequently required. In
any case, the ‘‘shadow prices’’, given by dg (x*)/9dv,, are useful in detecting small shifts in the
variance constraints which could substantially reduce the overall survey cost.

Combining (2), (3), and (9), it is easily seen that the cost of the optimum allocation is

J 2 7 J 2
gty = | Y] /c,-Ea}"a,-j = E\/c,-Ea}‘W%S?j/v} .10

1 i=1 Jj=1

-
[
il

—_

Thus
ag(x*) ! J 202 512 L —cay WESE/VE @an
5 =2 Y e Y awisin: | Y
Vi i=1 j=1 i=1 I, -
C; E OlelZSij/V‘
i=1

|
|
)
£
ﬂ
=
N
1~
)
b
Ky

Vie i=1 J
..
L ey
Jj=1
I 7 1 7
af f |
—2v—g(x*) E a;Ne/ E ala; E Ck E afay;
k i=1 j= j=1

Jj=1 k=1

—2a—zg(x*) ay x*.
Vi



Survey Methodology, June 1989 51

From (7) it follows necessarily that a} = 0 whenever a;x* < 1, so that

ag(x*) _ _ a_;’ég(x*). (12)
avk Vi

This formula is somewhat more complicated that the usual expression for shadow prices (e.g.,
see Luenberger 1984), due to the complex relationship between g and v,.

Now consider increasing v, by (1007) %, 0 < = < 1. Denote by x* + Ax* the resulting
perturbation in x*. By (12),

g(x* + Ax*) — g(x*) = 7r"kaga(x*) = —2mwafg(x*). (13)
Vie

Thus an increase of (1007)% in the k-th variance constraint results in a (100)(2zwaf) %
reduction in the overall survey cost.

5. PROGRAMMING CONSIDERATIONS
This section discusses some technical aspects of solving for x* and gives a simple al_gorithm
for finding both x* and the coefficients o} by searching over weighted averages Yoy oya.

Define §;; by

0ifi # j.

For a vector « = (o, o3, ..., ay)’, define ¥(a) by

J I J J
\/Ei/ ’ E a;d;j E ’Ck E o;dy; if E o;d;; >0,1=<i=<]I
J=1 k=1 J Jj=1

Xi(a)
=1

= o otherwise.
Notice that #(a*) = x*. Now the iterative algorithm for finding x* is defined as follows:

1. Take oV =6y, 1 < j < J.

2. At step n = 2, find an index k for which
(ax—a))’ F(a™) = 0,1 sj=<J 14)

This gives the constraint which the current optimum solution violates by the largest margin.
If af%(a™) < 1, then terminate the algorithm. Otherwise, find ¢+ € (0,1) for which

g(XFUEM 8, + (1 — tWya™y = g(X(t 6 + (1 — 1) «™)) forallz € [0,1]. (15)
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3. Take o * D = 1™ g + (1 — 1) /™.

4. Terminate when | o/"*? — (™| < €, 1<j<J, where € is a predetermined con-
vergence criterion.

To verify the convergence of the algorithm, first note that ¥(«) minimizes g (x) subject
to ¥ 7_ja;a/x < 1. Thus, since £7_jo;ax* < L)1 = 1,

0 < g(X(a'™)) < g(x*) (16)

for all n. Furthermore, from (15), g(%#(« ™)) is nondecreasing, implying the convergence of
g(X(a™)). To see that ¥(a™) — x*, first define

I J
ho() = Y e Yo (1 + (1-Day)ay = Ve(®(# + (1 — D). (17)
i=1 j=1

Since A, () is concave (i.e., — hy, (%) is convex),

Mo (8) — hie(0) = th’(0) + O(£?) (18)

7
Y (b — o) aVex
j=1

= —¢ E »+ o(?)

i=1 J
2 C; E «; a,-j
Jj=1

(t/2)Vg(X(a)) (ai®(a) — 1) + O(F?).

By allowing ¢ to tend toward zero, it follows that there exists ¢ € (0,1) for which

VE(E (18 + (1 — D)) = hyo(t) > Mo (0) = Vg(X(a))

if and only if @;X(a) > 1. Thus it follows from (15) that the constraints are satisfied at

convergence; combining this with (16) implies that lim  %(a'”) = x*.
n— o

In carrying out the algorithm, Step 2 requires a search for . Define A, (¢) as in
(17). It is clear from the preceding discussion that a{%(¢8; + (1 — f)a™) = 1 when A(¢)
(and hence g) is at a maximum. Furthermore, since A, (#) is strictly concave, A/, (¢) is nonin-
creasing in ¢ and thus the point where A, (¢) = 0is unique. It follows that a binary search
for the point where A, (¢) is maximized can be implemented by simply checking to see
whether a/%(8;, + (1 — t)a'™) = 1, providing a rapid means of obtaining a close approx-
imation for #("™,

As described above, the algorithm takes a; as the initial value. This is completely
arbitrary, since any of the @;, 1 < j < J, would do. In practice, the constraint for which the
optimum allocation (i.e., formula (5)) yields the highest cost is generally a good choice for
the starting value.
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Notice that Step 2 of the algorithm will require IJ calculations in formula (14) and a 10-
step (say) binary search of 3/ + J + 1 calculations each in formula (15), while J calculations
must be carried out in Step 3. Thus each iteration of the algorithm is O(/J). From (18), at
the n-th interation,

1
hia(0) = Ehka(o) (@ix(a'™) = 1)

so that a/%(«a‘™) is approximately proportionate to Az, (0) (up to an additive constant).
Heuristically, A, (0) is the “‘slope’’ of # in the direction of a, suggesting that the algorithm
is essentially a steepest descent (or ascent, in this case) procedure. This, in turn, suggests a linear
rate of convergence (see, for example, Forsyth 1968).

In the author’s experience (see Bethel 1985), the algorithm converges quickly for most
moderately sized problems. For example, sample allocation problems with 20-30 strata and
5-10 constraints were solved in 3-5 seconds using the algorithm (on a Compaq 38620 with a
30387 math co-processor) versus 6-8 seconds using a sequential unconstrained minimization
technique (SUMT) implementing a penalized steepest descent algorithm. Run times vary con-
siderably depending on the magnitude of the problem, the number of active constraints, and,
obviously, machine characteristics. The author’s computing experience (with problems of 20-
30 strata and 5-10 constraints) includes the Macintosh SE (30 seconds to 2 or 3 minutes), Leading
Edge Model D (1 to 5 minutes), Zilog System 8000 (5 to 60 seconds), and the Compaq men-
tioned above (5 to 10 seconds). However, the run times are generally insignificant in comparison
with the labor involved in creating files and other preparatory tasks. In particular, it may take
several hours to find an acceptable starting value for the SUMT algorithm. Thus a strong feature
of the algorithm described in Steps 1-4 above is that it requires no external initial values. More-
over, it is relatively easy to program, requiring only 40 or 50 lines of code.

An even simpler algorithm is given by Chromy (1987). It can be adapted to our notation

and general approach as follows: Set /" = 1/J, and, for n = 2, let
7
af™ = afm V(@@ )N Y (@) 1= = (19
j=1

Like the algorithm described in steps 1-4 above, (19) requires no external initial values; (19),
however, requires even less programming effort and, based on several comparisons, it appears
to converge considerably more quickly. Unfortunately, there is apparently no formal proof
of convergence, although considerable practical experience (see Chromy 1987 for a more
detailed discussion) suggests that it has good convergence properties.

6. EXAMPLE

Tables 1-3 present an example drawn from a survey of commercial establishments. (Only
the strata for educational institutions are shown here.) Four of the primary variables of interest
are given: area of enclosed floorspace, age of building, number of full-time employees, and
percent of buildings heated by oil. Table 1 gives the stratum level variance information. Here
the standardized precision units are computed as

202

2. = W,-S,-j
b7 92,2
Yiv;
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Table 1.
Allocation Example: Survey of Educational Institutions.

Stratum Standard Deviation

Weight Floorspace Age Employees Pct. Oil Heating
Stratum
1 5158 22,319.11 43.71 25.72 48.15
2 .2632 24,056.21 16.68 27.09 36.79
3 1184 54,201.75 24.70 17.11 48.04
4 0711 155,514.21 16.01 59.46 38.07
5 0184 125,239.21 14.74 51.27 48.80
6 .0132 355,392.69 20.90 212.13 57.74
Mean: 54,641.85 43.03 45.23 67.58
Vi: .06 .06 .06 .06
Standardized Precision Units
Floorspace Age Employees Pct. Oil Heating
Stratum
1 12.33 76.24 23.90 37.52
2 3.73 2.89 6.93 5.70
3 3.83 1.28 .56 1.96
4 11.36 .19 2.44 45
5 7.37 .01 12 .05
6 2.03 .01 1.06 .04
Required
Sample Size: 222 149 127 121

where v; = .06 for all variables (so that the half-width of a 90% confidence interval will be
approximately 10% of the mean). Also given are the sample sizes required for Neyman alloca-
tion for each of the variables taken individually. Survey costs are assumed to be constant across
strata.

Table 2 gives the first-pass solution, which requires a sample of 241 units. The normalized
Lagrangian coefficients and the achieved precision levels are given, from which it is apparent
that floorspace and building age are dominating the solution while the other variables are not
‘‘active’. Here the starting value o« ) = (1,0,0,0) was used; because the third and fourth con-
straints were always satisfied, there was only one iteration with a 9-step binary search for (1,
(The successive estimates for the optimal ¢ were 1/2, 1/4, 3/8,5/16, 11/32, 21/64, 43/128,
85/256, and 171/512.) Also given in Table 2 are the 10% shadow prices: 10% increases in the
first (or second) constraints would result in a sample size reduction of approximately 32 (or
16) units. Since the third and fourth constraints are not active in the solution, changing their
CV requirements would have no effect on the allocation or the sampling costs.

Table 3 gives a second pass solution under the requirement that the total sample size is no
larger than 200. The optimal solutions are thus scaled by 241/200 (so that the optimal alloca-
tion goes down by 200/241) and the resulting CV’s are scaled by v241/200. The new 10%
shadow prices are —27 and -13 for the first and second constraints, reflecting the decrease in
the overall survey cost. Notice that there is approximately a 10% increase in the CV’s (from
the original ones in Table 1), so that the sample reduction of 48 predicted by the shadow prices
in Table 2 compares favorably with the actual 41 unit reduction. (The shadow price predic-
tions will always be somewhat optimistic due to the linear approximation.)
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Table 2.
Allocation Example: First Pass Optimum Solution.
Optimum
* o *
Stratum L o* aj; Xi Allocation
1 33.6749 0111 90
2 3.4495 .0347 29
3 2.9783 0373 27
4 7.6294 .0233 43
5 49119 .0291 34
6 1.3554 .0553 18
Total: 241
Floorspace Age Employees Pct. Oil Heating
Lagrangian
Multiplier 6660 .3340 .0000 .0000
(Normalized):
Achieved
Precision: .0600 .0600 .0481 .0502
10% Shadow
Prices: -32 -16 0 0
Table 3.
Allocation Example: Optimum Solution for Sample Size Limited to 200.
Optimum
* o *
Stratum Loy™ aji Xi Allocation
1 33.6749 .0134 75
2 3.4495 0418 24
3 2.9783 .0449 22
4 7.6294 .0281 36
5 49119 0351 29
6 1.3554 .0666 15
Total: 201
Floorspace Age Employees Pct. Oil Heating
Lagrangian
Multiplier .6660 .3340 .0000 .0000
(Normalized):
Achieved
Precision: .0657 L0658 .0528 J0551
10% Shadow
I'rices: -27 -13 0 0
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7. DISCUSSION

In this paper we have given a formal representation for the optimal sample allocation for
a multipurpose survey with linear variance constraints, and derived expressions for the par-
tial derivatives of the cost function with respect to the precision constraints. The latter result,
in particular, provides approximations that are useful in survey planning, permitting a great
deal of exploratory work without exact computer calculations.

Throughout the paper, the normalized Lagrangian multipliers, o, play a key role. In par-
ticular, we have noted that whenever the j-th variance constraint is not ““active’’ in the solu-
tion to the allocation problem, the j-th Lagrangian af = 0.

The optimization approach discussed in this article yields a continuous solution, which
must then be rounded in some way to provide integer stratum sample sizes. Clearly this
rounding will cause some deviation from optimality. However, the objective function here
is generally considered to be rather insensitive to small deviations from optimality (see
Cochran 1977), so that exact integer solutions are probably not cost effective. In fact, it seems
likely that round-off error would be insignificant in comparison with the sampling errors in
estimates of means and variances that would normally be available for developing an optimized
survey design.

Finally the reader will recall that finite population correction factors have been ignored
throughout this paper. It is easy to include these in the allocation model by manipulating equa-
tions (1) and (3), although that would cause equation (13) to be somewhat imprecise. How-
ever, it should be kept in mind that even when the FPC is non-negligible for some of the strata,
the overall effect usually is negligible. In any case, the FPC term, ¥ {_, W? S,Zj/N,-, can
always be calculated in order to evaluate the situation and, if necessary, it can be added to Vi
in formula (13) to obtain exact results.
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