

Se si desidera visualizzare i due lavori sopra citati è sufficiente accedere al portale del Comune di Verona e cercare

Tavole di mortalità

che appaiono nell'Annuario del 2007 con questo titolo e nell'Annuario del 2005 sotto la voce Commenti.

Le Tavole di mortalità di Verona

Autori:

Prof. Franco Bressan

Ordinario di Statistica Sociale presso la Facoltà di Scienza della Formazione dell'Università degli studi di Verona. Presidente del Corso di Laurea in Scienze del Servizio Sociale.

Prof.ssa Maddalena Comparini

Cultrice della materia di "Statistica Sociale" presso l'Università degli Studi di Verona. Laureata in Economia e Commercio presso l'Università degli Studi di Verona e in Scienze Politiche presso l'Università degli Studi di Padova. Insegnante di Discipline Giuridiche ed Economiche presso il Liceo "Lavinia Mondin" di Verona.

Prof.ssa Stefania Rocco

Cultrice della materia di "Statistica Sociale" presso l'Università degli Studi di Verona. Laureata in Scienze Statistiche Demografiche presso l'Università degli Studi di Padova.

C.I.D.E. (Centro Interdipartimentale di Documentazione Economica)

Il Cide ha come scopo principale l'organizzazione di una banca dati relativa ai principali fenomeni economici, demografici e sociali – sia locali che nazionali che internazionali – da rendere disponibili, anche con accesso via rete telematica, alla comunità scientifica appartenente all'Università di Verona.

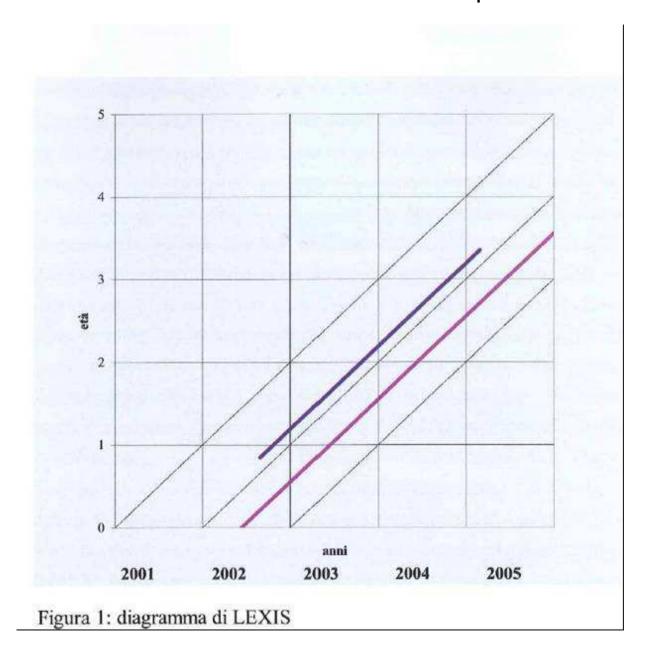
Direttore: dr. Alberto Roveda

Web: http://cide.univr.it

Verona, ottobre 2008

ETÀ x	lx .	d _s	1000q.	L	P.	ex
0	100000	436	4,364	99651	0,99893	78,5
1	99564	38	0,382	99545	0,99965	77,9
2	99526	99526 31 0,3 99494 28 0,2		99510	0,99970	76,9 75,9
3	99494			99480		
4	99467	25	0,250	99454	0,99976	74,9
5	99442	99442 23 0,228		99430	0,99984	73,9
6	99419	10	0,098	99414	0,99992	73,0
7	99409	7	0,069	99406	0,99994	72,0
8	99403	5	0,049	99400	0,99996	71,0
9	99398	3	0,030	99396	0,99996	70,0
10 99395 11 99391		4	0,040	99393	0,99995	69,0
		5	0,051	99388	0,99994	68,0
12	99386	7	0,072	99382	0,99992	67,0
13	99379	8	0,082	99374	0,99990	66,0
14	99370	12	0,124	99364	0,99983	65,0
15	99358	21	0,207	99348	0,99973	64,0
16	99337	34	0,342	99320	0,99960	63,0
17	99303	45	0,454	99281	0,99951	62,0
18	99258	53	0,534	99232	0,99944	61,1
19	99205	58	0,586	99176	0,99939	60,1
20	99147	62	0,629	99116	0,99936	59,1
21	99085	65	0,658	99052	0,99933	58,2
22	99020	68	0,688	98986	0,99928	57,2
23 24 25	98952	73	0,742	98915	0,99925	56,2
	98878	76	0,765	98840	0,99924	55,3
	98802	74	0,749	98765	0,99928	54,3
26	98728	68	0,693	98694	0,99932	53,4
27	98660	66	0,669	98627	0,99932	52,4
28	98594	68	0,689	98560	0,99929	51,4
29	98526	72	0,733	98490	0,99925	50,5
30	98454	76	0,769	98416	0,99922	49,

ETÀ x	lx	clx	1000qx	L×	Px	ex
0	100000	278	2,775	99778 0,99930		84,52
1	99722	29	0,288	99708 0,99975		83,70
2	99694	21	0,211	99683 0,99981		82,7
3	99673	17	0,166	99664 0,99985		81,8
4	99656	13	0,134	99650	0,99988	80,8
5	99643	11	0,109	99637	0,99990	79,8
6	99632	8	0,083	99628	0,99993	78,8
7	99624	5	0,053	99621	0,99995	77,8
8	99618	5	0,053	99616	0,99995	76,8
9	99613	4	0,042	99611	0,99995	75,8
10	99609	6	0,063	99606	0,99993	74,8
11	99603	8	0,085	99599	0,99990	73,8
12	99594	12	0,117	99589	0,99988	72,8
13	99583	13	0,128	99576	0,99987	71,8
14	99570	14	0,139	99563	0,99987	70,8
15	99556	13	0,129	99550	0,99988	69,8
16	99543	12	0,119	99537	0,99988	68,8
17	99531	12	0,118	99526	0,99988	67,9
18	99520	13	0,127	99513	99513 0,99987	
19	99507	13	0,126	99501	0,99987	65,9
20	99495	13	0,131	99488	99488 0,99986	
21	99481	14	0,145	99474 0,99984 99459 0,99983		63,9 62,9
22	99467	16	0,166			
23	99451	17	0,174	99442 0,99981		61,9
24	99433	20	0,205	99423	0,99978	60,9
25	99413	23	0,232	99401 0,9997		59,9
26	99390	23	0,236	99378 0,99978		58,9
27	99366	21	0,209	99356	0,99980	58,0
28	99346	18	0,181	99337	0,99983	57,0
29	99328	16	0,163	99320	0,99984	56,0
30	99311	15	0,153	99304	0,99983	55,0

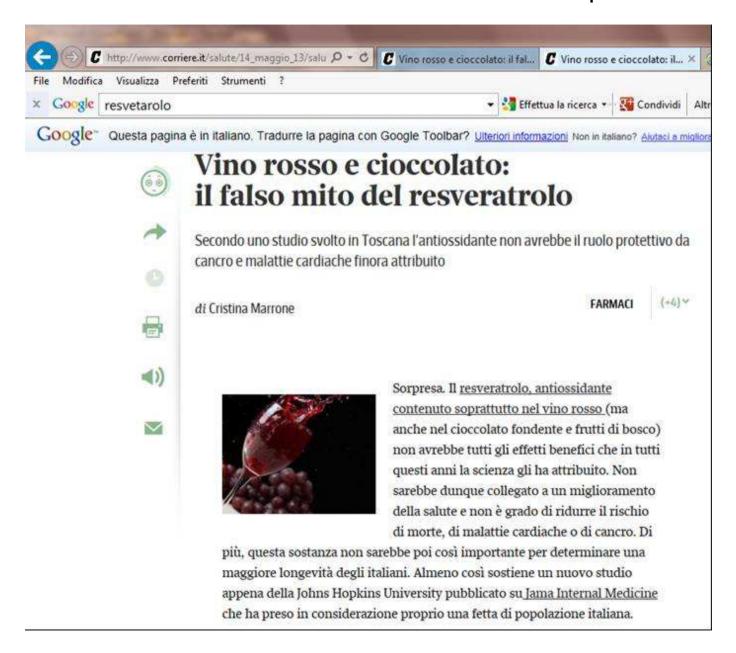


9- T	anine							
(ех	e _v				х	еx	e×
0	84,52	78,56				51	34,66	29,83
1	83,76	77,90				52	33,73	28,94
2	82,78	76,93				53	32,80	28,05
3	81,80	75,95				54	31,87	27,17
4	80,81	74,97				55	30,95	26,30
5	79,82	73,99				56	30,04	25,42
6	78,83	73,01				57	29,12	24,55
7	77,84	72,01				58	28,22	23,69
8	76,84	71,02				59	27,33	22,84
9	75,84	70,02				60	26,43	22,00
10	74,85	69,03	HINESHI IN			61	25,54	21,18
11	73,85	68,03	31	54,05	48,60	62	24,65	20,37
12	72,86	67,03	32	53,06	47,64	63	23,76	19,57
13	71,87	66,04	33	52,07	46,67	64	22,87	18,78
14	70,88	65,04	34	51,08	45,71	65	21,99	18,00
15	69,89	64,05	35	50,10	44,75	66	21,12	17,22
16	68,89	63,06	36	49,11	43,79	67	20,26	16,45
17	67,90	62,08	37	48,13	42,83	68	and the second second	15,68
18	66,91	61,11	38	47,14	41,88		19,41	14,93
19	65,92	60,14	39	46,16	40,92	69	18,57	
20	64,93	59,18	40	45,18	39,98	70	17,73	14,18
21	63,94	58,22	41	44,21	39,04	71	16,89	13,46
22	62,95	57,25	42	43,24	38,11	72	16,07	12,76
23	61,96	56,29	43	42,26	37,18	73	15,25	12,08
24	60,97	55,33	44	41,30	36,26	74	14,45	11,42
25	59,98	54,38	45	40,33	35,33	75	13,67	10,79
26	58,99	53,42	46	39,37	34,41	76	12,92	10,17
27	58,01	52,45	47	38,42	33,49	77	12,18	9,58
28	57,02	51,49	48	37,47	32,57	78	11,46	9,01
29	56,03	50,52	49	36,53	31,65	79	10,76	8,48
30	55,04	49,56	50	35,59	30,74	80	10.08	7,98

Per ottenere le tavole basandosi sugli anni di vita effettivamente vissuti a Verona da tutti coloro che, a qualunque titolo, sono stati residenti nel Comune, si sono dovute raffinare ulteriormente le già buone informazioni disponibili dall'anagrafe e costruire quindi una banca dati esatta praticamente al 100%, contro un 99,5% del Comune, di cui è stato addirittura predisposto un logo, giocando sulle lettere rbbf.

Questa può essere arricchita aggiungendo gli ultimi anni ed è in grado di rispondere ai classici quesiti demografici legati ai movimenti standard ed a suddivisioni territoriali, ma, se integrata con informazioni esterne, può consentire di dare risposte importanti ed approfondire la conoscenza della realtà sociale.

Nelle diapositive che seguono, ricavate da internet, viene mostrato l'esito di uno studio che si è protratto nella zona del Chianti e che ha fatto recentemente un certo clamore.


The InCHIANTI Study

Older persons are often referred to physicians because of complaints of progressive difficulties in walking. The diagnostic and therapeutic approach to these patients is complex. Multiple physiologic subsystems may influence the ability to walk and no standard criteria are currently available to establish whether these subsystems are functioning within the "normal" range. To address lack of knowledge Dr. Luigi Ferrucci and Dr. Stefania Bandinelli conducted InCHIANTI, a representative population-based study of older persons living in the Chianti geographic area (Tuscany, Italy).

The InCHIANTI Study (Invecchiare in Chianti, aging in the Chianti area) is currently supported by a grant from the National Institute on Aging (NIH, NIA, Bethesda, USA) and is coordinated by the Tuscany Regional Health Agency in a partnership with the Florence Health Care Agency, the local Administrators and the primary care physicians of Greve in Chianti and Bagno a Ripoli, the two small towns in the countryside of the Tuscany were the study is conducted. The Study was initially managed by the National Institute on Research and Care of the Elderly (INRCA, Ancona, Italy) and it was funded by Italian Health Ministry and by a NIH contract.

Lo studio

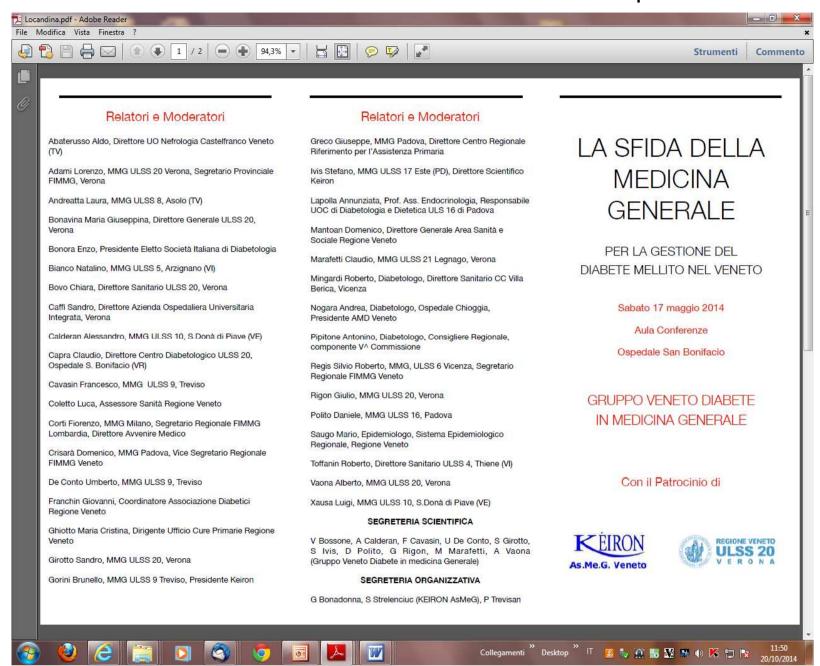
Lo studio è stato fatto su un campione di 783 individui, uomini e donne di 65 anni residenti in Toscana, nella regione del Chianti, dove è piuttosto diffuso il consumo di vino rosso. Il team di ricercatori, guidati da Richard Sembra ha studiato la popolazione dal 1998 al 2009. Ai partecipanti è stato chiesto di compilare un questionario sulle abitudini alimentari e sono stati eseguiti esami sulle loro urine per misurare i livelli di resveratrolo. Poco più di un terzo del campione è morto nel giro di nove anni. Al 5% dei partecipanti è stato diagnosticato un cancro e il 27% ha sviluppato una malattia cardiaca nel corso dello studio. Dopo aver tenuto in considerazione fattori come età e sesso, chi presentava concentrazioni più elevate di resveratrolo non è risultato avere meno probabilità nel tempo di morire, per qualsiasi causa, rispetto a chi non aveva traccia della sostanza nell'urina. La concentrazione di resveratrolo inoltre non è risultata in alcun modo associata con marcatori dell'infiammazione, di malattie cardiovascolari o dei tassi di cancro. In conclusione, il resveratrolo celebrato per anni con un vero «toccasana» per la salute non avrebbe tutti questi benefici.

Quindi lo studio è durato 10 anni èd ha coinvolto circa 800 persone di 65 anni di età. A Verona al 31 dicembre 2000 erano circa 3000 le persone che avevano compiuto 65 anni di età e porre sotto osservazione alcune malattie croniche o situazioni di interesse potrebbe consentire di poter dare una risposta equivalente all'inCHIANTI study su temi ancora dibattuti.

Il ruolo dell'obesità, dell'ipertensione, di malattie diffuse e talvolta sottovalutate e il loro effetto sulla speranza di vita sembra un impegno promettente.

Ignoro se sia ora disponibile, ma diversi anni fa avevo collaborato alla costruzione del registro dei diabetici a Verona. All'epoca si parlava di 13000 persone, probabilmente di età un po' avanzata e forse nel 2000 erano aumentate di numero.

Se si riuscisse a fare il matching con analoghi studi e dare un contributo


ci potremmo confrontare con interessante.

Mi pare che anche i medici possano essere coinvolti come compare dall'ultima slide di seguito presentata.

