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 Editor's Note: The following article was the invited address presented at the Joint Statistical
 Meetings, Chicago, Illinois, August 3-8, 1996.
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 X-12-ARIMA is the Census Bureau's new seasonal-adjustment program. It provides four types of
 enhancements to X- 11-ARIMA--(1) alternative seasonal, trading-day, and holiday effect adjustment
 capabilities that include adjustments for effects estimated with user-defined regressors; additional
 seasonal and trend filter options; and an alternative seasonal-trend-irregular decomposition; (2) new
 diagnostics of the quality and stability of the adjustments achieved under the options selected; (3)
 extensive time series modeling and model-selection capabilities for linear regression models with
 ARIMA errors, with optional robust estimation of coefficients; (4) a new user interface with features
 to facilitate batch processing large numbers of series.

 KEY WORDS: Model selection; RegARIMA models; Trading-day models.

 The Census Bureau's well known X-11 program was in-
 troduced in 1965 (Shiskin, Young, and Musgrave 1967). It
 was the product of over a decade of development begin-
 ning with "Method I" in 1954, followed by 12 experimen-
 tal variants (X-0, X-1, etc.) of "Method II," culminating
 in X-11 (Shiskin 1978). X-11 followed in a long tradition
 of empirical smoothing and seasonal-adjustment procedures
 (Bell and Hillmer 1984), particularly the "ratio-to-moving-
 average" method of Macaulay (1931). The early Cen-
 sus Bureau methods were the first computerized seasonal-
 adjustment methods. X-11 became something of a standard
 that was used by statistical agencies around the world. Im-
 portant features of X-11 that contributed to its widespread
 use are its treatment of atypical ("extreme") observations,
 its variety of moving averages for estimating evolving trend
 and seasonal components (and its methods and diagnostics
 for selecting among these), its refined asymmetric moving
 averages for use near the ends of time series, and its method
 for estimating trading-day effects.

 Statistics Canada's X-11-ARIMA seasonal-adjustment
 program (Dagum 1980) contained all the capabilities of X-
 11 and provided important improvements. The most im-
 portant is X-11-ARIMA's ability to extend the time series
 with forecasts and backcasts from autoregressive integrated
 moving average (ARIMA) models prior to seasonal adjust-

 ment. The use of forecast and backcast extensions results

 in initial seasonal adjustments whose revisions are smaller,
 on average, when they are recalculated after future data be-
 come available; see Huot, Chiu, Higginson, and Gait (1986)
 and Bobbitt and Otto (1990), for example. Extension over-
 comes deficiencies in the preliminary X-11 trend-estimation
 procedure at the ends of the series, especially in the first and
 last half-year. In the additive decomposition case, extension
 with optimal forecasts and backcasts for the half length of
 the symmetric seasonal filter used minimizes revisions in a
 mean squared sense. The history of this optimality property
 and an elegant derivation were given by Cleveland (1983).

 Other X-11-ARIMA improvements include its more sys-
 tematic and focused diagnostics for assessing the quality of
 its seasonal adjustments, which enable users to get good re-
 sults more easily. And X-11-ARIMA offers diagnostics for
 comparing indirect and direct seasonal adjustments of se-
 ries that are aggregates of multiple component series. X-11
 did not calculate indirect adjustments.

 The Census Bureau's new X-12-ARIMA program in-
 cludes essentially all the capabilities of the latest version

 In the Public Domain

 Journal of Business & Economic Statistics

 April 1998, Vol. 16, No. 2

 127

This content downloaded from 193.204.90.105 on Thu, 01 Jun 2017 08:18:56 UTC
All use subject to http://about.jstor.org/terms



 128 Journal of Business & Economic Statistics, April 1998

 of X-11-ARIMA, X-11-ARIMA/88 (Dagum 1988), includ-
 ing all the capabilities of X-11. The major improvements
 in X-12-ARIMA address inadequacies of X-11 not targeted
 by X-11-ARIMA/88, as well as limitations in the model-
 ing and diagnostic capabilities of X-11-ARIMA/88. These
 major improvements are the focus of this article; they are
 discussed and illustrated in Sections 1-5. We shall outline

 these sections, but first we briefly discuss the general struc-
 ture of X-12-ARIMA.

 Plans for X-12-ARIMA developed around the operation-
 flow diagram of Figure 1. This posits a regARIMA (lin-
 ear regression model with ARIMA time series errors)
 modeling subprogram that can provide forecasts, back-
 casts, and prior adjustments for various effects before the
 seasonal-adjustment subprogram in the central box is in-
 voked. The final box in Figure 1 represents a set of post-
 adjustment diagnostic routines that can be used to ob-
 tain indicators of the effectiveness of both the modeling
 and the seasonal-adjustment options chosen. The seasonal-
 adjustment methodology symbolized by the central box is
 an enhanced version of the X- 11 methodology. A significant
 number of the enhancements were suggested by seasonal-
 adjustment experts at statistical offices and central banks in
 the United States, Canada, the United Kingdom, Germany,
 New Zealand, and Japan. The improvements introduced in
 X-11-ARIMA/88 were also influential.

 X-12-ARIMA

 RegARIMA Models
 (Forecasts, Backcasts,

 Preadjustments)

 Modeling and Model
 Comparison Diagnostics

 SEASONAL ADJUSTMENT

 (Enhanced X- 11)

 DIAGNOSTICS

 (including revisions,
 sliding spans, spectra,
 M1--M11, Q, etc.)

 Figure 1. Flow Diagram for Seasonal Adjustment With X-12-ARIMA.

 The major methodological improvements of X-12-
 ARIMA fall into three general groups that are discussed in
 the sections indicated-new X-11 adjustment options (Sec.
 1), new diagnostics (Sec. 2), and new modeling capabili-
 ties emphasizing regARIMA modeling and model selection
 (Sec. 3). Section 4 illustrates how these modeling capabili-
 ties can address real problems that arise in seasonal adjust-
 ment. Section 5 briefly discusses another major improve-
 ment of X-12-ARIMA-its new user interface. Section 6

 provides concluding remarks and an ftp address for obtain-
 ing the program. We now give a more detailed overview.

 Section 1 discusses how new options in X-12-ARIMA
 provide additional flexibility in the basic seasonal-
 adjustment methodology of X-11 and X-11-ARIMA. New
 filter options include a longer seasonal moving average, al-
 lowance for user specification of Henderson trend filters of

 any (odd) length, and slight modifications to some of X- l's
 asymmetric moving averages so that more are derived from
 a single optimization principle (outlined in the Appendix).
 The program also provides a "pseudo-additive" decomposi-
 tion that has been found useful for series with periodically
 small or zero values. Finally, improvements were made
 in how trading-day and other regression effects, including
 user-defined effects (a new capability), are estimated from
 a preliminary version of the irregular component. (Alter-
 natively, such effects can be estimated directly from the
 observed time series using the program's regARIMA mod-
 eling capabilities.)

 Section 2 discusses significant diagnostic capabilities X-
 12-ARIMA provides beyond those of X-11 and X-11-
 ARIMA. These include spectrum estimates for detection
 of seasonal and trading-day effects and also sliding spans
 (Findley and Monsell 1986; Findley, Monsell, Shulman, and
 Pugh 1990) and revisions history diagnostics for assessing
 the stability of seasonal adjustments. We were motivated in
 this development by our experience that, although the diag-
 nostics of X-11-ARIMA are an important advance beyond
 those of X-11, they sometimes fail to identify series that
 cannot be satisfactorily adjusted. They also sometimes give
 an incorrect indication as to whether the direct or an indi-

 rect adjustment of an aggregate series should be preferred
 (see the examples in these articles).

 Other important features of X-12-ARIMA derive from
 its regARIMA modeling capabilities; these are discussed in
 Section 3 and illustrated in Section 4. X-11-AIRIMA lacks
 the capability to add regression effects to the models used
 for forecast extension. Although preadjustment for trading-
 day and other regression effects estimated from irregulars
 (the approach taken by X-11-ARIMA/88) may usually do
 as well for point forecasts, this approach is more limited
 than use of regARIMA models, as our later discussion will
 show. X-12-ARIMA's use of regARIMA models can po-
 tentially improve forecasts and backcasts and, through its
 outlier detection capabilities, help robustify model param-
 eter estimates and model forecasts against additive outliers
 and level shifts.

 The focus in Sections 3 and 4 is not, however, on advan-
 tages of using regARIMA models for forecast extension.
 Rather, it is on a variety of important direct applications
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 for regARIMA models in seasonal adjustment. These in-
 clude the following: (1) regARIMA models for trading-day
 and holiday effects (Bell and Hillmer 1983) provide more
 reliable diagnostics for the presence of such effects than do
 F statistics of regression models fit to the irregular compo-

 nent of the seasonal decomposition as in X-11 (see Secs. 1.4
 and 3.3). (2) Chang and Tiao (1983) and Bell (1983) showed
 how regARIMA models can be used to detect additive out-
 liers (AO's) and level shifts (LS's). (See also Chang, Tiao,
 and Chen 1988, Sec. 3.2, and Appendix C.) Allowance for
 such outlier effects in a model can help protect the model's
 coefficient estimates and forecasts against corruption (Bur-
 man and Otto 1988; Ledolter 1989). (3) The ability to handle
 AO's provides a capability for dealing with small amounts
 of missing data: Bruce and Martin (1989) observed that ex-
 act treatment of missing observations is approximately the
 same as replacing missing observations by their estimated
 AO effects (see Sec. 4.2). (4) Preadjustment for LS's (be-
 fore seasonal adjustment by X-11) can overcome one of the
 most troubling common sources of difficulty for X-1 1-the
 inability of its trend filters to track sudden changes in level.
 For example, Figure 2 shows the graph of the series of net
 income from U.S. retail sales and the modified series re-

 sulting from the use of an LS regressor in a regARIMA
 model of the log series to remove the precipitous drop in
 level in the first quarter of 1982. (This drop was caused by a
 governmental action, called the Paperwork Reduction Act,
 that took smaller companies out of the survey universe.)
 (5) regARIMA models can be used to test for changes in
 seasonal pattern, in trading-day effects, and so forth. Note
 from Figure 2 that the net income series from the reduced
 universe appears to have a different, more stable seasonal
 pattern than the pre-1982 series from the larger universe.
 In Section 4.1, we shall show how regARIMA models can
 be used to test this series for a change in seasonal pattern.

 To complement its regARIMA modeling capabilities X-
 12-ARIMA also provides extensive model-selection diag-
 nostics, including recently developed diagnostics based on
 out-of-sample forecast performance. The need for such di-

 8 0
 0 0'

 1975 1977 1979 1981 1983 1985 1987

 Figure 2. Net Income (Sales - Costs) From US. Retail Sales With
 and Without LS Adjustment: - , Original; . , Adjusted.

 agnostics in seasonal adjustment will become clear in Sec-
 tions 3 and 4: Many of the model comparisons that arise
 naturally within the rich class of regARIMA models ap-
 propriate for time series with seasonal and calendar effects
 are not addressed by standard statistical tests.

 Finally, Section 5 briefly illustrates the new user interface
 of X-12-ARIMA. This interface, which uses a simple, self-
 descriptive command language, greatly simplifies the pro-
 gram's use in both production and research environments.

 1. NEW X-11 ADJUSTMENT OPTIONS

 We begin with a review of the decomposition procedures
 of X- 11. This serves as background for the discussion of the
 program's new seasonal and trend moving average options
 in Section 1.2 (and Appendix B) and its new decomposition
 option in Section 1.3. The final Section 1.4 explores is-
 sues surrounding the estimation of regression effect compo-
 nents, such as trading-day components, from the irregulars.
 It includes a derivation of X- 11's deseasonalized model for

 multiplicative trading-day effects and discussion of how the
 derivation's model-deseasonalization approach is extended
 in X-12-ARIMA to the additive and other decompositions
 and to other regression effects.

 1.1 Decompositions for Seasonal Time Series

 The basic seasonal-adjustment procedure of X-11 and X-
 11-ARIMA decomposes a monthly or quarterly time se-
 ries into a product of (estimates of) a trend component, a
 seasonal component, and a residual component, called the
 irregular component. Such a multiplicative decomposition
 is usually appropriate for series of positive values (sales,
 shipments, exports, etc.) in which the size of the seasonal
 oscillations increases with the level of the series, a charac-
 teristic of most seasonal macroeconomic time series. Under

 the multiplicative decomposition, the seasonally adjusted
 series is obtained by dividing the original series by the es-
 timated seasonal component. The values of the estimated
 seasonal component are called seasonal factors. There is
 also an analogous additive decomposition, which decom-
 poses the series into a sum of trend, seasonal, and irregular
 components, with the seasonally adjusted series obtained
 by subtracting away the estimated seasonal component. Al-
 though analyses of the properties of X-11 often focus on
 the additive decomposition (e.g., Cleveland and Tiao 1976;
 Wallis 1982; Ghysels, Granger, and Siklos 1996), the mul-
 tiplicative decomposition is used far more frequently.

 X-12-ARIMA retains the basic multiplicative and ad-
 ditive decompositions. Moreover, in common with X-11-
 ARIMA, the X-12-ARIMA program can calculate a second
 multiplicative decomposition by exponentiating the addi-
 tive decomposition of the logarithms of the series being
 adjusted. This is called the log-additive decomposition. It
 is used mainly for research purposes, because it requires
 a bias correction for its trend estimates (due to geomet-
 ric means being less than arithmetic means) as well as a
 different calibration for extreme value identification based

 on the lognormal distribution. Section 1.3 describes a new,
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 fourth decomposition, the pseudo-additive decomposition,
 that was developed at the U.K. Central Statistical Office.
 Following X-11, the default scheme of X-12-ARIMA for

 obtaining the various three-component decompositions of a
 time series is a three-stage procedure. This is presented in
 Appendix A for the simplified situation of a series with no
 extreme values. It is further assumed that the series has been

 extended far enough by forecasts and backcasts that the data
 required by the formulas in Appendix A are available for all
 months t in the span of the observed series. The only cal-
 culations whose role may not be clear are those of Step (d)
 in Stages 1 and 2. Their effect is usually to make 12-month
 totals of the adjusted series be close to the corresponding
 totals of the unadjusted series. [The log-additive decompo-
 sition is not explicitly presented in Appendix A, because its
 computations parallel those of the additive decomposition.
 In X-12-ARIMA, the log-additive decomposition includes
 a bias-correction due to Thomson and Ozaki (1992), which
 is applied to the exponentiated trend component.]

 1.2 X-11 Seasonal Adjustment and Trend Filters

 1.2.1 Symmetric Seasonal Filters. The symmetric sea-
 sonal moving averages used in step (c) of Stages 1 and 2
 in Appendix A have a similar structure: They are simple
 3-term moving averages, of simple averages of odd length,
 2n + 1, of SI ratios (detrended series values) from the same
 calendar month as month t,

 3x(2n+ 1) 1 (S2tn+1St2n+ + S2n41 ) -S- -12+ +"-t+12
 with

 St2n+1Z = I 2n + 1 St+12j
 3=-n

 S3x (2n+1) is referred to as the 3 x (2n + 1) seasonal mov-
 ing average or seasonal filter. In the default setting of X-
 11, the 3 x 3 seasonal moving average is used at step (c)
 of Stage 1 and the 3 x 5 seasonal moving average at step
 (c) of Stage 2. X-12-ARIMA and X-11-ARIMA/88 differ
 from X-11 in that step (c) of Stage 2 uses a criterion due
 to Lothian (1984) to select from among four filters-the
 3 x 3, 3 x 5, and 3 x 9 moving averages and the average of
 all SI ratios from the same calendar month as t, the sta-
 ble seasonal average. Optionally, in all three programs the
 user can specify any of these moving averages for use in
 any calendar month. The chosen averages are then used in
 step (c) of both Stages 1 and 2. In X-12-ARIMA, there is
 also an optional 3 x 15 seasonal moving average. This fil-
 ter was used in X-10 and in a customized version of X-11
 at the German Bundesbank as an alternative to the stable

 seasonal average for series of length at least 20 years. The
 appropriateness of longer seasonal moving average filters
 has been suggested by researchers investigating ARIMA-
 model-based signal-extraction seasonal adjustments. (See
 Bell and Hillmer 1984, pp. 308-309).

 1.2.2 Symmetric Trend Filters. The symmetric Hen-
 derson trend (or "trend-cycle") moving averages used in
 step (a) of Stages 2 and 3 will perfectly reproduce a cu-

 bic polynomial. Moreover, their "weights" hj2H+l) change
 with j as smoothly as possible in a sense we explain in
 Appendix B, where their formula is given. In X-11 and X-
 11-ARIMA/88, either the user or the automatic "variable
 trend cycle curve routine," discussed at the end of Appendix
 B, chooses among Henderson filters of length 9, 13, and 23.

 In X-12-ARIMA, the automatic selection procedure is
 the same, but the user can alternatively specify any odd-
 number length 2H + 1. The specified Henderson filter is
 then used in step (a) of both Stages 2 and 3. In recent years
 the Australian Bureau of Statistics has been using 15-term
 and 17-term Henderson filters in their customized version
 of X-11 as alternatives to the 13-term filter.

 Figure 3 displays the squared gain functions (up to fre-
 quency A = .25)

 2

 H (2H+l) -i2rjA
 j=-H

 ( 2

 h (2H+1) +2 h (2H+1) cos2-Arj)A
 j=1

 0<A_< .5,

 of the 13- and 17-term Henderson filters (H = 6,8), to-
 gether with the squared gain functions of the resulting X-
 11 additive-decomposition trend-component extraction fil-
 ters for a monthly series. These trend extraction filters are
 obtained by combining (convolving) all of the additive de-
 composition's linear operations in Stages 1-3 used to obtain

 the final trend estimates T(3). Recall that the product of the
 squared gain function and the spectral density of the filter's
 input series gives the spectral density of the output series
 when the input series is stationary (see Koopmans 1974,
 p. 86). Thus, at frequencies at which the gain function is
 close to 0, the variance components of the input series are
 suppressed. Figure 3 shows that the Henderson filters sup-
 press the higher-frequency components of a stationary input
 series and essentially preserve the magnitudes of the com-
 ponents whose frequency is close enough to 0. A similar
 effect can be expected with nonstationary input series (see
 Oppenheim and Schafer 1975, p. 110). As Figure 3 shows,
 the squared gain function of the 13-term Henderson filter
 has substantial power beyond the first seasonal frequency
 1/12. This results in the peak just beyond this frequency
 in the squared gain of the associated trend extraction fil-
 ter. (The preceding dip down to 0 at 1/12 comes from the
 seasonal-adjustment operations applied before the applica-
 tion of the Henderson trend filters.) Because of this peak,
 it has been claimed that X-1 l's final trend estimate from

 the 13-term Henderson filter exaggerates short-term cycli-
 cal behavior (Schips and Stier 1995). The 17-term Hender-
 son filter is the shortest that does not result in a significant
 peak beyond the first seasonal frequency in the squared gain
 function of the trend extraction filter.

 1.2.3 Asymmetric Filters. Now we consider briefly the
 asymmetric filters used near the beginning and end of a
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 Henderson Trend Filters

 13-term 17-term

 1.2 1.2

 1.0 1.0

 0.8 0.8

 0.6 0.6

 0.4 0.4

 0.2 0.2

 0.0 0.0

 0.000 0.083 0.167 0.250 0.000 0.083 0.167 0.250

 frequency frequency

 X-11 Trend Filters

 (with 13-term Henderson) (with 17-term Henderson)
 1.2 1.2

 1.0 1.0

 0.8 0.8

 0.6 0.6

 0.4 0.4

 0.2 0.2

 0.0 0.0

 0.000 0.083 0.167 0.250 0.000 0.083 0.167 0.250

 frequency frequency
 Figure 3. Henderson and Additive X- 11 Trend Filter Squared Gains for Frequencies [0, .25]. The deseasonalization prior to final trend estimation

 produces the 0 at A = 1/12 in the trend filter gains, with the result that some higher-frequency components will be suppressed less than lower-
 frequency components near A = 1/12. When the 17-term Henderson filter is used, the second peak in the trend filter's squared gain is quite small.
 Consequently, trends from this filter have negligible susceptibility to displaying anomalous higher-frequency oscillations compared to trends obtained
 by use of the 13-term Henderson filter.

 series that is not extended, or not fully extended, by fore-
 casts and backcasts. In X-12-ARIMA, the coefficients of
 the asymmetric filters associated with the 3 x 9 seasonal
 filter are slightly modified versions of the filters in X- 11
 and X-11-ARIMA. The modifications were done to obtain

 filters that are derivable from an unpublished optimization
 principle developed by Musgrave (1964) that is detailed in
 Appendix B. There it is explained that the asymmetric re-
 placements for both the 3 x 9 seasonal filter and the Hen-
 derson filters are determined by values chosen for a certain
 "noise-to-signal ratio." For the Henderson filters, the X-12-
 ARIMA user can change this ratio to obtain different asym-
 metric filters. This is one of the program's "rarely used op-
 tions," intended for the researcher or specialist rather than
 for the general user. An unpublished formula of M. Doherty
 for the exact solution of Musgrave's optimization [given as
 (B.3) in Appendix B] made it easy for us to implement both
 this option and the option to allow the user to specify Hen-

 derson filters of any odd length (replaced by appropriate
 asymmetric filters near the ends of the series).

 X-12-ARIMA can produce a smoothed version ("trend")
 of a nonseasonal series through application of any of its
 Henderson trend filters directly to the input series, or to the
 series modified by regression preadjustments (if, for exam-
 ple, there are outliers).

 1.3 The Pseudo-Additive Decomposition

 The pseudo-additive decomposition has the form Yt =
 Tt(St + It - 1) = Tt(St - 1) + Ttlt. The algorithm for its
 calculation is summarized in Appendix A. According to M.
 Baxter of the U.K. Office for National Statistics, where it
 has been used for almost 20 years, this procedure was devel-
 oped for seasonally adjusting nonnegative time series that
 have quite small, possibly zero values in the same month
 or months each year. Such months have seasonal factors
 close to 0, and dividing by such very small factors pro-
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 duces unsatisfactory results. Adjustment of these months
 by subtraction of an estimate of Tt(St - 1)  -Tt is more
 likely to give an estimate close to the trend of the series,
 because Yt r 0. Agricultural products that are available
 only at certain times of year can give rise to such series.
 So can institutional behavior such as the shutdown of facto-

 ries because of summer vacations, as the graph of an Italian
 car-production series in Figure 4 illustrates.

 Figure 4 shows both the additive and the pseudo-additive
 adjustments of recent years of this series. The first impres-
 sion might be that the additive adjustment is reasonable ex-
 cept in August of the last year. In this month, the additively
 adjusted series incorrectly suggests that a very low level
 of production, essentially unchanged from the two preced-
 ing Augusts, represents a substantial increase. The pseudo-
 additive adjustment provides a more plausible, neutral value
 for this month. It also presents the Augusts of 1989 and
 1990 as having significantly increased production, which
 they do have relative to other Augusts, a feature not indi-
 cated as clearly by the additive adjustment. When we cal-
 culated the revisions history diagnostics (presented in Sec.
 2.2) for both adjustments of this series, however, the results
 (not given in this article) showed that the pseudo-additive
 adjustments of Augusts are much more likely than the ad-
 ditive adjustments to experience large revisions as future
 data are added to the series. (Multiplicative adjustments are
 more volatile still and give implausible adjustments.)

 It is an unusual aspect of the pseudo-additive decompo-
 sition that the adjustment quantities removed by the adjust-
 ment operation are not the level-independent quantities St
 as in the other decompositions but are instead the level-
 dependent quantities Tt(St - 1); see the steps (e) in Ap-
 pendix A. Thus, difficulties in estimating Tt at the ends of

 o

 1988 1989 1990 1991 1992 1993 1994

 Figure 4. Italian Car Production (--- ) With Additive (- .-) and
 Pseudo-Additive (... ) Seasonal Adjustments. In Italy August is the main
 month for vacationing, and the resulting very low levels of car production
 make this series unsuitable for multiplicative adjustment. The graphs
 show that the pseudo-additive adjustment more accurately reflects the
 increased production in August of 1989 and 1990. Moreover, unlike the
 additive adjustment, the pseudo-additive adjustment does not suggest
 that the very low August 1993 value, which differs little from the August
 1991-1992 values, represents a substantial increase.

 series (see Sec. 2.2) can be expected to increase the variabil-
 ity of the adjustments there. This decomposition can yield
 negative adjustments for nonnegative series.

 1.4 Extracting Regression-Effect Components From the
 Irregulars

 The concern in this section is with the estimation of

 calendar effects and other effects by means of regression
 models for the irregular component. Trading-day effects
 are estimated this way in X-11 and X-11-ARIMA. More
 general regression modeling of the irregular component is
 possible in X-12-ARIMA, which offers Easter-holiday and
 other calendar-effect regressors, as well as indicator vari-
 ables to identify extreme irregulars and diminish their in-
 fluence when other regression effects are estimated. User-
 defined regression models can also be estimated. Alterna-
 tively, X-12-ARIMA can estimate all of these effects by
 means of regARIMA models for the observed time series.
 This latter approach has important advantages, which we
 shall elaborate later, for making inferences about the re-
 gression effects. Our decision to retain and enhance the
 older approach of modeling the irregulars was motivated
 by its historical success, by practical considerations men-
 tioned later, and by the requests of statistical agencies and
 central banks in different countries who wish to be able to

 estimate their own country-specific working-day and holi-
 day effects in this way.

 The irregulars series, being the residual component after
 deseasonalization and detrending, is a natural series from
 which to estimate further components. Being an almost un-
 correlated series, it has the appealing simplicity of being a
 candidate for ordinary least squares (OLS) regression esti-
 mation of additional components. There is a complication,
 however: Its deseasonalized and detrended nature implies
 that regression models for the irregulars should also be de-
 seasonalized and detrended. In Section 1.4.1 we illustrate

 how this is done for a natural model of trading-day ef-
 fects. We obtain thereby both a derivation of the trading-day
 model of Young (1965) used by X- 11 and X- 11-ARIMA
 and also a derivation of X-12-ARIMA's default regARIMA
 regression model for trading-day effects estimated from the
 logarithms of the observed time series. It is an important
 feature of this model that the effect of month length is
 known in advance and does not require estimation. The
 estimation of other calendar effects from the irregulars is
 discussed briefly in Section 1.4.2.

 1.4.1 Trading-Day Effects and Young's Model. We be-
 gin with a brief explanation of trading-day effects. In addi-
 tion to seasonal effects, monthly time series that are totals
 ("flows") of daily economic activities are often influenced
 by the weekday composition of the month. The presence of
 such an effect is revealed when the series values for a given
 calendar month depend in a consistent way over time on
 which days of the week occur five times in the month. With
 retail grocery sales, for example, there is usually lower vol-
 ume on Mondays, Tuesdays, and Wednesdays than on days
 later in the week. Thus, sales in March, say, will be rela-
 tively lower in a year in which March has an excess of early
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 weekdays and higher when March has five Fridays and Sat-
 urdays. To a lesser extent, series of "stocks" measured on
 the same day each month, such as inventories or unfilled
 orders as of the last day of the month, are sometimes sensi-
 tive to the day of the week on which their value is obtained.
 Finally the average daily effect in flow series can give rise
 to a length-of-month effect. Because the length of February
 is not the same every year, this effect is not completely ab-
 sorbed by the seasonal component. The residual effect left
 in Februaries is called the Leap Year effect.

 Recurring weekday composition effects in monthly (or
 quarterly) economic time series are called trading-day ef-
 fects. Flow trading-day effects were discussed by Young
 (1965) and stock trading-day effects by Cleveland and
 Grupe (1983) (see also Bell 1984; Chen and Findley 1996a).
 Like seasonal effects, trading-day effects can make it diffi-
 cult to compare series values across months or to compare
 movements in one series with movements in other series.

 For this reason, when estimates of trading-day effects are
 statistically significant, they are usually adjusted out of the
 series when seasonal adjustment is performed. In this ad-
 justment context, they form a fourth decomposition com-
 ponent, the trading-day component.

 To obtain a model for trading-day effects in monthly flow

 series, suppose that the jth day of the week has effect ajj,
 where j = 1 designates Monday, j = 2 Tuesday, ..., j = 7
 Sunday. Then if Djt denotes the number of occurrences of
 day j in month t, the cumulative effect for the month will

 be -7= ajDjt. Set a = - =1 cj/7 and Nt = C7 =,Djt
 the length of month t. Because 7j=1 (aj_ - ) = 0, we have

 7 7

 aDjt = Nt + Et(a - a)Djt
 j=1 j=1

 6

 = aNt + (a - a )(Djt - D7t), (1)
 j=1

 a decomposition into a length-of-month effect and the net

 effect of the daily contrasts (a - a). Replacing Djt in the
 center expression of (1) by Djt - 4 changes nothing and
 makes it clear that this second component is equal to the

 sum of the (, - a) for those weekdays j that occur five
 times in month t. We shall obtain a deseasonalized and

 level-neutral version of (1) by removing calendar-month
 means.

 The monthly calendar repeats itself over any 28-year cy-
 cle (until the year 2100 when the 29th of February is omit-

 ted). Consequently, the variables Djt are periodic with pe-
 riod 336 (= 12 x 28) months, and the calendar-month means

 (1/28) E28=l Dj,t+1ak have the same value for all t and j. It
 follows that the 28-year calendar-month means of the dif-

 ference variables Djt - D7t on the right in (1) are 0. This
 implies that the final expression in (1) involving these dif-
 ferences has a seasonal component of 0 and also a level
 component (336-month mean) of 0. Thus the seasonal and
 level components of (1) reside in the calendar-month means

 of NNt. Because Nt+48 = Nt, these are given by aN* with

 N* = (1/4) Z_=1 Nt+12k. How these components are re-

 moved from the model depends on the type of seasonal
 decomposition used to obtain the irregulars.
 For the usual case of a multiplicative decomposition, we

 then deseasonalize and detrend the trading-day effect by

 dividing (1) by aNt*. Setting fy = (aj/) - 1, this yields

 Nt 6 (Djt - D7t ) =1x (3j + 1)Djt N* N* E(N* (2) N,, j=1

 This is the formula for trading-day effects given without
 derivation by Young (1965). With It denoting a preliminary
 estimate of the irregular component, the X-11 program and

 its direct descendants estimate I,... .,136 (and thus 37 =
 - Z1,j 3Y) by the OLS fitting of the regression model

 6

 Nj it - Nt = E 3j(Djt - D7t) + et. (3)
 j=1

 In X-12-ARIMA, the analog of (3) for the additive de-
 composition is obtained by subtracting aNt* from (1). This
 yields

 6

 It = /o(N, - Nt) +Z 13j(Djt - D7t) + et, (4)
 j=1

 where now /3o = - and py = aj - a for 1 < j < 6. Thus,
 in the additive case, seven coefficients must be estimated
 instead of six. In X-11 and X-11-ARIMA, the regressor
 Nt - Nt* is not used. [Young told us that he agrees that X-
 11 should have used (4).] For the pseudo-additive decom-
 position, letting N = (1/48)E kNt+k = 30.4375 (the
 average month length), it can be shown that deseasonaliza-
 tion and detrending lead to trading-day factors of the form

 1 + (Nt - Nt) N + 6=1 3j (Djt - D7t)/N.
 Finally, to motivate the regARIMA regression model con-

 sidered in Section 3 for logarithms of the observed series,
 we need the trading-day factor formula for the log-additive
 decomposition. Taking the logarithm on the left in (2) and
 using log(1 + x) x z, one obtains

 log 1 N/N* 6N Nt* = 1 * ? D P D
 ?D(-D)}. (5)

 j 1

 N j=l

 The summation on the right in (5) has 28-year-calendar-
 month means equal to 0 and thus has no seasonal or trend.
 Hence, it can be taken as the regression expression for
 trading-day effects in the additive irregular component of
 the logs of the time series being adjusted. Exponentiating,
 using ex . 1 + x, and setting P/ = 3j//N, we obtain both
 an exact and an approximate trading-day factor formula for
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 the log-additive case,

 exp Nt-* exp { 3j (Di D7t)

 Ntexp 3(Dt - D7t) N . (6)
 j=1

 The approximating second expression, further simplified by
 treating N/Nt* as if it were equal to 1.0, defines X-12-
 ARIMA's default regARIMA model factors for trading-day
 effects in the logarithms of the observed time series. [See
 (14) in Sec. 3.]

 There is an alternative to the deseasonalization and de-

 trending approach just illustrated that is most appealing
 with additive decompositions. This is the "matched filter-
 ing" procedure used for the trading-day regression in the
 SABL seasonal-adjustment program, described by Cleve-
 land and Devlin (1982) and Cleveland (1983). In this pro-
 cedure, the "irregular filter" is applied to the regressors Djt
 in (1) prior to the irregulars series being regressed on them.
 (The irregular filter corresponds to applying all of the lin-
 ear operations of Appendix A used to calculate the irregular
 component of a series.) Because this is obviously another
 way to deseasonalize and detrend the trading-day effect, this
 may accomplish much the same thing as the procedure dis-
 cussed previously. The matched filtering approach is also
 plausible when an additive decomposition is obtained for
 a transformed version of the original series, as in the log-
 additive case. It is unclear how matched filtering applies to
 the multiplicative or pseudo-additive decompositions.

 1.4.2 Other Regressors and Robustification of the Re-
 gressions Against Additive Outliers. Since the early 1970s,
 the versions of the X-11 program used at the Census Bu-
 reau also obtained estimates of the effects on retail sales

 of Easter and of the moving U.S. holidays Labor Day and
 Thanksgiving. Easter effects, for example, can increase re-
 tail sales of clothing in the week or so prior to Easter or
 decrease factory shipments in certain industries a few days
 before Easter. [The X-11 procedure for estimating Easter
 effects was detailed by Chen and Findley (1996b).] X-11-
 ARIMA/88 estimates an Easter effect from the series of ir-

 regulars using a different procedure, described by Dagum,
 Huot, and Morry (1988). In X-11 and X-11-ARIMA/88,
 the trading-day and holiday effects are estimated iteratively
 rather than simultaneously.

 In X-12-ARIMA, these effects can be estimated simul-
 taneously from the irregulars. With such a diverse set of
 regressors, however, the deseasonalization and detrending
 procedure exemplified previously can lead to nonlinear
 regression models (Chen and Findley 1996a). These can
 sometimes be linearized easily. [For example, the approx-
 imation in (5) is a linearization.] The coefficient estimates
 can be protected against the effects of extreme irregulars

 by means of a procedure like the one discussed in Section
 3 and Appendix C.

 Finally, X-12-ARIMA allows user-defined regressors in
 the irregulars regression. These regressors may need to be
 deseasonalized and detrended before being input to the pro-
 gram.

 1.4.3 Model the Irregulars or Model the Original Se-
 ries? Instead of modeling the irregulars series, one can
 model the original series, as we discuss in Section 3. This
 has important advantages for making statistical inferences
 about calendar and other regression effects. Implicit in the
 use of OLS regressions and the associated F tests of sig-
 nificance is the assumption that the irregular component is
 a series of constant-variance, independent variates. Rather
 frequently (with 14 of 71 series in the trading-day model-
 ing study described by Chen and Findley 1993, 1996a), the
 regression F statistic from a regression model of the irregu-
 lars has a spuriously significant value in tests of the null hy-
 pothesis of no effect even at the .01 level of significance-
 an indication that this implicit assumption is often not ad-
 equately satisfied. In fact, some autocorrelation is typically
 found in the irregulars: The sample autocorrelations be-
 tween irregulars a year apart are almost always negative
 and larger in magnitude than all other sample autocorrela-
 tions (often being close to -.2). Moreover, it is clear from

 the trend filter gain functions that X-11l's relatively short-
 term trends cannot fully capture long-term correlation in
 the data if it exists. Additionally, there is heteroscedasticity
 near the ends of the irregulars series because of the time-
 varying asymmetric filters used to obtain the decomposition
 near the ends of the series being adjusted. To detect a spuri-
 ously significant F statistic, the spectrum and sliding-spans
 diagnostics discussed in Section 2 can be used, as can the
 regARIMA model diagnostics that will be discussed in Sec-
 tion 3.2.

 One might expect that estimates of calendar and other
 regression effects would also be better when these come
 from regARIMA models, both because these models ac-
 count for the correlation structure of the observed series

 and because they model the effects directly rather than as a
 residual component identified after seasonal and trend es-
 timation. We have not found this to be universally true,
 however. In Section 4.3 we shall show how out-of-sample
 forecasting performance can be used to demonstrate the su-
 periority, inferiority, or rough equivalence of calendar-effect
 estimates from regARIMA models versus those from OLS
 regression models of a preliminary irregular component.

 The better inference properties and the typically equiv-
 alent or better performance of estimates from regARIMA
 models lead us usually to prefer using a regARIMA model
 of the original series to estimate regression effects. There
 are some series that cannot be modeled well by regARIMA
 models, however, due, for example, to frequent changes in
 variability or to erratic trend movements over the course of
 the series that require more sophisticated detrending pro-
 cedures than differencing. Finally, many people worldwide
 who are responsible for producing seasonal adjustments do
 not have the necessary training to develop regARIMA mod-
 els for their series.
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 2. NEW DIAGNOSTICS

 X-12-ARIMA provides the diagnostic tables of X-11
 and X-11-ARIMA, as well as the Mi-M11 quality-control
 statistics of X-11-ARIMA. It also has important additional
 diagnostics, including spectrum estimates for the presence
 of seasonal and trading-day effects (see Sec. 2.1) and the
 sliding spans and revisions history diagnostics of the stabil-
 ity of seasonal adjustments (see Sec. 2.2). The sliding spans
 and revisions histories are directly interpretable, whereas
 M1-M11 are indirect measures, in some cases very indi-
 rect, of data features known to be troublesome for the X-11
 methodology. Most of the M1-M11 statistics can be calcu-
 lated for short time series, however, something impossible
 for the current stability diagnostics of X-12-ARIMA.

 2.1 Using Spectrum Estimates to Detect Seasonal
 Effects and Flow Trading-Day Effects

 Sensitive diagnostics are sometimes needed to determine
 if seasonal or trading-day effects are present in a series. This
 is especially true for detecting residual effects in a series
 that has already been adjusted for seasonal and trading-day
 effects. For a series adjusted by direct application of X-12-
 ARIMA, residual seasonality can result from inadequacies
 in the adjustment procedures chosen or from difficult-to-
 estimate seasonal effects in the series-for example, highly
 variable effects. With an indirectly adjusted aggregate se-
 ries, whose adjustment is obtained from its component se-
 ries (say a national series that is a sum of component re-
 gional series), it can happen that some of the component
 series are not adjusted for one or both of seasonal and trad-
 ing effects, either because the effects are not detectable or
 because they are not reliably estimable in these components.
 This can leave residual effects.

 As seasonal and calendar effects are approximately peri-
 odic, it is natural to use spectrum estimation to detect their
 presence. The period that defines seasonal effects is one
 year. Thus, in monthly series, seasonal effects can be dis-
 covered through the existence of prominent spectrum peaks
 at any of the frequencies k/12 cycles per month, 1 < k < 6.
 In quarterly series the relevant frequencies are 1/4 and 1/2
 cycles per quarter.

 Monthly trading-day effects have a period of 28 years
 (336 months). This long period leads to an overabundance
 of frequencies potentially associated with trading-day ef-
 fect peaks (see McNulty and Huffman 1989). Cleveland
 and Devlin (1982) demonstrated, however, for flow series
 that the most sensitive frequencies will typically be .348
 cycles/month and .432 cycles/month. The empirical expe-
 rience of W. P. Cleveland at the Federal Reserve Board

 showed that peaks at the biweekly-period alias-frequency
 .304 cycles/month (.304 = 1 - 2 x .348) are also useful
 indicators of a trading-day effect.

 Whenever seasonal adjustment is done (with or without
 trading-day adjustment), X-12-ARIMA automatically esti-
 mates two spectra, (1) the spectrum of the month-to-month
 differences of the adjusted series modified for extreme val-
 ues from X-11 output table E2 (or of the first differences
 of logarithms of this series with a multiplicative adjust-

 ment) and (2) the spectrum of the final irregular component
 adjusted for extreme values, from output table E3. First-
 differencing is a crude detrending procedure that is usually
 adequate to enable the spectrum estimate to reveal signif-
 icant seasonal and trading-day effects. The program com-
 pares the spectral amplitude at the seasonal and trading-
 day frequencies noted previously with the amplitudes at the
 next lower and higher frequencies plotted. If these neigh-
 boring amplitudes are smaller by a margin that depends on
 the range of all spectrum amplitudes, then plots of the es-
 timated spectra are automatically printed, together with a
 warning message that gives the number of "visually signif-
 icant" peaks found at seasonal or trading-day frequencies.

 The best known spectrum estimator for detecting nonran-
 dom periodic components is the periodogram [see Priestley
 (1981, pp. 390-415) for a very informative discussion]. For
 a series xt, 1 < t < N, the periodogram, in decibel units, has
 the formula 10loglo((2/N) ENIxtei27tA 2),0 < A < .5.
 [At the frequencies A = 27rn/N, 1 < n < [N/2], letting
 AA and BA denote the least squares estimates of the coef-
 ficients of the regression of xt on A cos 27rAt + B sin 27rAt,
 the periodogram is equal to 10 loglo {(N/2)(A2 + B)}; see
 Priestley (1981, p. 395).] The periodogram is one of the two
 spectrum estimators in X-12-ARIMA, the other being the
 autoregressive spectrum estimator, which in decibel units
 has the form

 10 loglo { 2 1 i27rjA12, O < A < .5. (7)

 The coefficients cj are those of the least squares regression

 of xt - t on xtj - , 1 j < m, with : = N-1' ENxt
 and a2 is the sample variance of the resulting regression
 residuals. For a discussion of this estimator, see Priest-
 ley (1981, pp. 600-612). The default spectrum estimator
 in X-12-ARIMA usually uses m = 30, as in the BAY-
 SEA seasonal-adjustment program (Akaike 1980; Akaike
 and Ishiguro 1983). Although this estimate is somewhat
 less sensitive to the presence of periodic components than
 the periodogram, its graphs are much more stable under
 slight changes in the data window used or in the set of
 frequencies chosen for its evaluation. The radian frequen-
 cies used in the spectrum graphs produced by X-12-ARIMA
 are A = k/120, 0 < k < 60, except that the three trading-
 day frequencies .304, .348, and .432, whose spectral ampli-
 tudes are plotted with a T, are used in place of their closest
 neighbors of the form k/120. The amplitudes at the sea-
 sonal frequencies 1/12,2/12,..., 6/12 are plotted with an
 S. Examples will be given shortly.

 The spectrum of any span of data within the series can
 be estimated. The default span for the automatically calcu-
 lated spectrum estimates is the most recent eight years of
 data if the series is at least this long. Data-users are nor-
 mally most concerned about recent data, and eight years of
 monthly data are usually enough to achieve reliable esti-
 mates of trading-day effects. When the pattern of the ef-
 fects changes substantially over the course of the series,
 diagnostics calculated from the full series can lead to deci-
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 sions that are inappropriate for the recent data, as we now
 demonstrate.

 Figure 5 shows X-12-ARIMA's output spectrum plots of
 (7) from the irregular component of the construction series
 of single- and multi-unit housing starts (January 1964 to
 December 1982) from the Midwest region of the United
 States, after seasonal adjustment but without trading-day
 adjustment. The spectrum of Figure 5(a) is from the full ir-
 regulars series. It shows a strong peak at the main trading-
 day frequency .348 and a very slight peak at the frequency
 .304. The spectrum of Figure 5(b), which is calculated from
 the last eight years of the irregulars series, has no trading-
 day peaks. The conclusion is that there is not a significant
 trading-day effect late in this series. This conclusion was
 confirmed by model-selection diagnostics (Chen and Find-
 ley 1996a).

 In a purely diagnostic mode, X-12-ARIMA can calcu-
 late a spectrum estimate of the first differences of an input
 time series (or of its logarithms) and print a spectrum plot
 without doing any further processing. This feature was de-
 signed for use at the Census Bureau in a once-a-year inspec-
 tion looking for residual seasonal and trading-day effects in
 major aggregate series that are compiled from component
 series, some of which might not be seasonally adjusted.

 2.2 Diagnostics for the Stability of the Seasonal
 Adjustments and Trends

 A seasonal (and trading-day and holiday) adjustment that
 leaves detectable residual seasonal and calendar effects in

 the adjusted series is usually regarded as unsatisfactory.
 Even if no residual effects are detected, the adjustment
 will be unsatisfactory if the adjusted values (or important
 derivative statistics, such as the percent changes from one
 month to the next) undergo large revisions when they are
 recalculated as future time series values become available.

 Frequent, substantial revisions cause data users to lose con-
 fidence in the usefulness of adjusted data. Indeed, such in-
 stabilities in the adjustments should cause the producers
 of adjustments to question their meaning. Unstable adjust-
 ments can be the unavoidable result of the presence of
 highly variable seasonal or trend movements in the series
 being adjusted. They can, however, also be due to inappro-
 priate option specification in the software used to produce
 the adjustments, in which case they are avoidable.

 2.2.1 Sliding Spans. X-12-ARIMA includes two types
 of stability diagnostics, sliding spans and revision histories.
 The sliding-spans diagnostics display, and provide summary
 statistics for, the different outcomes obtained by running

 (a) From Full Series (b) From Last Eight Years

 ++++++++I++++++++++++++++++++++++++++++++++++++++++++++++++++++++e++++I ++++++++++I++++++++++++++++++++++++++++ I
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 I * ** ******* ****T** *T S * **** I I ***** ***S . *** ** ****T*** T*** *******SI
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 I+ ** *S*********S*********S*****T***S**T***** *T*******SI I *** ***S*********S*********************T*******+***********
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 -31.051** ** *S*********S*?********S*****T***S*T****** **T*******SI -33.08 1 ??????S*????????S????**??**S*** T***S*T*******S*T*******SI

 I ******* *S*********S*********S*****+************S*+***** I I ***++***S******** *S*********+********S*********S*********SI
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 S=SEASONAL FREQUENCIES, T=TRADING DAY FREQUENCIES S=SEASONAL FREQUENCIES, T-TRADING DAY FREQUENCIES

 Figure 5. Graphs of the AR Spectrum (7) of the Irregulars of North Central Housing Starts From (a) the Full Series and (b) Its Last Eight
 Years. The dominant peak at the second trading-day frequency in (a) does not appear in (b). Hypothesis testing confirms the lack of a significant
 trading-day effect in the last eight years.
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 the program on up to four overlapping subspans of the se-
 ries. For each month that is common to at least two of the

 subspans, these diagnostics analyze the difference between
 the largest and smallest adjustments of the month's datum
 obtained from the different spans. They also analyze the
 largest and smallest estimates of month-to-month changes
 and of other statistics of interest. Several uses of these diag-
 nostics were demonstrated by Findley et al. (1990). It was
 shown how they improve on, or complement in important
 ways, earlier diagnostics for (a) determining if a series is
 being adjusted adequately, (b) deciding between direct and
 indirect adjustments of an aggregate series, and (c) con-
 firming option choices such as the length chosen for the
 seasonal filter or showing that other option choices must
 be tried. We refer the reader to this article for examples of
 these uses and others. Battipaglia and Focarelli (1995) per-
 formed simulation experiments and concluded that stability
 statistics from sliding spans were significantly more corre-
 lated with adjustment accuracy than the Q statistic of X-
 11-ARIMA, which is a weighted average of the M1-M11
 statistics. Other comparisons between sliding-spans diag-
 nostics and Q were given by Findley and Monsell (1986)
 and Findley et al. (1990).

 2.2.2 Revision Histories. The second type of stability
 diagnostic in X-12-ARIMA considers the revisions asso-
 ciated with continuous seasonal adjustment over a period
 of years. The basic revision calculated by the program is
 the difference between the earliest adjustment of a month's
 datum obtained when that month is the final month in the

 series and a later adjustment based on all future data avail-
 able at the time of the diagnostic analysis. Similar revisions
 are obtained for month-to-month changes, trend estimates,
 and trend changes. Sets of these revisions, calculated over
 a consecutive set of time points within the series, are called
 revisions histories. We will show how they can suggest the
 number of years of forecasts to use in forecast extension
 of the series and how they indicate whether the (final) Hen-
 derson trend estimates (from output table D12) are stable
 enough to serve as an alternative to the seasonal adjust-
 ments. (The Australian Bureau of Statistics prefers to pub-
 lish these trend estimates instead of seasonal adjustments
 because the trend estimates have fewer changes of direc-
 tion and therefore seem more interpretable to data users,
 especially when the seasonal adjustments are quite volatile.
 For the same reason, some other statistical agencies are also
 considering publishing the Henderson trends.)

 To describe the variety of revisions that can be obtained,
 we introduce precise notation. Suppose a set of options has
 been chosen for the application of X-12-ARIMA to the un-

 adjusted time series Yt, 1 < t < N. For any of these months
 t, and any integer u in the interval t < u < N, let Atl de-
 note the seasonally adjusted value for time t obtained with
 these options when only the data Yt, 1 < t < u, are used in
 their calculation (Y,+1,..., YN are withheld). For given t,
 as u increases these adjustments converge to a final adjusted
 value. When the 3 x m seasonal filter is used, convergence
 is usually effectively reached in about 1 + m/2 years. The
 largest revisions tend to occur when u is the same calendar

 month as t, specifically u = t + 12, t + 24,..., and the next
 to largest changes a month later, u = t + 1, t + 13, t + 25, ....
 (In the additive decomposition case, the largest weights in
 the seasonal-adjustment filter combining all of the seasonal-
 adjustment calculations are at lags 1, 12, 13, 24, 25, ....) The

 adjustment Atlt obtained from data through time t is called
 the concurrent adjustment. It is usually the first adjustment
 obtained for month t. We call AtIN the most recent ad-
 justment. In the case of a multiplicative decomposition, the
 revision from the concurrent to the most recent adjustment
 for month t is calculated by the program as a percentage of
 the concurrent adjustment,

 A 0 AtIN - AtIt Rt=N - 100 x A N ~Atlt
 For given No and N1 with No < N1, the sequence
 RtN, No < t < N1, is called a revision history of the sea-
 sonal adjustments from time No to time N1. We suggest
 that No be at least as large as the effective length of the
 seasonal filter used, 12(2 + m). It should definitely be large
 enough for reliable estimation of any trading-day or holiday
 adjustments being performed.

 Period-to-period percent changes,

 Atl1 - At-llu
 AAtlu = 100 x At - A1

 are often as important as the seasonal adjustments. X-12-
 ARIMA can produce revision histories for them:

 RtA AtN - AAtlt, No < t < Ni.
 The program also calculates the analogous quantities for
 final Henderson trends Ttlu and for their period-to-period

 percent changes A'TtiU. These histories are denoted by

 RtN and R"Y , No < t < N1. [Note: A slightly larger No
 is required for the trend-revision histories because the ef-
 fective length of the trend filters is one or two years longer
 than that of the adjustment filters; see Bell and Monsell
 (1992).]

 2.2.3 Two Applications of Revision Histories. We now
 present an example demonstrating how these histories can
 help with decisions about what kind of forecast extension
 to use, if any, and whether the Henderson trend is a prac-
 tical alternative to the seasonal adjustments. To illustrate
 a variety of issues with a single example, we use a se-
 ries for which the final Henderson trend estimates and sea-

 sonal adjustments have different relative stability proper-
 ties, depending on which feature of the data is of interest.
 The series is construction starts of single- and multi-unit
 dwellings ("housing starts") in the Southern region of the
 United States beginning in January 1962 and ending in Au-
 gust of 1993. It is adjusted for trading-day effects as well
 as seasonal effects. For the latter, the X-11 default options
 are used. The regARIMA model used for forecast exten-
 sion includes a regression variable to make an adjustment
 for an additive outlier (see Sec. 3) in December 1989. Fig-
 ure 6 is a graph of the series from January 1981, along with
 the seasonally adjusted series and final Henderson trend ob-
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 Figure 6. Southern Housing Starts With Seasonal Adjustment and
 Associated Trend: --, Original;---, SA; - - -, Trend.

 tained using 42-month forecast extension. The trend is sig-
 nificantly smoother and more appealing to the eye than the
 seasonal adjustment. The revisions histories begin in Jan-
 uary of 1981 and end in December of 1989. This ending
 date, three and a half years before the most recent datum,
 was chosen so that all revisions would be final or close-to-

 final revisions. Thus, they are revisions of similar type, so
 it is reasonable to consider their average magnitudes.

 We start by examining the effect of the length of the fore-

 cast extension on the magnitudes of R'N I and IR'NI. The
 cases considered are no forecast extension, 12-month fore-
 cast extension, and 42-month forecast extension, the last
 length being the effective half-length of the 3 x 5 seasonal
 filter used. Bobbitt and Otto (1990) found that the use of
 such "full forecast extension" can result in smaller average
 revisions between concurrent and final seasonal adjustments
 than shorter forecast extension. Table 1 shows that the av-

 erage magnitudes of the RAN of the housing starts series,

 denoted avgIRAI, follow this pattern. The table also in-
 cludes counts of large revisions, which we have defined to
 be revisions of magnitude greater than 4% (this is more than
 twice the average magnitude of the seasonal-adjustment re-
 visions).

 For the data user interested only in the levels of the sea-

 sonally adjusted series, these results suggest that the adjust-
 ments obtained with the aid of a 42-month forecast exten-

 sion are preferable to the other adjustments considered and
 to the Henderson trends.

 We now consider month-to-month changes. The graphs

 of AYAtlt and AAtlN are given in (a) of Figure 7 and
 the graphs of ATIt and ATtIN in (b). (The quantities
 graphed were obtained using 42-month forecast extension.)
 The different scales in Figure 7, (a) and (b), make clear
 that the month-to-month changes in trend are often much
 smaller. The revisions, whose magnitudes are indicated by
 the lengths of the vertical lines connecting the concurrent
 and most recent estimates, are also smaller for the month-

 to-month changes in trend. For the different forecast leads

 Table 1. Average Absolute Percent Revisions and Numbers of Extreme
 Revisions Over (1/1981-12/1989) for Seasonal Adjustments

 and Henderson Trends of Southern Housing Starts (1/1962-8/1993)
 Obtained Using Different Numbers of Forecasts

 No. IRANI No. IRtNI
 No. forecasts avgl RIN avgl RTNI > 4.0% > 4.0%
 0 2.1 3.8 17 33

 12 1.8 3.1 10 33
 42 1.5 3.0 2 26

 0, 12, 42, the values of avglRtA?a and avglR'T"I are 2.5,
 2.3, 2.2 and 1.7, 1.4, 1.4, respectively.
 There is only one visible way in which the revisions of

 ATtlt are less appealing than the revisions of AAtlt:
 About twice as often for ATtlt, the most recent estimate
 has a different sign from that of the initial estimate. Such
 revisions, which change month-to-month increases to de-
 creases or decreases to increases, are irritating for many
 data users. In Figure 7, the vertical connecting lines cross
 the horizontal axis at level 0 when there is a change in sign,
 making such changes easy to see. Both the number of sign
 changes and the sizes of the revisions are much smaller
 for the trends obtained after a 3-month wait, Ttlt+3: Com-

 pare Figure 8, which graphs the revisions from ATtlt+3 to
 ATt IN, with Figure 7(b). (The seasonally adjusted month-

 (a) Seasonal Adjustment Changes from the Previous Month.

 "I

 Io - t

 ? .t t t .

 8101 8110 8207 8304 8401 8410 8507 8604 8701 8710 8807 8904

 (b) Trend Changes from the Previous Month.

 k i
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 Figure 7. Concurrent (-) and Most Recent (*) Estimates of Percent
 Changes From the Previous Month in the Seasonal Adjustment (a) and
 Trend (b) of Southern Housing Starts. The connecting vertical lines show
 the size of each revision. [Note that the scales of (a) and (b) are different.]
 When these lines cross the level zero axis, the revision of the concurrent
 value includes a change of sign, an unfavorable situation.
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 Figure 8. Three-Month-Lagged (-) and Most Recent (4) Estimates
 of Percent Changes from the Previous Month in the Trend. Comparison
 with Figure 7(b) shows that the trend-change estimates calculated three
 months after the concurrent estimates have much smaller revisions than

 the latter and fewer changes of sign after revision.

 to-month changes obtained with a three-month delay do not
 have improved revisions and are not graphed.)

 The SABL seasonal-adjustment program of Cleveland,
 Devlin, Schapira, and Terpenning (1981) was the first to
 calculate revisions series. SABL produces a history of the
 differences between the seasonal adjustments obtained us-
 ing seasonal factors projected a calendar year in advance
 and the concurrent seasonal adjustments. [Projected fac-
 tor adjustments are much less used now than when SABL
 was created, having been displaced by concurrent adjust-
 ments because the latter generally have smaller revisions;
 see Dagum (1987) for a survey of the relevant literature.
 X-12-ARIMA can also calculate revisions of projected ad-
 justment factors to most recent adjustment factors so that
 users can compare these with the revisions of concurrent
 factors.]

 3. REGARIMA MODELING AND MODEL SELECTION

 We now describe the time series modeling and model-
 selection methodologies of X-12-ARIMA, beginning in
 Section 3.1 with an overview of regARIMA models and the
 regressors for them that are included in X-12-ARIMA. Sec-
 tion 3.2 indicates how the program uses regARIMA models
 to identify automatically AO's and LS's. Section 3.3 deals
 with model selection. First, log-likelihood-based model-
 selection criteria are presented in Section 3.3.1, along with
 the way we use one such criterion, the Akaike informa-
 tion criterion (AIC), for automatically deciding whether or
 not a trading-day effect is present. Section 3.3.2 shows how
 the program's ability to "recreate history" is exploited for
 model selection, especially by withholding data, forecast-
 ing these data, and analyzing the resulting out-of-sample
 forecast errors.

 3.1 Overview of regARIMA Modeling in X-12-ARIMA

 Given a time series Yt to be modeled, it is often necessary

 to take a nonlinear transformation of the series, yt = ft (Yt),
 to obtain a series that can be adequately fit by a regARIMA
 model. For example, if Yt is a positive-valued series with
 seasonal movements proportional to the level of the series,

 one would usually take logarithms or, more generally,

 Yt-log (t = logYt - logdt, (8)

 where dt is some appropriate sequence of divisors. Possible
 divisors include (a) deseasonalized and detrended length-of-
 month factors Nt/N* from (6), (b) combined trading-day
 and Easter-holiday effect factors obtained from a regression
 model of the irregular component of Yt (obtained from a
 preliminary run), and (c) user-defined adjustment factors
 that estimate the effects of unusual economic events. X-12-
 ARIMA can calculate the transformed series (8) for choices
 (a) and (b) via user-specified options and for choice (c) by
 reading in the divisors from a user-specified data file.

 The built-in transformations include a one-parameter
 family of power transformations (modified "Box-Cox"
 transformations),

 SYt/dt, A= 1
 y) A A2 + [(Yt/dt)A - 1]/A, A 0, 1

 log(Yt/dt), A = 0, (9)

 which changes smoothly in A and preserves positivity if
 Yt/dt > 1.0. Although the program permits any value of
 A to be used for the purpose of obtaining forecast and
 backcast extensions, to get regression preadjustments for
 a seasonal-adjustment decomposition in X-12-ARIMA, A
 must be 0 or 1. These are the only values of A for which it
 is possible to isolate the effect on Yt of regression compo-
 nents of yt.

 Let B denote the backshift operator, Byt = yt-1.
 X-12-ARIMA can estimate regARIMA models of order
 (p, d, q)(P, D, Q), for yt. These are models of the form

 p(B)p(B')(1 - B)d(1 - BS)D Y - x)it

 = q(B)OQ(Bs)at, (10)

 where s is the length of the seasonal period, s = 4 or 12.
 The polynomials Op(z), Dp(z), Oq(z), OQ(z) with degrees
 p, P, q, and Q, respectively, have constant terms equal to 1.

 For example, if p > 1, we have O,(z) = 1-41z- . - OpzP.
 These polynomials are constrained so that the zeros of 0, (z)
 and O (z) have magnitudes greater than or equal to 1, and
 (in the default estimation procedure) so that the zeros of

 Op(z) and Jp(z) have magnitudes greater than 1. Because
 at is assumed to be a sequence of independent variables
 with mean 0 and constant variance 4,2 it follows from these

 constraints that wt = (1- B)d(1 - Bs)D(yt - = ixit) is
 a covariance stationary time series that satisfies the differ-

 ence equation ,p(B)>p(BS)wt = O,(B)OQ(Bs)at. Conse-
 quently, we can reexpress the model (10) for yt as

 (1 - B)d(1 - BS)Dyt

 = P i{(1 - B)d(1 - BS)Dxit} ? Wt. (11)
 i= 1
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 This is a regression model with stationary autoregressive
 moving average (ARMA) errors wt for suitably differenced
 yt. Its regressors result from applying the same differenc-
 ing operations to the xit. The model (11), together with an
 assumption that the innovations at in the model for wt are
 iid N(O, u2), determine the likelihood function that is maxi-
 mized to estimate the regression coefficients pi , 2, and the

 coefficients of Op(B), JPp(Bs), Oq(B), and OQ(Bs). The de-
 fault likelihood in X-12-ARIMA is the fully exact Gaussian
 likelihood. To help circumvent convergence problems in the
 numerical maximization (which occur rarely), the approxi-
 mating conditional Gaussian likelihood defined by Box and
 Jenkins (1976) can optionally be used instead of the exact
 likelihood. There is also a third option in which the like-
 lihood is conditional for the autoregressive parameters and
 exact for the moving average parameters (see Hillmer and
 Tiao 1979). (These two alternative likelihoods do not con-
 strain the zeros of autoregressive polynomials.)
 In model estimation, any of the ARMA coefficients can

 be held at fixed values, such as 0. The program produces
 asymptotic standards errors, correlations, and t statistics for

 the estimated coefficients, as well as confidence intervals for

 forecasts. With the exception of the confidence intervals,
 these statistics remain valid with non-Gaussian data if the

 model form is correctly specified; see, for example, Hosoya
 and Taniguchi (1982).

 The set of built-in regressors for monthly series is listed
 in Table 2. Applications using some of them are given in
 Section 4. As discussed in Section 3.2, the program has
 options to add automatically both AO and LS regressors to
 the set of regression variables in the model. In this way, the
 regARIMA coefficient estimates and forecasts can be made
 robust to some kinds of atypical data values and to sudden
 changes in the level of the series. The user can optionally
 choose to have such automatically identified outliers and
 level shifts removed from the data, together with specified
 other regression effects, before the X-11 procedure outlined
 in Appendix A is applied. Through such preadjustments, the
 seasonal factors that are used to adjust the original data can
 be shielded from distortion.

 The extreme value treatments within the X- 11-ARIMA

 procedure, which were described fully by Dagum (1980)

 Table 2. Predefined Regression Variables in X-12-ARIMA

 Regression effect Variable definition(s)

 Trend constant (1 - B)-d(1 - BS)-DI(t > 1), where I(t _ 1) = 0 for t > 1
 FixedM0 in December,..fo -1 in December s 1 in January 1 in November

 aFixed seasonal Mi,t = -1 in December,..., Mlt = -1 in December
 0 otherwise 0 otherwise

 aFixed seasonal sin(wit), cos(wjt), where wi = 27rj/12, 1 < j _ 6 (drop sin(w6t) E 0)
 Trading day Tlt = (no. of Mondays) - (no. of Sundays), ..., T6t = (no. of Saturdays) - (no. of Sundays)
 (monthly or quarterly flow)

 aLength-of-month Nt - N, where Nt = length of month t [in days] and N = 30.4375 [average length of month]
 (monthly flow)

 Leap year Nt - Nt*, where Nt* = (Nt + Nt-12 + Nt-24 + Nt-36)/4
 (monthly flow) (Note: This variable is 0 except in February.)

 Stock trading day 1 1th day of month t is a Monday f 1 0h day of month t is a Saturday
 (monthlystock)T1,t = -1 h day of month t is a Sunday, ... T6,t = -1 1th day of month t is a Sunday

 0 otherwise 0 otherwise,

 where ti, is the smaller of w and the length of month t. For end-of-month stock series, set w to 31.
 bEaster holiday E(w, t) = 1/w x (no. of the w days before Easter falling in month (or quarter) t)
 (monthly or quarterly flow) [Note: This variable is 0 except in February, March, and April (or first and second quarter). It is nonzero in

 February only for w > 22.]
 bLabor Day L(w, t) = 1/w x (no. of the w days before Labor Day falling in month t)
 (monthly flow) [Note: This variable is 0 except in August and September.]
 bThanksgiving TC(w, t) = proportion of days from w days after Thanksgiving through December 24 that fall in month t
 (monthly flow) (negative values of w indicate days before Thanksgiving)

 [Note: This variable is 0 except in November and December.]

 Additive outlier at to AOto) { 1 for t to t -1 for t to

 Level shift at to LS(to) = for t < to t 0 for t > to

 -1 for t < to

 Temporary ramp, to to t1 RP(tot() (tto)/(tl - to) - 1 for to < t < tl
 0 for t > t1

 a The variables shown are for monthly series. Corresponding variables are available for quarterly series.
 b The actual variable used for monthly Easter effects is E(w, t) - E(w, t), where the E(w, t) are the "long-run" (computed over 38,000 years) monthly means of E(w, t) (nonzero only for

 February, March, and April). Analogous deseasonalized variables are used for Labor Day and Thanksgiving effects and for quarterly Easter effects.
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 and nicely flowcharted by Hylleberg (1986, p. 91), pro-
 vide some protection against AO's for the seasonal factors.
 The trend filters applied in the course of obtaining the sea-
 sonal factors cannot follow sudden, large LS's, however.
 Thus, estimation of LS's together with preadjustment for
 them, as illustrated in Figure 2, is an especially important
 capability of X-12-ARIMA. Other approaches to treating
 sudden changes in level have been considered. Bruce and
 Jurke (1996) compared X-12-ARIMA seasonal adjustments
 of series having preadjustments for LS's and AO's from reg-
 ARIMA models with seasonal adjustments obtained from
 a state-space model that uses Gaussian-mixture state- and
 observation-noise models to deal with disruptions to the
 level of the series. They concluded that the regARIMA ap-
 proach succeeds more broadly.
 3.2 Automatic Outlier Treatment

 The automatic methods for identifying AO's and LS out-
 liers are stepwise regression procedures based on work of
 Chang and Tiao (1983) (see also Bell 1983; Burman 1983;
 Chang, Tiao, and Chen 1988). In the default procedure,
 whose steps are listed in Appendix C, appropriate AO and
 LS regressors are fit at (almost) all time points of the series
 (or of a chosen subspan), and their corresponding t statistics
 are compared against specified critical values. The default
 critical value is 3.8 for both regressor types. Such large
 critical values are appropriate because of the large num-
 ber of regressors to which individual significance tests are
 applied. Automatic outlier identification is, in this respect,
 different from the model-selection problem discussed in the
 next subsection, where less stringent criteria are often used
 to include other regressors.

 3.2.1 Instabilities of Outlier Identification. The set of
 automatically identified outliers can change if the regressor
 set or ARIMA model type is changed. For example, in se-
 ries with a strong date-of-Easter effect, Marches and Aprils
 are often identified as outliers if no regressors for this ef-
 fect are included in the model but not if such regressors are
 used. A second source of instability in the composition of
 the set of observations defined as AO's or LS outliers is the

 use of stepwise regression procedures based on specified
 critical values. Regressors with t-statistic values just below
 the critical values can have their t statistics increase above
 the critical values as new data are added to the series over

 time. Conversely, regressors can drop out of the set of iden-
 tified outliers as new data are added. The printed output of
 X-12-ARIMA's automatic-outlier-identification option lists
 months whose AO or LS regressors are close to the criti-
 cal values. This is done to enable the user to consider in

 advance whether to include such regressors in subsequent
 runs of the program. Instability is a problem with most out-
 lier detection and automatic model-selection schemes. In

 the context of regressor selection for independent observa-
 tions, Breiman (1997) proposed some interesting, although
 computationally expensive, data-perturbation approaches to
 achieve more stable selections.

 3.3 Model Identification and Selection

 X-12-ARIMA has an automatic ARIMA modeling option

 that is patterned after the procedure of X-11-ARIMA/88.
 Under this option, the program examines the fit of reg-
 ARIMA models whose ARIMA structures are those with

 a specified set of orders (p, d, q)(P, D, Q),. The default set
 consists of the five models with nonseasonal orders (0 1 1),
 (0 1 2), (2 1 0), (0 2 2), and (2 1 2), and always the same
 seasonal order, (0 1 1),, exactly as in X-11-ARIMA/88.
 In X-12-ARIMA, the user can specify an alternative set of
 models for consideration. Moreover, the user can specify
 regression variables to be included in the model and can
 use built-in criteria to decide if trading-day, AO, and LS re-
 gressors should be included with any specified regressors. A
 fitted model whose estimated mean absolute percent fore-
 cast error statistic and Box-Ljung portmanteau statistic are
 below certain thresholds is considered an acceptable model.

 For the situation in which none of the automatically
 tested models is adequate, or where the user wishes to iden-
 tify or check a model, X-12-ARIMA has options to produce
 standard modeling diagnostics. For model identification, the
 program provides the sample autocorrelations and partial
 autocorrelations of the residuals obtained by doing OLS
 regression in (11),

 r

 (1 - B)d( - B)Dyt - OLS(1- B)d(1 - B)Dit}.
 i=1

 For model checking, it produces the sample autocorrela-
 tions and partial autocorrelations of the residuals from a fit-
 ted regARIMA model [estimates of the at in (11)], together
 with associated portmanteau statistics and histograms of
 residuals (see Box and Jenkins 1976; Abraham and Ledolter
 1983; Vandaele 1983; Bell 1996).
 3.3.1 Log-Likelihoods, AIC, and Automatic Trading-

 Day-Effect Modeling. Suppose that there are competing
 regARIMA models whose diagnostics seem adequate and
 that these models differ in the choice of the ARMA model

 for wt in (11), or in the choice of regressors other than AO
 and LS regressors, or in the choice of transformations ft (Yt)
 of Yr. When the parameters in these models have been esti-
 mated by maximizing the exact Gaussian likelihoods, then
 X-11-ARIMA provides several log-likelihood-based model-
 selection criteria that can be used to select one of the mod-

 els. Let the logarithm of the maximized exact likelihood of
 a covariance stationary time series model for (1 - B)d(1 -

 BS)D ft(Yt), d+sD+1 < t < N, be denoted by L f
 This can be converted into the logarithm of a likelihood
 for Yd+sD+1,... , YN conditional on Y1,..., Yd+sD, denoted
 by L(YN,.. ., Yd+sD+1 Yd+sD,..., Y1), by adding the log
 of the Jacobian determinant of the transformation yt =

 ft(Yt),d + sD + 1 < t < N,

 L(Yd+sD+1,. . ,YNI Y1, . . ., Yd+sD)

 1, + dft (Yt) = Ld+sDN+ . (12)
 t=d+sD+1

 When d > 0 or D > 0, we are, in effect, treating the starting
 values yl,..., Yd+sD as fixed.
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 Let m denote the number of free parameters estimated
 in the model. If there are no coefficient constraints in (11),
 then m = r + p + q + P + Q + 1, counting the coefficients
 and the variance of at. The AIC statistic for this model is
 defined by

 AICNId+sD

 = -2L(Yd+sD+1, ... , YN IY1, ... ,Yd+sD) + 2m. (13)

 Given several competing models with the same d + sD,
 Akaike's minimum AIC criterion states that the model with

 smallest AIC is the best of the models for Yt. [See Akaike
 (1973), Findley (1985), and Brockwell and Davis (1987)
 for technical details and Findley and Parzen (1995) for
 historical background.] X-12-ARIMA also calculates the
 small-sample version of AIC derived by Hurvich and Tsai
 (1989), the Schwarz Bayesian information criterion statistic
 (Schwarz 1978), and the Hannan and Quinn statistic (Han-
 nan and Quinn 1979). These differ from AIC in the replace-
 ment of the term 2m in (13) by 2m/{1 - (m + 1)/(N - d -
 sD)}, mlog(N - d - sD), and 2m log log(N - d - sD), re-
 spectively. These replacements are usually larger than 2m.
 Therefore these other criteria are less tolerant than AIC of

 models with more coefficients. (For these criteria too, the
 smallest value of the statistic over a set of competing mod-
 els is used to determine a preferred model.)

 Comparing different transformations. Rather frequently,
 it is necessary to compare regARIMA models whose data
 transformations ft(Yt) differ. The most common situation
 is the one in which two different divisors dt are used in the
 log transform (8), say dt = Nt/Nt and dt = 1 as in the
 next subsection, or "subjective" and "objective" choices of
 dt as in Section 4.4. The next most frequent situation is
 the one in which different choices of A are considered in

 (9), usually A = 0 and A = 1. The choice A = 0 suggests
 that the seasonal-adjustment decomposition should be mul-
 tiplicative, A = 1 that it should be additive.

 To help decide between two transformations, either the
 out-of-sample forecast diagnostics described in Subsection
 3.2.2 or one of the log-likelihood-based criteria, such as
 AIC, can be used. In the case of choosing a power trans-
 formation (9) with unrestricted A when the same ARIMA
 model type is used with the different A, the numbers of
 estimated parameters do not change, so the latter criteria
 all prefer whichever A yields a larger log-likelihood. In this
 situation, one can examine an interval of values and to iden-

 tify the A maximizing the log-likelihoods (12) (see Ansley,
 Spivey, and Wrobleski 1977). Although this procedure ap-
 pears to yield reasonable results (Shulman and McKenzie
 1988), the asymptotic distribution theory on which it rests
 has not been verified and, if valid, may require subtle argu-
 ments for its proof when d > 0 or D > 0.

 Deciding whether to adjust for trading-day effects. We
 now describe X-12-ARIMA's option for automatically de-
 termining if trading-day regressors should be included in
 the model (11) after the rest of the model has been specified

 (meaning ft, d, D, and ARMA model type for wt, and any
 other regressors). The models with and without trading-day
 regressors are estimated. In the default case for multiplica-

 tively decomposed flow series, the model with trading-day
 regressors also uses the Leap Year effect preadjustments
 dt = Nt/Nt* [see (14)], but the model without these regres-
 sors does not. The AIC's for the two models are compared,
 and the model with the smaller AIC is chosen (for fore-
 cast extension and for estimating any requested regression
 preadjustments).

 As we indicated in Section 1.4.1 after (6), the default
 regARIMA trading-day model for a multiplicative decom-
 position of a seasonal monthly series Yt has the form

 (1 - B)d(1 - Bl12)D log (t Y

 6 r

 - ZlEi(Dit - D7t) -E fixit wt. (14)
 i=1 i=8

 If there are only trading-day regressors in the model, the

 second sum is omitted. With /7 = - 61 i, the trading-
 day factors obtained from (14) have the form

 N 6 7
 Nexp i(Dit - D7t) -= 7 = f1e,(Dtt4). (15)
 t i= t i=1

 The alternative model with no trading-day effects is

 (r

 (1 - B)(1 - B2) - iit Wt. (16)

 Thus, f(Yt) = log Yt is used instead of ft(Yt) =
 log(NjYtI/Nt) in (14).
 Our experience is that comparing the AIC's of (14) and

 (16) to decide if a trading-day effect is present is substan-
 tially more reliable than X- l's F test of the hypothesis
 i = ... = 06= 0 in (3). As we mentioned in the first para-
 graph of Section 1.4.3, in the empirical study summarized
 by Chen and Findley (1996a), this F test falsely indicated
 significant trading-day effects in 14 of 71 series. The auto-
 matic procedure just described classified these 14 series as
 not having estimable trading-day effects, in agreement with
 the forecast comparison procedure described next.
 3.3.2 Historical Output for Comparing Models: Out-of-

 Sample Forecasting Performance, AIC Histories. We re-
 turn to the option discussed in Section 2.2 under which
 the program recreates history. Recall that it performs a se-
 quence of runs on increasing spans of data within the se-
 ries. Starting from an initial segment of the series, the spans
 grow with each new run by the addition of one observation
 until the full series is included.

 Out-of-sample forecasts. To obtain information about a
 model's forecasting performance, the available time series
 data outside each span can be regarded as future data to be
 forecasted from a model fit to the span. These forecasts can
 be compared to the actual series values or, for series values
 identified as outliers, to the outlier-adjusted values. As an
 option, the X-12-ARIMA program calculates the resulting
 out-of-sample forecast errors and stores them for later anal-
 ysis, along with their accumulating sums of squares. When
 forecast errors are available from two competing models,
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 the sequence of differences between the accumulating sums
 of squared errors can be an effective model-selection diag-
 nostic, as we shall demonstrate in Section 4.3 (see also Chen

 and Findley 1996a,b). We now give a detailed description
 of this diagnostic.
 Assume that we are interested in h-step(-ahead) fore-

 casting of the time series Yt, 1 < t < N. Suppose that a
 regARIMA model has been proposed for the transformed
 series yt = f(Yt). Let No be a number less than N - h
 that is large enough that the data yt, 1 < t < No, can be
 expected to yield reasonable estimates of the model's co-
 efficients. For each t in No < t < N - h, let Yt+hlt de-
 note the forecast of Yt+h obtained by estimating the reg-
 ARIMA model using only the data ys, 1 < s < t, and by
 using this estimated model to forecast h steps from time t.
 Then the out-of-sample h-step forecast of Yt+h is defined
 to be Yt+hlt = f-1(Yt+hlt). We define the associated fore-
 cast error by et+hlt = Yt+h - Yt+hlt if all AO, LS, and
 ramp regressors in the regARIMA model for the full series

 yl,..., YN have the value 0 at time t + h. Otherwise, we de-
 fine et+hlt = f-l (t+h) - Yt+hlt, where Yt+h is obtained by
 subtracting from Yt+h all such regression effects. The main
 diagnostic calculated by the program is the sequence of ac-
 cumulating sums of squared out-of-sample forecast errors,

 M

 SSh,M e2+hlt, M = No, .., N - h. (17)
 t=No

 Suppose there are two competing models, Model 1 and
 Model 2, with forecast errors e(i) and e(2) and with '1)t+hlt t+hlt
 sums SS(1) and SS,2)3, respectively. Then we plot a stan-
 dardized version of the differences SS(1) - SS(2) de-

 fined by

 SS(1) -SS(2)
 ss1,2 h,M h,M (18)

 SShh/(N - h - No)
 against M, for M = No, ..., N - h. The recursion formula

 ((1) ) 2 _ (e+2) +1)2 SS 1 =2 SS12+ M+l+hM+l M+l+h[M+
 SS(,,_ h/(N - h - No)

 M ==No,.-.. N- h - 1,

 shows that over intervals of values of M in which the graph
 of (18) goes up, the forecast performance of Model 2 is bet-
 ter; if it goes down, Model 1 is better; and if it has no gen-
 eral direction, neither model's forecast performance dom-
 inates. The denominator in (18) provides a scale for the
 interpretation of jumps in the graph.

 This diagnostic has the important virtue of not requiring
 the assumption that any of the models being compared is
 correct. Its use is not limited to situations in which fore-

 casting is the main goal of modeling, as the examples of
 Section 4.3 will show.

 AIC histories. Suppose the minimum AIC criterion is be-
 ing used to decide between two models for Y1,..., YN with
 AIC statistics AIC(1) and AIC(2) Then the pref- NId+sD NId+sD. hen the pref-

 erence is determined by the sign of the differenice

 AIC2 = AIC(1) - AIC (2) AICNd+sD NlId+sD N Id+sD

 S2f{(2) (1) } + 2{m(l) _ m(2)} Nld+sD Nld+sD

 (19)

 where L( d+sD denotes the maximized log-likelihood (12)
 and m(i) the number of estimated parameters of the ith
 model, i = 1, 2. Often one wishes to know something about
 the stability of such a model choice. In the classical situ-
 ation in which Model 1 is a constrained version of Model

 2, under the assumption that Model 1 has the correct form,
 the large-sample distribution of 2{(2)d+sD - (1) } is Nld+sD N d+sD
 chi-squared with m(2) - m(1) df from which a probabil-
 ity value can be calculated for AIC'd+sD. The assump-
 tions required by this approach are too restrictive, how-
 ever, not least because so many naturally occurring time
 series model comparisons are like the comparison of (14)
 and (16) in Subsection 3.3.1: Neither model is a constrained
 version of the other. X-12-ARIMA's AIC history option of-
 fers a somewhat more versatile diagnostic of the stability
 of minimum AIC model selections. For each model, the se-
 quence of AIC values reestimated from subspans of data
 Y1, ..., YM, No < M < N, can be obtained. From these,
 the AIC difference sequence

 AIC1,2 2 AIC(1) - AIC(2)
 "M d+sD Mld+sD Mld+sD'

 No < M < N, (20)

 can be calculated and examined for constancy of sign. An
 application of this diagnostic will be given in Section 4.4.

 4. USING MODELS TO SOLVE ADJUSTMENT
 PROBLEMS: FOUR EXAMPLES

 We present four applications of regARIMA models and
 the model-selection diagnostics discussed in Section 3.3 to
 problems encountered in seasonal adjustment.

 4.1 Using Regressors to Verify a Change in Seasonal
 Pattern

 For the regressors of Table 2 that model fixed sea-
 sonal effects and trading-day effects and for their quarterly
 analogs, X-12-ARIMA has a built-in procedure for model-
 ing a change of regime at a user-specified point in time. We
 illustrate the procedure for the fixed quarterly seasonal vari-
 ables Mit (which are defined like the fixed monthly seasonal
 variables of Table 2) and a changepoint designated NA. For
 i = 1, 2, 3, define

 M {f Mit, 1 <t < N,
 Mt O, N < t <_ N,

 where N denotes the length of the modeled series. The pro-
 gram models a change of regime by including both the Mit
 and the M in the regressor set.

 We consider again the net income series of Figure 2. To
 verify a change in seasonal pattern at the time point NA
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 corresponding to the first quarter of 1982, X-12-ARIMA
 was applied to estimate a model of the form

 12) log y (1982.1)
 (1 - B)(1 - Btt)-log Yt -o0LSt9

 3 3 6

 -111M,1 t - :3xit
 i=1 i=1 i=4

 = (1 - OB)(1 - OB12)at,

 in which the regressors xit model an additional LS identified
 in the second quarter of 1980 and AO's identified in the
 third quarter of 1974 and the first quarter of 1981. The AIC
 of this model, calculated as in (13), has the value AICc =
 993.1. The model of the same form but without the Mf can

 be used to represent the hypothesis of no change of seasonal
 pattern. It has three fewer estimated parameters but a much
 larger AIC value, AIC = 1,028.8. Hence, by the minimum
 AIC criterion, the model with a change in seasonal pattern
 is preferred.

 A standard hypothesis test leads to the same conclusion.
 Because the second model is a constrained version of the

 first (with constraints O = 0), two times the difference of
 log-likelihoods, which is equal to AIC - AICc + 2 x 3 =
 41.7 [see (19)] can be compared to values of a chi-squared
 distribution with 3 df under the hypothesis of no change of
 regime. The value 41.7 strongly contradicts this hypothesis,
 being extraordinarily large for this chi-squared distribution.

 4.2 Using AO Regressors to Replace Missing Data

 The regARIMA modeling capability of X-12-ARIMA
 makes possible a rather simple approach to circumventing
 or estimating missing observations. The procedure requires
 the user to supply values for the missing observations (any
 values will do) and to then fit a regARIMA model to the
 completed dataset with AO regressors at the times of the
 missing observations. (The value -99999. in the input se-
 ries always denotes a missing value and causes the program

 to insert the appropriate AO regressor automatically.) If Yto
 is the value specified for the missing observation at time to,

 and if t0o is the estimated coefficient of the regressor AOfto)
 in the fitted model, then the regression-adjusted value,

 to - to - o tAOto), (21)
 provides an estimate of the missing datum that the program
 can use for calculating forecasts and seasonal decomposi-
 tions. If the user requests autocorrelations and partial auto-
 correlations of the differenced data to help identify a model,
 then the OLS estimate /3OLS is used in (21) to provide an
 estimate needed to calculate these statistics.

 There is an alternative procedure that estimates a missing
 datum via a regARIMA model's Gaussian conditional ex-
 pectation of the missing datum given the available data.
 This procedure is optimal if the estimated model is the
 true model and the data are Gaussian. It is implemented
 in the regARIMA model-based signal-extraction seasonal-
 adjustment programs TRAMO and SEATS of Gomez and

 Maravall (1994a,b). [Their procedure is equivalent to the
 modified Kalman filter of Kohn and Ansley (1986), which
 extends the approach proposed by Jones (1980) to the case
 of models with differencing and missing data in the first
 d + sD time points.] In the case of independent observa-
 tions, it gives the same replacement values as (21) (Cook
 and Weisberg 1982, p. 33). With regARIMA time series
 models, theoretical calculations show that its values can be

 expected to be well approximated by those of (21) (Bruce
 and Martin 1989; Ljung 1993). We compared TRAMO's
 "optimal" estimates with X-12-ARIMA's estimates from
 (21) for several series from which observations were deleted

 at random after a regARIMA model had been identified
 for the full series. Observations that had been identified as
 outliers were not candidates for deletion. The estimates of

 the missing values from both procedures were always very
 close to each other. They were also usually quite close to
 the value of the deleted datum (< 2% error). The worst er-
 ror observed, about 6%, occurred with the series of values
 of manufacturers' shipments of electrical appliances. The
 estimation results for the three observations deleted from

 this series are given in Table 3.
 TRAMO also implements the procedure of (21). We fol-

 lowed TRAMO's use of -99999. as the missing value des-
 ignator.

 4.3 Comparing Trading-Day Estimation Procedures

 We now wish to illustrate the versatility of the model-
 comparison diagnostic (18). It is not obvious how to com-
 pare estimates of effects from regression models of the ir-
 regular component (Sec. 1.4) with analogous estimates from
 regARIMA models of the observed series-for example,
 the trading-day factors (2) and (15). Model-selection proce-
 dures like those based on AIC comparisons are inapplica-
 ble because the models are fit to different time series. We

 shall show that forecast comparisons are possible because
 forecasts of calendar effects estimated from a regression
 model of the irregulars can be used to obtain forecasts of
 the observed series. This enables us to call on the model-

 comparison principle that a model that produces better fore-
 casts can reasonably be assumed to produce calendar-effect
 estimates that better describe what is present in the series.

 To begin, we need to explain how X-12-ARIMA calcu-
 lates out-of-sample h-step-ahead forecasts when an effect is
 estimated from the irregular component. It will be sufficient
 to discuss the case of trading-day factors (2) estimated from

 the model (3). Given estimates of the coefficients P3,..., ,6,
 the factors (2) can be calculated for all times t. We use

 TDIM) to denote the factors, when these coefficients have

 been estimated from the reduced dataset Y1,...,YM

 Table 3. "Optimal" and AO Regressor Estimates of Deleted
 Observations From Shipments of Electrical Appliances

 Error Est. from Error

 Date Value "Optimal" est. (%) (21) (%)

 5/1977 661. 660.61 .06 660.48 .08

 9/1979 1,088. 1,156.25 6.27 1,159.07 6.53
 11/1981 1,397. 1,396.55 .04 1,396.07 .07
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 (a) 1-Step Forecasting

 7502 7603 7704 7805 7906 8007 8108 8209 8310 8411 8512 8701

 (b) 12-Step Forecasting

 7502 7603 7704 7805 7906 8007 8108 8209 8310 8411 8512 8701

 Figure 9. Comparison of Two Trading-Day-Effect Estimation Proce-
 dures for Retail Shoe Sales via (18). Graphs are given for forecast leads
 (a) h = 1 and (b) h = 12. Model 1 in (18) uses irregular component re-
 gression estimates of the form (3) and Model 2 the regARIMA estimates
 of the form (14). These graphs of the accumulating squared forecast
 error differences show that, at both forecast leads, the squared forecast
 errors of Model 1 are persistently larger.

 (obtained without regARIMA forecast extension). A reg-
 ARIMA model can be identified for the preadjusted series
 Z(N) Yt/TDN), 1 < t < N, possibly after nonlinear
 transformation to f(ZtN)). Then, with this model, out-of-
 sample forecasts YM+hIM for each M = No,..., N - h can
 be calculated by the following steps:

 1. Do trading-day estimation from the irregulars series of

 Y1,..., YM to obtain TDM) for t = 1,... M and t = M+h.
 2. Let Zt = YtI/TD(M),1 < t < M. Calculate the out-of-

 sample forecast ZM+hlM as in Section 3.2.2 from the reg-
 ARIMA model after estimating its parameters using only
 the data zt = f (Zt), 1 < t < M.

 3. Calculate the forecast YM+hIM = TD- MhZM+hI M.

 The error eM+hIM associated with this forecast is defined
 to be YM+h - YM+hIM provided that all AO, LS, and ramp
 regressors in the regARIMA model for z, ..., ZN are 0 at
 time M + h. Otherwise, define

 eM+hlM = TD( MMhf-1(iM+h) - YM+hlM,

 where 5M+h denotes the result of subtracting these regres-
 sion effects from ZM+h. The sequence SSh,M of accumulat-
 ing sums of the squared errors e2 2 is de- No+hlNo' ' eNIN-h
 fined by (17). Comparisons between competing trading-day
 estimation approaches are made with graphs of the normal-

 ized differences SS12 defined in (18). In the comparisons we
 present, the model for Yt that incorporates preadjustment
 by the X-11 trading-day factors (2) is designated Model 1,
 and the model of the form (14) is Model 2. Therefore, de-
 creasing graphs favor the irregulars-regression component
 estimates and increasing graphs favor the regARIMA model
 estimates.

 In the study by Chen and Findley of X-12-ARIMA's
 various regARIMA trading-day models (Chen and Findley
 1993, 1996a), there were 41 series for which the regARIMA
 analog (14) of (3) was preferred over models that gave esti-
 mates of a coefficient of the Leap Year regressor of Table 2
 or that ignored length-of-month effects. For these 41 series,
 it is natural to compare the approaches (14) and (3). This
 was done via graphs of (18) for lags h = 1, 12. Only for
 eight series was one approach found better than the other:
 The regARIMA trading-day model was favored five times
 and the irregulars-regression model three times. We present
 two examples of graphs of (18), one for each preference.

 Figure 9 shows that, for the series of retail sales from
 U.S. shoe stores up to 1989, the regARIMA trading-day
 estimates lead to persistently better one-month and twelve-
 month forecasts than the irregulars-regression estimates. By
 contrast, Figure 10 reveals that, for the series of values of
 U.S. factory shipments of communications equipment up to
 1983, the one-month forecasts via the irregulars-regression

 (a) 1-Step Forecasting

 0, -

 7602 7609 7704 7711 7806 7901 7908 8003 8010 8105 8112 8207

 (a) 12-Step Forecasting

 04

 6 -

 7602 7609 7704 7711 7806 7901 7908 8003 8010 8105 8112 8207

 Figure 10. Comparison of Two Trading-Day-Effect Estimation Pro-
 cedures for Values of Shipments of Communications Equipment. The
 graphs are analogous to Figure 9. Here, only for one-step forecasting
 are there indications of a recurring difference in performance: In an av-
 erage sense, the squared forecast errors of Model 1 are smaller than
 those of Model 2 after 1976.
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 trading-day estimates are persistently better after 1977, and
 the twelve-month forecasts are at least as good, on average,
 as those of the regARIMA trading-day model.
 There were no series for which the irregulars-regression

 model had persistently better twelve-month forecasting and
 five series for which its performance at lead 12 was persis-
 tently worse. Because h = 12 is usually the most important
 forecast lead for forecast extension, we have concluded that
 the regARIMA model approach of (14) should be the first
 approach considered, instead of that of (2), when a rea-
 sonably well-fitting regARIMA model is available. (This
 approach also provides the advantages AIC has over the
 irregular regression F statistic that we described in Sec-
 tion 1.4.3.)

 Similar comparisons of Easter-holiday-effect models es-
 timated from the irregulars and from the observed series
 were given by Chen and Findley (1996b). For all calendar-
 effect model comparisons, including comparison of a model
 with such a regressor to one without, each of the diagnos-
 tics (18), sliding spans, revision histories, and AIC histories
 can provide useful information.

 4.4 Using AIC Histories to Decide Between
 Preadjustments

 Findley and Monsell (1989) considered the problem of
 comparing a set of "subjective" preadjustments with a set
 of "objective" preadjustments for the series of numbers of
 units of autos sold multiplied by an average price for each
 type of car. The values of this series from 1979 on are
 graphed in Figure 11. The preadjustments were intended to
 remove the effects of special, short-duration sales programs
 involving cash rebates to purchasers. These programs were
 used by the automobile manufacturers to reduce their inven-
 tories of unsold cars. Such programs cause a large increase
 in sales in the month or two in which they occur, followed
 by a substantial decrease in the subsequent month or two. If
 such programs occur in the same month several years in a
 row, then seasonal-adjustment procedures incorporate much
 of their effects into the seasonal factors. This is not correct

 when it is known that the programs did not recur in later
 years. To prevent this distortion of the seasonal factors, it
 is necessary to estimate the effects of these sales programs
 and remove them from the series prior to seasonal factor
 calculation.

 An expert analyst used her knowledge of the dates of
 sales programs to select values of the irregular component
 of an X-11 seasonal decomposition that she averaged to ob-
 tain the preadjustment factors (divisors) for sales-program
 effects that are graphed in Figure 1 lb. When she asked us
 about this approach, we were concerned that the irregu-
 lars series would be an unreliable source of information
 about these effects because of distortions in the seasonal

 component induced by the sales programs. As an alterna-
 tive, we constructed five user-defined regressors to estimate
 sales-program effects in the years 1985-1987-one regres-
 sor each for the months of August, September, October,
 and November and a single regressor for December 1986
 and January 1987. To conform to the analyst's specification
 of identical effects for the same calendar month in succes-

 sive years in which the month is affected, the regressors
 for August, October, and November each had the value 1
 in their month for 1985-1987 and the value 0 in all other

 months. The September regressor deviated from the ana-
 lyst's pattern by having the value 1 in September of 1985
 and 1986 but 0 in September of 1987 (and elsewhere), a de-
 viation strongly preferred by AIC. The fifth regressor had
 the values 1 in December 1986, -1 in January 1987, and 0
 elsewhere. We naively assumed that the automatic outlier-
 identification procedure described in Section 3.1 and Ap-
 pendix C would deal effectively with any important sales-
 program effects in months prior to 1985, where the analyst
 had made numerous smaller preadjustments (the later data
 were of greater interest). Our objectively obtained divisors,
 estimated from a regARIMA model with the regressors just
 described, are graphed in Figure 11(c) along with automat-
 ically identified AO adjustments.

 Findley and Monsell (1989) reported that the AIC value
 of this model was smaller by 17.6 than the AIC of the
 regARIMA model found for the series with the subjective
 adjustments, indicating a strong preference for the objective
 approach. A subsequent analysis of AIC's preferences over
 time using the diagnostic (20), however, showed that prior
 to early 1985 the subjective adjustments were preferred.

 (a) Original Series

 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

 (b) Subjective Factors

 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

 (c) Objective Factors

 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

 (d) Hybrid Factors

 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

 Figure 11. Monthly Auto Sales by Units (a) and Three Competing
 Series of Adjustment Factors Estimating the Effects of Manufacturers'
 Sales Campaigns. The "subjective" factors (b) were informally derived
 by a subject-matter expert from an irregular component. The objective
 factors (c) came from a regARIMA model. The hybrid factors (c) are
 subjective factors up to 1985 and objective factors thereafter.
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 Then W. P. Cleveland, who also had the analyst's adjust-
 ments, kindly pointed out to us that there were errors in
 our divisor set. (The divisors in Fig. 11(b) are the cor-
 rect ones.) Thus, it was appropriate to redo our analy-
 sis. Labeling as Model 1 the regARIMA model that pro-
 duced the objective factors of Figure 11(c) and as Model
 2 the regARIMA model using only subjective preadjust-
 ments (the automatic outlier-identification procedure found
 no outliers), the graph of the history of the AIC differences
 (20) given in Figure 12(a) leads to a conclusion similar to
 the earlier one: Overall, the objective adjustments are fa-
 vored (the final AIC difference is -13.7), but for a several-
 year period beginning in 1983 the subjective adjustments
 are better.

 Therefore, we decided to try to replace Model 1 with
 a better model. We did not want to add a large number
 of regressors to imitate the analyst's adjustments prior to
 1985. So we fit a hybrid model, in which the subjective ad-
 justments were applied prior to 1985, and the user-defined

 (a) Objective(1) vs. Subjective(2)

 LO

 S ,

 o

 1980 1982 1984 1986 1988

 Ending Dates

 (b) Hybrid(1) vs. Augmented Subjective(2)

 1979 1981 1983 1985 1987 1989

 Ending Dates

 Figure 12. AIC Difference Histories (20) Comparing Two Pairs of
 Models That Use Different Adjustment Factors of Figure 12. In (a), Model
 1 uses the objective factors and Model 2 the subjective factors. In (b),
 Model 1 uses the hybrid factors and Model 2 the subjective factors and
 also the two AO variables used by Model 1. Only in (b) do the AIC
 differences have a consistent sign, indicating a consistent preference for
 Model 1. In this sense, the hybrid factors are preferred.

 regressors were used thereafter, together with any automat-
 ically identified AO's. (There were two such AO's,.one at
 February 1975 and the other at December 1988.) The re-
 sulting divisors are graphed in Figure 11 (d). The AIC differ-
 ence history favored the hybrid model throughout. Know-
 ing that AO regressors can have a large impact on AIC
 values, however, we wanted to determine if this conclusion
 depended substantially on the AO's included in the hybrid
 model but not in the subjective model. To investigate this,
 we augmented the latter model with the same two outlier
 regressors. In the augmented model, the t statistics of these
 two AO regressors were below the critical value used in the
 automatic outlier procedure but above 2.0. The AIC differ-
 ence graph comparing the hybrid model and the augmented
 subjective model is given as Figure 12(b). For the calcula-
 tion of (20), the hybrid model is labeled Model 1 and the
 augmented subjective model is Model 2. The graph shows
 that the hybrid model is still consistently preferred. The fi-
 nal AIC difference is -11.4 (about half of what its value
 had been before the subjective model was augmented).
 These analyses demonstrate the power of the AIC his-

 tory diagnostic to enable difficult model comparisons and
 to identify ways in which models under consideration can
 be improved. Note that the forecast performance diagnos-
 tics used in Section 4.3 are not applicable to the model
 comparisons of this subsection because the models cannot
 forecast the effects of interest.

 5. THE USER INTERFACE: THREE EXAMPLES

 Because the X-12-ARIMA program is designed for use
 with a broad variety of operating systems, its interface uses
 command files rather than windows and menus. We made

 substantial efforts to design a command structure that is
 largely self-descriptive and easy to do standard runs with.
 The latter is especially important because the program has
 very many adjustment and input/output options, yet its
 users should be able to deal with most series knowing just
 a few options. We now present some examples to give the
 reader a feeling for the interface.

 5.1 Processing a Single Series

 The simplest situation is that in which a single series
 is to be adjusted using default options. Suppose the series
 named myseries is stored in free format in a file named
 Xfil e. dat in the same directory as the X-12-ARIMA pro-
 gram, along with the command file. The command file will
 be named myseries . spc and must have an extension
 . spc, chosen to connote "specifications."
 The commands for the basic situation, in which reg-

 ARIMA models are not used, and the program acts like
 the X-11 program in its default setting [except that the
 seasonal-filter length-selection criterion of Lothian (1984)
 is used] are as follows, assuming myseries begins in
 March of 1984:

 series {start = 1984.3 file = "Xfile.dat"}
 x11{ }
 To execute this .spc file, the command x12a

 myseries is entered. When the execution is finished,
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 the program writes the default output to a file named
 myseries. out in the same directory.
 Suppose we wish instead to have what is essentially a de-

 fault X-11-ARIMA run, with 12-month forecast and back-
 cast extension from an ARIMA model selected from the

 default list of models. Suppose also, though, that we want
 to let AO's and LS's be automatically identified (using the
 default t statistic critical value 3.3 as described in Section

 3.1 and Appendix C). The regression estimates of all iden-
 tified AO's and LS's are to be adjusted out of the series
 before seasonal factor calculations begin. Because the de-
 fault seasonal-adjustment decomposition is multiplicative,
 the log transform is chosen for the regARIMA models. For
 the series of the previous example, the commands in the
 specification file become

 series {start = 1984.3 file = "Xfile.dat"}
 transform {function = log}
 automdl { }
 outlier { }
 x11{ }

 5.2 Processing Many Series

 There are features that facilitate running the program on
 many series with many . spc files, but we shall illustrate
 only the simple situation in which the same options, stored
 in a single . spc file, are used for many series, all of which
 have the same starting date and are stored in files with the
 same format. This can occur when a group of related series
 is examined for seasonality for the first time. It is also the
 natural situation when simulation experiments are done to
 investigate properties of seasonal adjustments or adjustment
 procedures. Examples include the irregular-component re-
 sampling approach to obtain standard errors for seasonal
 adjustments described by Findley and Monsell (1990) and
 the use of simulations to obtain confidence intervals for the

 estimated duration of the Easter effect, described by Chen
 and Findley (1996b). Studies using simulations to analyze
 sources of nonlinearity in the X-11 procedure were per-
 formed by Ghysels et al. (1996) and Findley (1996). With
 one . spc file for many series, the names of the input files
 are listed in a file that, in X-12-ARIMA terminology, is
 called a data metafile.

 Assume that we have 500 monthly series, s iml, ...
 s im5 0 0, of the same length, all starting in January 1970, all
 stored with FORTRAN format (12F6.0) in the files named
 siml.dat, ... ,sim500 .dat. Suppose we wish to sea-
 sonally adjust them with 3 x 9 seasonal moving averages and
 17-term Henderson trend filters, after fitting the ARIMA (0,
 1, 3)(0, 1, 1)12 model without a lag 2 moving average term
 (via exact Gaussian likelihood maximization, the default es-
 timation method) to extend each series with 60 forecasts.
 To accomplish this, we create a data metafile whose name
 has the extension dta, say sim. dta, containing the data
 file names,

 siml. dat

 sim500 .dat.

 In a . spc file, that we shall name series. spc, we place
 the commands

 series {start =1970.jan format = " (6f12.0) "}
 transform {function = log}
 arima {model = (0 1 [1 3]) (0 1 1)}
 forecast {maxlead - 60}
 xll {seasonalma = s3 x 9 trendma = 17}
 In this context, with a data metafile named s im. dta, the
 command to execute the program is x12a series -d
 s im. The -d flag informs the program of the data metafile.

 6. CONCLUDING REMARKS

 The X-12-ARIMA program and its user's manual
 can be downloaded via ftp from the Internet address
 ftp. census . gov. The FORTRAN source code is avail-
 able, as are executable versions for five platforms, DOS
 PC's, and SUN, Hewlett Packard, DEC Alpha, and DEC
 VAX workstations, in individual subdirectories of the di-
 rectory pub / ts / x12 a. This ftp site also has a version
 customized by Margaret Keating of the Federal Reserve
 Board for the FAME time series database system. We hope
 that the easy availability of a versatile program for sea-
 sonal adjustment, regARIMA modeling, and model selec-
 tion will stimulate many statisticians, economic modelers,
 and economic analysts to undertake refined analyses of sea-
 sonal and calendar effects in their data. This would have

 important indirect benefits: A substantial increase in the
 number of economic data users having expertise in sea-
 sonal adjustment would lead to a more sophisticated use
 of adjusted data and would stimulate the development of
 improved adjustment diagnostics, methods, and practices.
 (The SEATS and TRAMO programs are available from
 http://www.bde.es.)

 The most obvious and important feature lacking in X-12-
 ARIMA is high-resolution graphical diagnostics. Graphical
 diagnostics for seasonal adjustment are an area that is ripe
 for further research, 15 years after the pioneering work
 done by the authors of SABL. We expect to begin work
 soon on the development of a separate program to produce
 such graphics from X-12-ARIMA output, one that will be
 usable on a variety of computer platforms.
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 APPENDIX A: THE PROTOTYPE X-11

 DEFAULT CALCULATIONS

 Calculations are shown with X- l's default seasonal filter

 choices in Step (c) of Stages 1 and 2. Calculations used to
 reduce the influence of "extreme" values on seasonal factors

 are omitted. Forecasts and backcasts are required to enable
 the symmetric filters shown to be used near the ends of the
 series.
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 Yt denotes a monthly series with no extreme values; ex-
 tended by forecasts and backcasts so that modified formulas
 are not needed at the series' ends.

 Three types of decomposition of Yt into trend (Tt), sea-
 sonal (St), and irregular (It) components are presented:

 Multiplicative (M): Yt - Tt StIt
 Additive (A): Yt - Tt + St + It
 Pseudo-Additive (PA): Yt - Tt(St + It - 1).

 Stage 1. Initial Estimates

 (a) Initial trend estimate via "centered 12-term" (13-
 term) moving averages:

 I 1 1
 T(1) _ I Yt-6 + IYt-5 +-""+ IYt t 24 12 12

 1 1

 + - + -Yt+5 + -Yt+6. 12 24

 (b) Initial "SI ratio":

 (M, PA): SI1) = Yt-T(1)

 (A): SIW1) = Yt - T(1)

 (c) Initial preliminary seasonal factor via "3 x 3" seasonal
 moving average:

 ) 1 (1) 2 S1 3 SI(1) 2 (1) 1 (1)
 S ) SIt-24+ SI12 + t+12+ t24

 (d) Initial seasonal factor:

 PA): S(1) AtU t-6 +t-5 5 + (2+ t+5

 (M, PA)" St1)= ??gs; 5 1)
 ( 1) . (1)2 t - 1 5 " 2( 1- j -(1)
 - 12 12 24

 (e) Initial seasonal adjustment:

 (M): At1) =
 (A): A(') = Yt - S(1)
 (PA): A1) = Y - T(1)(S1 - 1).

 Stage 2. Seasonal Factors and Seasonal Adjustment

 The (2H + 1)-term Henderson coefficients (see Appendix
 B) are designated h 2H+1),-H < j < H.

 (a) Intermediate trend: For data-determined H (see Ap-

 pendix B),

 T -(2) Z 2H+1)A()J.
 j=-H

 (b)

 (M, PA): SI62) Y/T(2)
 (A): SI2) Yt - T(2)

 (c) Preliminary seasonal factor via "3 x 5" seasonal mov-
 ing average:

 2) _ 1 S1(2)36 2 SI(2) + 3 SIQ2) 15 t-361+ 5 t-24 1 tt-12 15 15 15

 +3 SI12)+ 3 S(2) 2 SI(2) +?1 .(2)
 15 t 15 t+12 15 "t+24 15- t+36

 (d) Seasonal factor:

 (M )A). S(2) _ -(2)
 2M4 - t--6 12 t- -12 t+5- 2 4 t+6

 (A)" S2 2) (2) ( 6_ + _(2) + ... + )(2) + (2) )
 S t-_6 t-5 +' t+5 t6 S(A): t 24 12 12 24

 (e) Seasonal adjustment:

 (M): A -2)= tY
 (A): A2) = Yt - S(2)
 (PA): A 2) - Yt - TT(2) (Sq 2)

 Stage 3. Final Henderson Trend and Final Irregular

 (a) Final trend: For data-determined H, possibly different
 from Stage 2(a):

 H

 T(3)_ 2H+1A(2) T - " 't+j.
 j=-H

 (b) Final irregular:

 (M, PA): I(3)_
 (A): I(3) _ A(2) _ T(3)

 Estimated decomposition:

 (M): Yt - T(3) St2) (3)
 (A): Yt = T-(3) + St(2) + (3)
 (PA): Yt = T(2) (S2) _- 1)+ T(3)(3)

 APPENDIX B: HENDERSON FILTERS AND

 MUSGRAVE SURROGATES

 To provide a larger context for our discussion of the cri-
 terion used to obtain many of the asymmetric filters and
 to complete the description of the default X-11 procedure
 of Appendix A, we start by outlining how the symmetric
 Henderson filter coefficients h(2H+1) are derived.

 B.1 The Symmetric Henderson Filters

 In the appendix of Kenny and Durbin (1982), an in-
 sightful derivation was given of the coefficients h(2H+1)
 of the symmetric Henderson filter and of the equivalence
 of Henderson's alternative criteria for determining them. It
 was observed by Gray and Thomson (1996) that a slight
 modification of Kenny and Durbin's argument yields two
 improvements-One need not assume a priori that the coef-
 ficients are symmetric, and it is enough to require the filters
 to reproduce quadratic trends instead of cubic trends. We
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 summarize Gray and Thomson's approach. Suppose that,
 for -(H + 3) _ j _ H,

 At+j = a + p(t + j) + Y(t + j)2 + It+j, (B.1)

 where the It+j are Gaussian variates with mean 0 and vari-
 ance a2, which, for different j, are independent. We only
 consider filters hj, -H < j < H, that provide unbiased es-
 timates of the value of the quadratic trend at time t. Equiv-
 alently, when the It+j in (B. 1) are 0 for all j, we require

 H

 E hjAt+jy - a+ o3t+ t2 (B.2) j=-H

 for any values of a, 0, and y. Let A denote the differencing

 operator so that AAt = At -At_1 and Ahj = hj -hj-_1. Let
 E denote expectation. Then, among filters satisfying (B.2),
 the Henderson filter is the minimizer of the smoothness

 measure E(A3 H=_H hjAt+j)2. This can be reduced to a
 smoothness measure on the filter coefficients,

 2
 H H+3

 E A(3 j hjAt+j = 02 (3hj)27
 j=-H j=-H

 if we define hj = 0 for j = ?(H + 1), ?(H + 2), ?(H + 3).
 (On the left, A3 is applied to the At+j; on the right, to the

 hj.) With qj(H) = {(H + 1)2 - j2}{(H + 2)2 - j2}{(H +
 3)2 - j2}, and with a and b determined by

 H H

 a E qj(H)+b 5 qj(H)jZ=1
 j=-H j=-H

 and

 H H

 a 5 qj(H)j2 + b 5 qj(H)j4 = 0,
 j=-H j=-H

 (2H+1) the Henderson coefficients are given by h =H+
 qj(H)(a + bj2), -H < j < H. This formula shows they
 are symmetric, h(2H+1) = h(2H+1) They can be < 0.

 B.2 Musgrave's Criterion for Asymmetric Surrogates

 So that the following discussion can encompass both
 trend and seasonal filters, we change to a neutral notation,

 Wj, for the original filter coefficients and Xt+j for the vari-
 ates to which they are applied. For given X1,...,XT and
 positive integer J such that 2J + 1 < T, we can calcu-
 late ZQ _, W3Xt+j only for indices t satisfying J +1 <
 t < T- J. To obtain coefficients for calculating filtered
 values at the remaining times t, Musgrave (1964) applied
 a minimum mean squared revision criterion to the case in
 which the Xt are independent Gaussian variates with vari-
 ance a2 and with a linear mean function, EXt = a + fit
 [in contrast to the quadratic mean in (B.1)]. More precisely,
 if t = T - J + d with 1 < d < J, Musgrave's strategy [in-
 dependently deduced by Laniel (1986)] is to find the asym-
 metric filter whose coefficients Vj, -J _ j _ J - d, sum to

 1 and also minimize

 2

 SJ J-d
 F( w xX+j - Vz Xt+j

 -j=-J j=-J

 In an unpublished report, Doherty (1992) derived an ex-
 plicit formula for the coefficients of these abbreviated filters
 that has been implemented in X-12-ARIMA. To have a con-
 venient form, we change notation. Set N = 2J + 1, M =
 N - d, and, for 1 I <j N, define wj = Wj-_1J and
 zx = Xt-j+(j-1). We are assuming that xj = 7 + /j +
 Ij, where the Ij are independent Gaussian variates with
 mean 0 and variance a2. Define A = Exj - ExjlJ(=
 11), I = ElIj - Ij-ll(= 2a/#), and R = A/I. Then the
 coefficients vj 1 < j < M, satisfying EjMv = 1 that
 minimize

 2
 N M

 E wjxj - Evjxj
 j=1 j=1

 are given by

 N

 Vj = Wj+M E wi
 i=M+1

 4(j - ( R2
 1 + M(M-1)(M+1) 4R2

 12 7r

 E i - 2 i. (B.3)
 i=M+1

 Doherty (1992) also derived a formula for the vj when
 no assumption is made about the form of the mean func-
 tion of the xj. With symmetric filters, WN+l-j = wj, and
 from this property it follows that the time-reversed fil-
 ter coefficients vR = VN+1-j, d + 1 < j < N minimize
 E(Ej=1 wjx - N v=d+ vxj)2 and therefore provide the
 surrogates for symmetric filters near the beginning of the
 time series.

 In X-12-ARIMA, to obtain the default asymmetric surro-
 gates for the 9-term and 13-term monthly Henderson filters,
 R-1 is set equal to .99 and 3.5, respectively. For longer Hen-
 derson filters, R-1 = 4.5 is used. For the 5-term and 7-term

 quarterly filters, .001 and 4.5, respectively, are used. For the
 3 x 9 seasonal filter, with the time index j having units of
 years, R-1 = 9.5 is used in (B.3) to determine asymmetric
 surrogates.

 Finally, we explain how the lengths are determined for
 the Henderson filters used in (a) of Stages 2 and 3 of Ap-
 pendix A. In each of these stages, an estimate R-1 of R-1 is
 calculated as follows. Let Tt denote the 13-term symmetric
 Henderson trend of the available seasonally adjusted series

 (Af1) in Stage 2, A62) in Stage 3), and let It denote the irreg-
 ular component resulting from removing this trend estimate
 from the seasonally adjusted series. With C denoting the
 sample mean of the available values of the absolute trend

 changes T I -T_ 1 and I the sample mean of the It - tlI,
 the value of the noise-to-signal ratio, R-1 = I/C, called
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 the I-bar C-bar ratio, determines the value of 2H + 1 as
 follows. If R-1 < 1.0, the 9-term Henderson filter is used.
 Otherwise, in Stage 2, the 13-term filter is used. In Stage
 3, the 13-term filter is used when 1 < R-1 < 3.5, but the
 23-term Henderson filter is used when R-1 > 3.5. This

 procedure is called the X-11 variable trend cycle routine.

 APPENDIX C: THE PROCEDURE FOR AO
 AND LS DETECTION

 We describe the AO and LS detection procedure men-
 tioned in Section 3.2. The algorithm proceeds from criti-
 cal values yao, yis specified separately for the AO- and LS-
 regressor t statistics, denoted Ttao, Tls', that are calculated
 at each time point t in each iteration of the forward ad-
 dition cycle to be described later. (The default values are

 7yao = = 3.8.) Let Tt denote one of these statistics,
 7 the corresponding critical value, /3 and 0 the vectors of
 regression coefficients and ARMA model coefficients, and
 at (/, 0) the estimates of the innovations at determined by
 these coefficients in the model (10). AO regressors are avail-
 able for all observation times 1 < t < N, LS regressors for
 all but the first two and the last of these times.

 Initialization: Estimate the coefficients (P/3,) of the
 model (10) specified by the user. If the model includes pre-
 specified AO and LS regressors, these will always be kept
 in the regressor set.

 Forward Addition:

 1. Calculate the robust standard error, aR = 1.49 x
 mediant at(P, i)f, for the current /, ?b.

 2. Using the current ?b and aR, calculate the values of Tt

 for all AO and LS regressors not currently in the model--
 that is, excluding those prespecified or already identified in
 forward addition. (To calculate Tt for any given outlier re-
 gressor, the generalized least squares estimation determined
 by 0 is carried out for the regressors in the model plus the
 given outlier regressor.)

 3. Determine the outlier regressor with maximum ITt.
 4. If max ITt > 7, add this regressor to the model and

 reestimate / and 0. Otherwise, stop.

 Repeat Steps 1-4 until there are no additional outliers sat-
 isfying ITtl > 7.

 Backward Deletion: Start with the model including all
 outlier regressors added in the forward addition stage.

 1. Calculate maximum likelihood estimates of (3, $, a).
 2. Using the estimated (3, $, a), calculate Tt for all AO

 and LS regressors identified in forward addition that re-
 main in the model. Determine which of these regressors
 has min Tt .

 3. If min ITtI < 7, delete this regressor from the model
 and go to 1. Otherwise, stop.

 An alternative procedure is available that, at Step 4 of
 forward addition, adds to the model all outlier regressors

 with JTt ? 7Y.

 [Received May 1996. Revised November 1997.]
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