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 Joint Estimation of Model Parameters and

 Outlier Effects in Time Series
 CHUNG CHEN and LON-MU LIU*

 Time series data are often subject to uncontrolled or unexpected interventions, from which various types of outlying observations

 are produced. Outliers in time series, depending on their nature, may have a moderate to significant impact on the effectiveness of

 the standard methodology for time series analysis with respect to model identification, estimation, and forecasting. In this article we

 use an iterative outlier detection and adjustment procedure to obtain joint estimates of model parameters and outlier effects. Four

 types of outliers are considered, and the issues of spurious and masking effects are discussed. The major differences between this

 procedure and those proposed in earlier literature include (a) the types and effects of outliers are obtained based on less contaminated

 estimates of model parameters, (b) the outlier effects are estimated simultaneously using multiple regression, and (c) the model

 parameters and the outlier effects are estimated jointly. The sampling behavior of the test statistics for cases of small to large sample

 sizes is investigated through a simulation study. The performance of the procedure is examined over a representative set of outlier
 cases. We find that the proposed procedure performs well in terms of detecting outliers and obtaining unbiased parameter estimates.

 An example is used to illustrate the application of the proposed procedure. It is demonstrated that this procedure performs effectively

 in avoiding spurious outliers and masking effects. The model parameter estimates obtained from the proposed procedure are typically
 very close to those estimated by the exact maximum likelihood method using an intervention model to incorporate the outliers.

 KEY WORDS: Estimation accuracy; Intervention analysis; Iterative estimation; Masking effect; Outlier detection; Power of detection;
 Spurious outlier.

 Most time series data are observational in nature. In ad-

 dition to possible gross errors, time series data are often sub-

 ject to the influence of some nonrepetitive events; for ex-
 ample, implementation of a new regulation, major changes
 in political or economic policy, or occurrence of a disaster.
 Consequently, discordant observations and various types of
 structural changes occur frequently in time series data.
 Whereas the usual time series model is designed to grasp the

 homogeneous memory pattern of a time series, the presence
 of outlying observations or structural changes raises the

 question of efficiency and adequacy in fitting general auto-
 regressive moving average (ARMA) models to time series

 data (see, for example, Abraham and Box 1979; Chen and
 Tiao 1990; Guttman and Tiao 1978; Hillmer 1984; Hillmer,
 Bell, and Tiao 1983; Ledolter 1988; and Tsay 1986).

 A common approach to deal with outliers in a time series

 is to identify the locations and the types of outliers and then
 use intervention models discussed in Box and Tiao (1975)
 to accommodate the outlier effects. This approach requires
 iterations between stages of outlier detection and estimation
 of an intervention model. Procedures considered by Chang,
 Tiao, and Chen (1988), Hillmer et al. (1983), and Tsay
 (1988) are quite effective in detecting the locations and es-
 timating the effects of large isolated outliers; however, a few
 issues still remain:

 a. The presence of outliers may result in an inappropriate
 model.

 b. Even if the model is appropriately specified, outliers
 in a time series may still produce bias in parameter
 estimates and hence may affect the efficiency of outlier
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 detection. A typical difficulty found in this approach

 was that both the types and locations of outliers may

 change at different iterations of model estimation.

 c. Some outliers may not be identified due to a masking

 effect.

 Tsay (1985) attempted to resolve the issue of model identi-

 fication in the presence of outliers; in this article we focus

 on solving the problems of b and c.

 This study's main goal is to design a procedure that is less

 vulnerable to the spurious and masking effects during outlier

 detection and is able to jointly estimate the model parameters

 and outlier effects. In Section 1 four types of outliers are

 defined and issues of detecting outliers and adjusting their

 effects are investigated. To achieve outlier detection and pa-
 rameter estimation jointly, the procedure proposed in this

 article consists of three major stages of iterations. The mo-

 tivation and the detailed steps of the proposed procedure are
 discussed in Section 2. The behavior of the test statistics and

 the performance of the proposed procedure are investigated

 in Section 3. An illustrative example is given in Section 4,

 and conclusions are presented in Section 5.

 1. OUTLIERS IN TIME SERIES

 The proposed procedure may be applied to general sea-

 sonal and nonseasonal ARMA processes. To simplify the

 presentation, only the nonseasonal case without a constant

 term will be used to illustrate the procedure. Let { Y, } be a
 time series following a general ARMA process,

 Y' = 0(B) at t n, (1)
 a(B) 0(B)

 where n is the number of observations for the series; 0(B),

 0(B), and a(B) are polynomials of B; all roots of 0(B) and
 0(B) are outside the unit circle; and all roots of a(B) are on
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 the unit circle. The model in (1) may include a constant
 term when the nonstationary operator a(B) is contained on
 the left side of the model equation. To describe a time series

 subject to the influence of a nonrepetitive event, the following
 model is considered:

 Y* = Y + w A 11)It(t ), (2)
 G(B)H(B)

 where Yt follows a general ARMA process described in (1),
 It(tl) = l if t = tl, and It(tl) = 0 otherwise. Here It(tl) is an
 indicator function for the occurrence of the outlier impact,

 t1 is the possibly unknown location of the outlier, and w and

 A (B)/ { G(B)H(B) } denote the magnitude and the dynamic
 pattern of the outlier effect. The model for a time series that

 allows for multiple outliers is presented in ( 19). If the location
 and the dynamic pattern of an event is known, then model
 (2) is the intervention model studied by Box and Tiao (1975).
 In this article we consider the estimation problem when both

 the location and the dynamic pattern are not known a priori.
 The approach is to classify an outlier impact into four types
 by imposing a special structure on A(B)/ { G(B)H(B) }. The

 types include an innovational outlier (10), an additive outlier
 (AO), a level shift (LS), and a temporary change (TC). Their
 definitions are given below:

 10: A(B) = 0(B) (3)
 G(B)H(B) a(B)k(B)'

 A (B)

 G(B)H(B) 1 (4)

 TC: A (B) I 1 (5)

 and

 L- A(B) = 1(6
 L:G(B)H(B) -(1 1-B)~ (6

 For a more detailed discussion on the nature and the mo-

 tivation of these outlier types, see Chen and Tiao (1990),

 Fox (1972), Hilimer et al. (1983), and Tsay (1988). The four

 outliers represent various types of simple outlier effects; more
 complicated responses usually can be approximated by
 combinations of the four types. In principle, the proposed
 procedure can handle any other specific form of outlier re-
 sponses.

 1.1 Effect of Outliers on the Observed Series

 It is useful to note that, except for the case of an 10, the
 effects of outliers on the observed series are independent of
 the model. Also, the AO and LS are two boundary cases of
 a TC, where 6 = 0 and 6 = 1. For a TC, the outlier produces
 an initial effect w at time tl, and this effect dies out gradually
 with time. The parameter 6 is designed to model the pace of
 the dynamic dampening effect. In practice, the value of 6
 can be specified by the analyst. We recommend that 6 = .7
 be used to identify a TC. In the case of an AO, the outlier

 causes an immediate and one-shot effect on the observed

 series. A LS produces an abrupt and permanent step change

 in the series.

 On a time series, the effect of an IO is more intricate than
 the effects of other types of outliers. Using the formulation

 of model (3), we see that when an 10 occurs at t = tl, the
 effect of this outlier on Yt1+k, for k 2 0, is equal to Wi//k,
 where w is the initial effect and I/k iS the kth coefficient of
 the A'(B) polynomial where

 p(B) = {I0(B) } / { (B)k(B)}

 = ('Po + iPIB +IP2B 2 + 'P ) o =1

 For a stationary series, an IO will produce a temporary effect

 because the 4'j's decay to 0 exponentially. The pattern of 4'j's
 for a nonstationary series can be quite different. Depending

 on the model of Yt, an TO may produce (a) an initial effect
 at the time of the intervention and a level shift from the

 second period of the intervention, if Y, follows an autore-
 gressive integrated moving average (ARIMA)(O, 1, 1) model;

 (b) an initial effect at the time of intervention, gradually

 converging to a permanent level shift if Y, follows an
 ARIMA( 1, 1, 1) model; (c) a seasonal level shift if Y, follows
 a pure seasonal ARIMA (0, 1, 1)5 model (e.g., a level shift
 at every January of each year for monthly series), and (d)

 an annual trend changes if Y, follows a multiplicative seasonal
 ARIMA(O, 1, 1) X (0, 1, 1), model.

 1.2 Estimating and Adjusting the Effect
 of an Outlier

 To examine the effects of outliers on the estimated resid-

 uals, we assume that the time series parameters are known
 and the series is observed from t = - J to t = n, where J is
 an integer larger than p + d + q, and that 1 < t1 < n where

 p, d, and q are orders of the polynomials ?(B), a(B), and
 0(B). We define the r(B) polynomial as

 7r(B)= {4(B)a(B) }/ { 0(B) } = 1 -r1 B- r2B2 _ *

 where the -rj weights for j beyond a moderately large J be-
 come essentially equal to 0, because the roots of 0(B) are all
 outside the unit circle. The estimated residuals et, which may
 be contaminated with outliers, can be expressed as

 et=r(B)Yt*, for t = 1, 2, .... (7)

 For our four types of outliers, we have

 TO: et = w1t(t1) + at, (8)

 AO: et = wir(B)It(ti) + at, (9)

 TC: et = w {r(B)/(1 - aB)}(It tl) + at, (10)

 and

 LS: et = w{ir(B)/(I - B)}It(t1) + at. (11)

 Alternatively, we can rewrite equations (8)- (11) as

 et = wXit + at,

 t = tl, t, + 1, . . ., n and i = 1, 2, 3, 4, (12)

 where xi1 = 0 for all i and t < t1, x111 = 1 for all i and k>2 1,

 X1(11+k) - 0, X2(11+k) - -1r/k, X3(t1+1k = 1 - ir1 j, and
 X4(t +k) = ak _ zJ4-1 ak?r1j - 71k. Hence the least squares
 estimate for the effect of a single outlier at t = t1 may be
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 expressed as

 (<AO(tl) - etL

 t= tl eX2t

 (OLS(tl) - n 2 A ~~~t= ti eX3t

 A (tl) - ,=,, eLX4,(
 WTC(tl) n 2 ~~~~(13) 2:t=tl x4t

 It is important to note that for the last observation (i.e., t1

 = n), cIO (n) = WAO(n) = WLS(n) = WTC(n) = e". As a result,
 it is impossible to empirically distinguish the type of an out-
 lier occurring at the very end of a series.

 As discussed in Chang et al. (1988), a possible approach

 for detecting outliers is to examine the maximum value of
 the standardized statistics of the outlier effects

 fAO(tl) = <AIo(tl )/ A xf

 n 1/2

 TAO(tl) = {WL()tl)/:a} ( x2t)
 t=tJ

 n 1/2

 TLS(tl = WtLS(t0l)aa } x2 )
 t=tJ

 n \1/2

 TTC(tl) = {CZTC(tl)/&a} z 2) * (14)
 t=tJ

 For a given location, these standardized statistics follow an

 approximately normal distribution. Knowing the type and
 the location of an outlier, one can adjust the outlier effects
 on the observations and the residuals using Equation (3) and
 Equations (8)-( 11). In general, the adjusted observation at

 ti, denoted Y1t, can be expressed as a weighted sum of the
 entire observed series. In the case of IO, it can be shown that

 the adjusted observation Y1t is the conditional expectation

 of Yt, given the past observations. Under an AO, the adjusted
 observation is the interpolation based on both the past and

 the future Y's, but it does not involve Yt,. This suggests a
 possible approach to estimating missing values in a time series
 by treating the missing data as an AO.

 1.3 The Issue of Multiple Outliers

 When there are multiple outliers, the previously described

 estimate of co at time period t, may not be an unbiased es-
 timate for the outlier effect at t1, due to the influence of
 neighboring outliers. Consider the following special case of
 two additive outliers in an ARMA model:

 yt= WII(tI) + w2I(t2) + {O(B)/4(B)}at. (15)

 Assuming that the series is fitted by an appropriate ARMA

 model and that e^t is the estimated residual, we have

 e = ir(B)Yt* = co1r(B)12(t1) + s.2ir(B)It(t2) + at. (16)

 If we know the location of the outliers, say t1 and t2, the

 effects of outliers at t, and t2 may be estimated jointly as

 W I = [1 - a12/a1 a22] { - I(21/CY1)2l}

 2 = [1 - a12/a,11a22 {-(a2l/a22)&ol + &o2}1 (17)

 where ir(B) = (1 - ir1B - 'X2B2- * ) = O(B)IO(B),
 akk = f k-ok 4, k = 1, 2, iro = 1, a21 = a21 = irt2-tl
 + z in 12iri121 for t2 > t1, and ( &1, c2) are estimates of w1

 and W)2 obtained separately assuming that only a single outlier
 is present, as described in (13). In an iterative outlier detec-

 tion procedure, as proposed by Chang et al. (1988) and Tsay

 (1988), one could adjust the effect of w1 on the residual et's
 and then use the adjusted residuals to estimate W2 or vice

 versa. Let oij denote the estimate of wi after the effect of wj
 has been adjusted. We can derive that

 &<2. 1 = &<2 -(aI 12/a(22)&(<l

 &<1.2 = 'OI - (a12/a11)&,2* (18)

 Consequently, for the two-outlier case, the preceding ap-

 proach results in the estimates of either (col, C02.1) or (C01.2,
 w02). Depending on the structure of the time series and the

 relative positions of t, and t2, the estimates of (wl, W2) ob-
 tained from a sequentially adjusted procedure of Chang et
 al. (1988) can be quite different from the results of joint
 estimation, as illustrated in (17).

 From a computational standpoint, the strategy of detecting

 outliers one by one may be the only feasible approach to

 dealing with multiple outliers. It seems more appropriate,
 however, to estimate the outlier effects jointly rather than

 sequentially. The preceding analysis also indicates that a
 procedure based solely on iteratively adjusted residuals often
 may produce biased estimates for adjacent outliers.

 1.4 Estimation of Residual Standard Deviation aa

 To compute the test statistics of outliers as given in (14),

 one needs to estimate 0fa, The determination of outliers can
 be sensitive to this estimate. In the presence of outliers, the
 residuals are contaminated; hence 0fa may be overestimated
 if the usual sample standard deviation is used. Three methods
 for obtaining a better estimate of 0fa are considered in this
 study: (1) the median absolute deviation (MAD) method,
 (2) the a% trimmed method, and (3) the omit-one method.

 The MAD estimate of the residual standard deviation is
 defined as

 aa= 1.483 Xmedian{j i-el},
 where e is the median of the estimated residuals (Andrews

 et al. 1972, p. 239). To compute the a% trimmed standard

 deviation, we first remove the a% largest values (according
 to their asbolute values) and then compute the sample stan-
 dard deviation based on the trimmed sample. When con-
 ducting an outlier test at time point tl, the omit-one method

 calculates the usual residual standard deviation with the re-

 sidual at time t1 omitted. The MAD and a% trimmed meth-
 ods require sorting of the residuals. In cases of large sample
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 size, the required computing time can be much greater for

 these two methods than for the omit-one method. The mo-

 tivation of these methods is to reduce the possibility of mis-
 detection due to an inflated estimate of the residual standard

 deviation. Once the locations of outliers are identified and

 their effects are estimated, ?a can be estimated based on the

 sample standard deviation of the adjusted residuals.

 2. A JOINT ESTIMATION PROCEDURE IN THE
 PRESENCE OF MULTIPLE OUTLIERS

 Suppose that the series Y, is subject to m interventions at
 time points t1, t2, . . . , t,., resulting in various types of outliers.
 The model for Y* can be expressed as

 m 0(B)
 Y* - &jL1(B)It(tj) + -B''B' at' (19)

 where Lj(B) = 0(B)/ {J(B) a(B) } for an 10, Lj(B) = 1 for
 an AO, Lj(B) = 1/(1 - B) for an LS, and Lj(B) = 1/
 (1 - 6B) for a TC at t = tj. Without distinguishing the no-
 tations of the estimated and the true parameters, the residuals

 { e^ } by fitting an ARMA model to Y,* may be expressed as

 m

 et = E w7r(B)Lj(B)I1(tj) + a, (20)
 j=1

 when the underlying model is correctly specified but outlier

 effects are not taken into consideration. Equations (19) and
 (20) are the foundation of the proposed procedure. If the

 effects of outliers and their locations are available, then we
 can adjust the outlier effects based on Equation (19) and
 thereafter estimate the model parameters. On the other hand,
 when the model parameters are known, we can identify out-
 liers and estimate their effects based on Equation (20). It is

 difficult, if not impossible, to achieve our stated goals in a
 single step. Thus we develop an iterative procedure that con-
 sists of three major stages. In Stage I all the potential outliers,

 tj and Lj(B), are identified, based on preliminary model pa-
 rameter estimates. In Stage II joint estimates of the model
 parameters and outlier effects are obtained using the accu-
 mulated outlier information of Stage I. In Stage III outliers

 tj and Lj(B) are identified and their effects estimated again,
 based on the less-contaminated estimates of model param-
 eters obtained in Stage II.

 2.1 The Detection and Estimation Procedure

 In this section we provide a detailed summary of the pro-

 posed iterative procedure for the joint estimation of model
 parameters and outlier effects.

 Stage I.: Initial Parameter Estimation and Outlier
 Detection

 1. 1. Compute the maximum likelihood estimates of the
 model parameters based on the original or the ad-
 justed series and obtain the residuals. For the very

 first iteration, the original series is used to initiate the

 procedure; after the first iteration, the adjusted series

 is used.

 Inner Loop of Outlier Detection for Fixed Model
 Parameter Estimates

 I.2. For t = 1, ..., n, compute TOt)(t), TAO(), TLS(t),
 and TTC(t) in (14) using the residuals obtained from

 I.1, and let q, = max{T Ao(t)J, IiAO(t)1, ITLS(t)I,
 I7 TC(t)I}. If maxttit = Irtp(t1)I > C, where C is pre-
 determined critical value, then there is a possibility
 of a type tp outlier at t1; tp may be 10, A0, LS, or
 TC.

 1.3. If there is no outlier found, then go to step 1.4. Oth-
 erwise, remove the effect of this outlier from the re-
 siduals and the observations according to its type,
 then go back to step 1.2 to check if an additional out-
 lier can be found.

 1.4. If no outliers are found in the very first iteration of
 this inner loop, then stop-the observed series is free
 from outlier effects. If outliers are found in the inner
 loop under the given parameter estimates, then go to
 step 1. 1 to revise the parameter estimates. If the total
 number of outliers in all of the inner loops is greater
 than 0 and no additional outliers are detected in the
 current inner loop, then go to step 11. 1.

 Stage II: Joint Estimation of Outlier Effects and Model
 Parameters

 11. 1. Suppose that m time points t1, t2, ..., tm are iden-
 tified as possible outliers of various types. The outlier

 effects wj's can be estimated jointly using the multiple
 regression model described in (20), where { et } is
 regarded as the output variable and { Lj(B)It(tj)}
 are the input variables.

 11.2. Compute the X statistics of the estimated wi's, where

 Tji =W u>st(>, 1, . . . , m. If min, 'ry = rv < C,
 where C is the same critical value used in step 1.2,

 then delete the outlier at time point t, from the set
 of the identified outliers and go to step 11. 1 with the
 remaining m - 1 outliers. Otherwise, go to step II.3.

 11.3. Obtain the adjusted series by removing the outlier

 effects, using the most recent estimates of wj's at step
 II. 1. In other words, remove only the outlier effects
 that are significant based on the iterations of steps
 II.1 and.II.2.

 11.4. Compute the maximum likelihood estimates of the
 model parameters based on the adjusted series ob-
 tained at step 11.3. If the relative change of the resid-
 ual standard error from the previous estimate is
 greater than e, go to step 11. 1 for further iterations;
 otherwise, go to step III. 1. The tolerance e is a pre-
 determined constant chosen by the user as a means
 to control the accuracy of parameter estimates. An
 appropriate tolerance value, for example, could be
 .001.

 Stage III: Detection of Outliers Based on the Final
 Parameter Estimates

 111. 1. Compute the residuals by filtering the original series
 based on the parameter estimates obtained at step
 1I.4.
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 III.2. Use the residuals obtained at step III. 1 and iterate
 through Stages I and II with the modifications that
 (a) the parameter estimates used in the inner loop
 of Stage I are fixed to those obtained at step II.4 and
 (b) steps 11.3 and II.4 are omitted in Stage II. The

 estimated , 's of the last iteration at step I. 1 are
 the final estimates of the effects of the detected out-
 liers.

 2.2 Some Remarks on the Proposed Procedure

 For a given set of parameter estimates, the inner-loop it-
 eration (steps I.2 and I.3) detects outliers one by one in a
 descending order of magnitude in terms of the X statistics.
 Whenever an outlier is detected, its effects on the residuals

 and on the observations are adjusted accordingly at step 1.3.
 The residual series is then used as step I.2 to detect another
 outlier. This is essentially the procedure proposed by Chang
 et al. (1988). The main reason for using this procedure, which
 detects only a single outlier in an inner-loop iteration, is to
 simplify the computation involved in joint detection of mul-
 tiple outliers. But as discussed in Section 1.3, such a pro-
 cedure may suffer from masking effects, because a later it-
 eration of outlier detection is based on the adjusted residuals
 of the previous iterations. In addition, the parameter esti-
 mates may have bias due to the presence of the outliers.
 Hence is is important to adjust both the observed and the
 residual series based on the type of outlier detected. These

 series may be used in the latter iterations of parameter es-
 timation and outlier detection. The iterations of estimation
 (step I.1) and detection (steps 1.2 and 1.3) in Stage I are de-
 signed to reduce the possibility of masking effects. It is helpful
 to point out that this practice in Stage I is essentially the
 procedure M proposed by Tsay (1988).

 A potential problem for the preceding iterative detection
 procedure is that the identified outliers are not evaluated on

 the same basis in terms of a'. For instance, the first identified
 outlier is detected based on the assumption that no outlier
 is present. Once we decide the presence of the first outlier,
 the residuals and the observations are adjusted accordingly
 and the process of detecting the second outlier begins. As a
 result, computations of the estimates of outlier effects and
 the T statistics given in (13) and (14) at different iterations
 are not based on the same residual series. Consequently, the
 joint effects of these outliers and their X statistics are not
 clearly exhibited. In Stage II, a procedure akin to the back-
 ward elimination procedure in multiple regression is used
 to jointly evaluate the outlier effects and to remove any spu-
 rious outliers. The multiple regression approach has been
 considered by P. Burman (1989), who modified the outlier
 detection programs developed by the U.S. Bureau of the
 Census.

 Based on the notation of "robustness" adopted by Box
 and Andersen (1955), a method is considered to be "robust"
 when the inferential results are sensitive to the main concerns
 but are insensitive to variations of nuisance factors. The pro-
 posed procedure is robust in the sense that the model pa-
 rameter estimates are sensitive to the overall memory pattern

 of a time series but are insensitive to occasional outliers. In

 the next section we conduct extensive simulation studies to

 investigate the power and properties of the proposed joint
 detection and estimation procedure under the assumption
 of Gaussian noise. We have also investigated the performance
 of the proposed procedure under certain non-Gaussian noise,

 such as noise with exponential distributions. In such situa-
 tions, we find that the proposed procedure is effective in
 determining extreme values in a time series, but it cannot
 distinguish such extreme values as outliers or regular obser-
 vations associated with the inherent nature of the distribu-
 tion. Further study on outlier detection and adjustment is
 needed for such distributional assumptions.

 3. A STUDY OF THE PERFORMANCE OF THE JOINT
 ESTIMATION PROCEDURE

 The proposed procedure is iterative in nature and is de-

 signed to accomplish outlier detection and model estimation
 jointly. In Section 3.1 we first investigate the behavior of the
 test statistics used in the procedure. Such information is use-
 ful in providing guidelines for the selection of critical values
 in the detection stage. In Section 3.2 we study the perfor-
 mance of the proposed procedure. There are two aspects to
 the evaluation of procedure performance: (1) the power of
 outlier detection and (2) the accuracy of the parameter es-
 timates. For the power study, we report the relative frequency
 of correct outlier detection and the average frequency of
 misidentified outliers. The estimation performance is ex-
 amined, based on a representative sample of stationary and
 nonstationary models as well as on a selective set of outlier

 alternatives. The criteria of evaluation are the sample mean
 and sample root mean square errors (RMSE's) of the param-
 eter estimates. Other studies on the power of related outlier
 detection procedures were discussed in Chang et al. (1988)
 and Tsay (1988).

 3.1 The Sampling Behavior of the Test Statistics

 The detection procedure essentially is based on the max-
 ima of the test statistics considered in (14). The sampling
 behaviors of the maxima of these test statistics are associated
 with (a) the sample size, (b) the type of outlier, (c) the pattern
 of ir weights of the fitted model, and (d) the estimates of the
 residual standard deviation. The simulation study in this
 section is designed to investigate the sampling properties of
 the maxima of the outlier test statistics. Table 1 lists the
 models considered in this simulation study, which represent
 a broad spectrum of ir weight patterns.

 Model 1 is the mean model; its result is considered a ref-

 Table 1. Underlying Models for the Calculation of Test Statistics

 Model Calculation

 1 Y,= 1Q +at
 2 Yt = 10 + (1-0.8B)at
 3 Yt = 10 + (1 + 0.5B)aE
 4 (1+.5B)Yt=10+at
 5 (1 -.8B)Yt = 10 +at
 6 (1 - B +.24B2)Y, = 10 + at
 7 (1-.9B+B2)Yt=a,
 8 (1 - .5B)VY, = at
 9 VY, =(1 -.8B)a,
 10 VY, =(1 +.5B)a,

 VV12Y, = (1 -*5B)(1 -
 1 1 81
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 erence base for the simulation study. For each model, four
 cases of sample size are examined: n = 50, 100, 250, and
 1,000. The random errors, at's, follow iid normal distribution
 with mean 0 and variance 1. For each model and each sample
 size, 500 series are generated. The test statistics for 10, AO,
 TC, and LS outliers in each series are calculated separately
 based on (14). In this study the focus is on examining the

 sampling behavior of fltp = maxt, l ht(t1) T , where tp = IO,
 AO, TC, and LS. In particular, we wish to estimate the per-
 centiles of those statistics at the 1%, 5%, and 10% levels when
 no outlier is present in the series.

 In the simulation study three methods for obtaining a ro-
 bust estimate of the residual standard deviation, aa, are con-
 sidered. The estimate is computed using (a) the omit-one,
 (b) the MAD, and (c) the 5% trimmed methods discussed
 previously. Due to space limitations, in Figure 1 we only
 provide a graphical summary of the estimates of those per-

 centiles at three significance levels (1%, 5%, and 10%) for
 IO, AO, TC, and LS test statistics based on the omit-one
 method. (Numerical results for the MAD and the 5%

 trimmed methods may be obtained from the authors.) Of
 the three methods of computing the residual standard de-
 viation, the 5% trimmed method produces the highest values
 of the test statistics, whereas the omit-one method and the
 MAD method give similar results. There are 12 plots in Fig-
 ure 1, consisting of the combination of four types of test
 statistics and three significance levels. In each plot percentiles
 for each of the 11 models and four sample sizes are displayed.
 Except for a few cases of 1% percentiles, the estimated per-
 centiles are an increasing function of sample size n. The IO
 test statistic is quite homogeneous with respect to various
 time series models. This is not surprising, because the IO
 test statistic is simply the maximum of the standardized re-
 siduals. In general, the sample size is an important factor
 affecting the behavior of the test statistics. Under the omit-
 one method, the estimated 5% percentiles for IO range from
 3.4 to 4.0 for sample sizes n = 50 to n = 1,000. The AO test
 statistic has slightly higher variations, depending on model
 pattern. For the estimates of 5% percentiles, they range from
 3.0 to 4.0 for sample sizes n = 50 to n = 1,000. There is no
 clear model effect for the TC statistic either, and the estimated
 5% percentiles range from 2.5 to 4.1. The LS test statistic
 has two distinct characteristics. First, its estimated percentiles
 are relatively smaller (in absolute value) than those of other

 outlier types. Second, for models that do not include a regular
 differencing operator, it tends to be substantially lower than
 the others. The estimates of 5% percentiles using the omit-
 one method range from 2.3 to 3.4 in this case.

 Based on these simulation results, the following guidelines
 for choosing the critical value C are recommended. For a
 series with moderate length (say between 100 and 200 ob-
 servations), a critical value C = 3.0 seems to be appropriate.
 For a series of shorter length, a critical value between 2.5
 and 2.9 is recommended. We may consider a critical value
 greater than 3.0 for series of longer length (e.g., over 200
 observations). In practice, it is recommended that more than
 one critical value be used in the analysis, to allow exami-
 nation of the sensitivity of the results to the choice of the
 critical values. Other considerations in the choice of critical
 values are discussed in the next subsection.

 3.2 Performance of the Proposed Procedure

 The proposed procedure is designed to handle multiple

 outliers of various types in a time series. We design simu-
 lations to study the performance of the procedure applied
 to cases characterized by a combination of the following fac-
 tors: (a) four outlier types; (b) four underlying models con-
 sisting of an AR(1), an MA(1), an IMA(0, 1, 1), and a
 multiplicative seasonal model IMA(0, 1, 0) X (0, 1, 1)4; (C)
 three outlier sizes; (d) a single outlier and two adjacent out-
 liers, and (e) outliers occurring at the beginning, in the mid-
 dle, and at the end of the series. Due to space limitations,
 we report only the results of the power of correct detection
 of a single outlier and the accuracy of model parameter es-
 timates. (Results of other cases may be obtained from the
 authors.)

 Table 2 lists the cases considered in this study. Cases 1-9

 are combinations of three underlying models and three out-
 lier sizes. For these cases, series are generated to contain one
 of the four outlier types discussed in Section 1. Cases 10-18
 cover situations of two neighboring outliers occurring at the
 beginning, in the middle, and at the end of the series using
 three different models. For series generated in these cases,
 the first outlier may be one of the four types, and the second
 outlier is fixed as an AO. The standard deviation of the noise

 process for each model is set to 1. The true value of model

 parameters in all cases is set to .6. For a given underlying
 model and a specification of the sizes, locations, and types
 of the outliers, 500 series of length 100 are generated using
 the SCA Statistical System (Liu, Hudak, Box, Muller, and
 Tiao 1986). The procedure using the omit-one method for
 estimating the residual standard deviation is applied to each
 of the 500 series using six different critical values: C = 2.25,
 2.5, 2.75, 3.0, 3.25, and 3.5.

 The relative frequency of correct detection and the fre-
 quency of Type I errors are reported in Table 3. Because the

 Table 2. List of Cases in the Performance Study

 Case Model Location & size of AO Case Model Location & size of AO

 1 AR(1) t1 = 40 w =3 10 AR(1) t1 = 40 w = 3 t2 = 41 W2 = 4
 2 MA(1) t1 = 40 co 3 11 AR(1) t, = 10 wi = 4 t2 = 11 W2 3
 3 IMA(0, 1, 1) t1 = 40 w =3 12 AR(1) t1 = 99 w, = 4 t2 = 100 w2 -3
 4 AR(1) t1 = 40 o =4 13 IMA(0, 1, 1) t1 = 40 co, = 3 t2 = 41 2 4
 5 MA(1) t1 = 40 = 4 14 IMA(0, 1,1) tl = 10 w1 = 4 t2 = 15 W2 = 3
 6 IMA(0, 1, 1) t1 = 40 = 4 15 IMA(0, 1, 1) t, = 96 wc = 4 t2 = 98 C02 = 3
 7 AR(1) t1 = 40 =o 5 16 Seasonal IMA t1 = 40 c1 = 4 t2 = 44 2 4
 8 MA(1) t1 = 40 1 5 17 Seasonal IMA t1 = 10 w1 = 3 t2 = 12 W2 4
 9 IMA(0, 1, 1) t, = 40 co, = 5 18 Seasonal IMA t, = 96 co, = 3 t2 = 97 W2 = 4
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 Table 3. Summary of the Detection Performance

 C= 2.25 2.50 2.75 3.00 3.25 3.50 C= 2.25 2.50 2.75 3.00 3.25 3.50

 Case AO Case TC

 1 P .89 .83 .75 .64 .54 .40 1 P .81 .70 .59 .49 .37 .28
 2 P .50 .60 .62 .54 .46 .37 2 P .64 .74 .78 .79 .79 .78
 3 P .88 .80 .70 .62 .52 .40 3 P .87 .80 .70 .61 .50 .41
 4 P .99 .97 .96 .93 .88 .81 4 P .96 .93 .89 .83 .74 .64
 5 P .62 .81 .86 .88 .86 .80 5 P .68 .76 .81 .83 .83 .83
 6 P .99 .98 .95 .92 .87 .80 6 P .99 .98 .95 .92 .85 .79
 7 P 1.00 1.00 1.00 .99 .99 .98 7 P 1.00 1.00 .99 .98 .96 .91
 8 P .69 .87 .94 .97 .97 .96 8 P .71 .77 .80 .80 .80 .80
 9 P 1.00 .99 .99 .99 .98 .97 9 P 1.00 1.00 .99 .99 .98 .97

 1 E 4.2 1.8 .7 .3 .1 .1 1 E 5.1 2.2 .9 .4 .1 .1
 2 E 2.1 1.2 .5 .2 .1 .0 2 E .8 .4 .2 .1 .0 .0
 3 E 4.8 1.9 .8 .3 .1 .0 3 E 4.0 1.8 .8 .3 .1 .0
 4 E 4.3 1.8 .7 .3 .1 .0 4 E 5.4 2.4 1.0 .5 .2 .1
 5 E 2.1 1.3 .6 .3 .1 .0 5 E .9 .4 .2 .1 .0 .0
 6 E 5.0 1.9 .8 .3 .1 .0 6 E 4.1 1.8 .8 .4 .2 .1
 7 E 4.3 1.8 .8 .3 .1 .1 7 E 5.3 2.3 1.0 .5 .2 .1
 8 E 2.3 1.3 .6 .3 .1 .0 8 E .8 .4 .1 .1 .0 .0
 9 E 5.0 2.1 .8 .3 .1 .1 9 E 4.2 1.8 .8 .4 .1 .1

 /0 LS

 1 P .83 .72 .60 .49 .39 .29 1 P .69 .55 .36 .22 .10 .04
 2 P .83 .71 .60 .49 .37 .28 2 P .54 .49 .51 .56 .52 .51
 3 P .85 .76 .66 .55 .46 .32 3 P .70 .78 .75 .66 .55 .47
 4 P .98 .95 .89 .83 .76 .66 4 P .93 .87 .77 .62 .48 .33
 5 P .97 .93 .90 .84 .77 .65 5 P .69 .66 .65 .63 .67 .69
 6 P .97 .94 .91 .85 .74 .66 6 P .85 .93 .93 .92 .87 .83
 7 P 1.00 .99 .99 .97 .95 .93 7 P .99 .97 .94 .89 .82 .71
 8 P 1.00 1.00 .98 .97 .95 .91 8 P .76 .75 .75 .74 .69 .72
 9 P 1.00 .99 .98 .96 .94 .91 9 P .90 .98 .99 .99 .98 .98

 1 E 5.3 2.2 .8 .4 .1 .0 1 E .7 .4 .1 .1 .0 .0
 2 E 4.9 2.1 .8 .3 .1 .0 2 E .7 .6 .5 .5 .3 .2
 3 E 4.9 2.0 .8 .3 .1 .0 3 E 2.8 1.4 .5 .2 .1 .0
 4 E 5.D 2.1 .9 .4 .2 .0 4 E .8 .4 .2 .1 .0 .0
 5 E 4.9 2.2 1.0 .4 .1 .1 5 E .7 .7 .6 .4 .4 .3
 6 E 4.9 2.1 .9 .4 .1 .1 6 E 3.0 1.5 .6 .3 .1 .0
 7 E 5.2 2.3 1.0 .4 .2 .1 7 E 1.0 .6 .3 .2 .1 .0
 8 E 5.2 2.2 .9 .4 .2 .1 8 E .7 .6 .6 .5 .4 .4
 9 E 4.9 2.0 .9 .4 .2 .1 9 E 3.0 1.5 .7 .3 .1 .0

 NOTE: P refers to the relative frequency of correct detection, and E refers to the average number of misidentified outliers in a series of length 100.

 effects of neighboring outliers may be approximated by a

 combination of various consecutive outliers, the power study

 for such situations is more complicated. Here we report only

 the results of the power study for cases with a single outlier.
 The rows labelled "P" in this table summarize the relative

 frequency of correct detection, defined as a correct identi-

 fication of both type and location of an outlier. The relative

 frequency of correct detection can be interpreted as the power

 of the procedure in terms of outlier detection. For most cases,
 the power is a decreasing function of the critical value. There

 are exceptions, however, when the critical value C = 2.25 is
 used. Examining the detailed detection record (not reported
 here), we found that when the critical value is too low, there

 is a higher frequency to misidentify the location of an outlier

 by one time period. This is due to the high correlation be-

 tween neighboring test statistics. For critical values 2.75 and
 3.0, the power of the procedure for detecting outliers of size

 3 standard deviation (a,) ranges between 50% and 60%, and
 that for detecting outliers of sizes 4 and 5 standard deviation
 ranges between 85% and 99%.

 The rows labeled "E" in Table 3 report the average num-

 -ber of misidentified outliers (i.e., the number of observations

 in a series that are identified as outliers while they are not

 outliers) in a series of length 100. These results indicate the

 frequency of Type I errors in the detection procedure. This

 is different from the Type I errors of the test statistics studied
 in the previous section. In the latter simulation, because the

 procedure allows for checking the significance of the esti-

 mated outlier effects jointly, it generates a lower frequency

 of Type I errors. We find that the frequency of misidentifi-

 cation is also a decreasing function of the specified critical

 value. For critical values 2.75 and 3.0, the average number

 of misidentified outliers in a series of length 100 is less than
 1. This finding further validates the guidelines for critical

 value selection provided in Section 3.1.

 To investigate the impact of outlier adjustment on param-

 eter estimation, we compute the estimates using the standard

 ARIMA model and the intervention model, which incor-

 porates the information of outlier type and location. Table

 4 summarizes the estimation results of this simulation study,
 including the sample mean and sample RMSE of the model

 parameter estimates and the residual standard deviation es-
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 Table 4. Summary of the Estimation Performance

 AO ITV C 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA TC ITV C 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA

 Case # 1 Case # 1

 PHI .577 .636 .603 .586 .575 .568 .562 .540 PHI .569 .489 .531 .554 .563 .568 .569 .576
 RMSE1 .090 .104 .094 .092 .094 .095 .096 .109 RMSE1 .093 .203 .147 .117 .103 .096 .094 .087
 SIGMA .964 .739 .856 .923 .966 .990 1.014 1.097 SIGMA .964 .700 .833 .918 .963 .994 1.013 1.071
 RMSE2 .137 .305 .210 .170 .151 .148 .151 .179 RMSE2 .138 .349 .245 .184 .164 .153 .152 .162

 Case #2 Case #2

 THETA .639 .966 .825 .702 .652 .631 .613 .556 THETA .637 .790 .698 .653 .644 .634 .631 .304
 RMSE1 .108 .498 .378 .238 .171 .154 .134 .102 RMSE1 .104 .382 .235 .151 .142 .126 .131 .304
 SIGMA .965 .732 .815 .912 .966 .995 1.016 1.112 SIGMA .963 .911 .932 .956 .965 .972 .975 1.359
 RMSE2 .148 .355 .269 .201 .177 .172 .172 .200 RMSE2 .145 .205 .164 .153 .148 .146 .147 .401

 Case #3 Case #3

 THETA .618 .537 .578 .598 .607 .612 .616 .624 THETA .622 .649 .634 .619 .612 .604 .601 .580
 RMSE1 .095 .144 .112 .100 .094 .092 .093 .088 RMSE1 .095 .124 .112 .103 .096 .092 .092 .092
 SIGMA .972 .715 .848 .923 .964 .992 1.012 1.116 SIGMA .965 .736 .841 .909 .957 .988 1.009 1.108
 RMSE2 .139 .332 .224 .178 .157 .155 .157 .195 RMSE2 .144 .313 .231 .187 .163 .161 .163 .189

 Case #4 Case #4

 PHI .573 .635 .602 .585 .576 .571 .566 .514 PHI .578 .497 .540 .561 .568 .574 .576 .589
 RMSE1 .091 .098 .090 .089 .091 .092 .096 .124 RMSE1 .088 .193 .138 .111 .100 .093 .091 .082
 SIGMA .953 .729 .843 .905 .939 .959 .975 1.175 SIGMA .975 .687 .820 .903 .950 .985 1.009 1.155
 RMSE2 .143 .317 .223 .174 .158 .153 .150 .239 RMSE2 .146 .357 .250 .196 .172 .164 .171 .229

 Case #5 Case #5

 THETA .639 .963 .802 .722 .678 .659 .650 .512 THETA .643 .755 .678 .651 .642 .637 .636 .206
 RMSE1 .112 .506 .351 .259 .197 .175 .174 .126 RMSE1 .106 .382 .253 .185 .145 .131 .125 .399
 SIGMA .965 .739 .819 .891 .933 .955 .972 1.211 SIGMA .956 1.028 .969 .970 .977 .981 .982 1.560
 RMSE2 .142 .333 .252 .202 .172 .164 .169 .269 RMSE2 .140 .966 .164 .157 .149 .147 .146 .597

 Case #6 Case #6

 THETA .616 .525 .573 .591 .600 .606 .609 .638 THETA .618 .639 .628 .617 .610 .607 .603 .563
 RMSE1 .094 .153 .116 .100 .095 .092 .092 .091 RMSE1 .100 .127 .120 .108 .104 .101 .102 .103
 SIGMA .975 .707 .849 .913 .951 .973 .989 1.208 SIGMA .967 .729 .836 .900 .939 .964 .982 1.195
 RMSE2 .143 .342 .230 .185 .159 .158 .157 .270 RMSE2 .150 .324 .239 .192 .170 .165 .162 .261

 Case #7 Case #7

 PHI .581 .643 .614 .596 .587 .582 .580 .489 PHI .570 .488 .523 .548 .558 .563 .567 .599
 RMSE1 .086 .099 .090 .085 .085 .086 .087 .145 RMSE1 .091 .200 .154 .124 .108 .101 .095 .082
 SIGMA .947 .724 .834 .894 .928 .945 .953 1.289 SIGMA .957 .677 .805 .879 .922 .946 .963 1.224
 RMSE2 .144 .321 .233 .185 .164 .153 .147 .339 RMSE2 .141 .358 .253 .193 .165 .150 .149 .280

 Case #8 Case #8

 THETA .626 .925 .768 .695 .659 .646 .639 .464 THETA .637 .692 .646 .631 .630 .627 .625 .117
 RMSE1 .100 .481 .317 .224 .165 .148 .143 .162 RMSE1 .111 .365 .234 .175 .146 .146 .141 .488
 SIGMA .961 .756 .844 .903 .931 .946 .956 1.317 SIGMA .958 1.048 1.002 1.003 1.002 1.009 1.011 1.769
 RMSE2 .148 .332 .256 .214 .187 .163 .159 .368 RMSE2 .149 .290 .218 .192 .182 .182 .182 .802

 Case #9 Case #9

 THETA .620 .529 .572 .593 .601 .605 .606 .655 THETA .624 .645 .632 .625 .618 .615 .612 .546
 RMSE1 .096 .146 .115 .104 .095 .094 .090 .098 RMSE1 .098 .125 .113 .103 .097 .097 .095 .114
 SIGMA .969 .703 .827 .903 .939 .956 .966 1.302 SIGMA .964 .727 .838 .895 .928 .951 .962 1.311
 RMSE2 .146 .343 .241 .182 .161 .154 .152 .355 RMSE2 .140 .321 .231 .185 .164 .151 .149 .361

 Case #10 Case #10

 PHI .579 .533 .536 .553 .560 .563 .562 .562 PHI .571 .543 .546 .556 .566 .568 .573 .576
 RMSE1 .087 .153 .155 .128 .112 .101 .096 .087 RMSE1 .088 .135 .137 .122 .104 .097 .091 .080
 SIGMA .970 .559 .688 .859 .951 1.014 1.061 1.180 SIGMA .954 .557 .676 .820 .910 .957 .995 1.309
 RMSE2 .137 .455 .361 .241 .192 .177 .181 .234 RMSE2 .148 .459 .374 .261 .196 .179 .173 .361

 Case #11 Case #11

 PHI .574 .452 .477 .518 .537 .548 .552 .416 PHI .566 .499 .522 .541 .552 .557 .559 .504
 RMSE1 .092 .211 .195 .157 .131 .117 .112 .212 RMSE1 .091 .171 .148 .124 .111 .105 .103 .133
 SIGMA .959 .556 .670 .808 .904 .960 .995 1.415 SIGMA .953 .547 .672 .805 .904 .957 .991 1.231
 RMSE2 .151 .460 .380 .273 .213 .181 .168 .459 RMSE2 .142 .468 .376 .268 .193 .165 .162 .288

 Case #12 Case #12

 PHI .569 .462 .491 .526 .546 .559 .566 .439 PHI .577 .517 .539 .560 .568 .572 .574 .516
 RMSE1 .089 .198 .179 .143 .120 .107 .100 .191 RMSE1 .089 .162 .149 .117 .104 .098 .095 .123
 SIGMA .957 .551 .669 .816 .904 .950 .988 1.393 SIGMA .967 .543 .684 .829 .908 .944 .968 1.205
 RMSE2 .144 .463 .375 .262 .199 .167 .155 .437 RMSE2 .145 .473 .365 .250 .194 .176 .164 .270

 Case #13 Case #13

 THETA .624 .711 .710 .673 .638 .626 .619 .603 THETA .617 .679 .692 .655 .627 .616 .610 .566
 RMSE1 .098 .183 .189 .155 .1 15 .104 .097 .095 RMSE1 .095 .165 .176 .140 .1 14 .104 .097 .104
 SIGMA .968 .500 .614 .788 .912 .971 1.021 1.251 SIGMA .957 .508 .595 .748 .865 .933 .983 1.400
 RMSE2 .147 .510 .431 .303 .204 .185 .183 .310 RMSE2 .143 .503 .456 .316 .230 .187 .166 .444

 (continued)
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 Table 4. (continued)

 AO ITV C =2.25 2.50 2.75 3.00 3.25 3.50 ARIMA TC ITV C= 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA

 Case #14 Case #14

 THETA .623 .757 .760 .704 .667 .649 .642 .666 THETA .623 .701 .706 .670 .637 .626 .620 .585
 RMSE1 .100 .207 .225 .189 .157 .132 .118 .105 RMSE1 .096 .166 .182 .156 .120 .108 .103 .085
 SIGMA .966 .501 .575 .740 .864 .938 1.003 1.298 SIGMA .960 .519 .599 .763 .880 .946 .996 1.289
 RMSE2 .140 .511 .455 .323 .233 .193 .188 .344 RMSE2 .143 .500 .437 .307 .209 .182 .183 .342

 Case #15 Case #15

 THETA .612 .737 .732 .679 .643 .629 .627 .646 THETA .619 .691 .701 .656 .633 .620 .616 .579
 RMSE1 .093 .193 .200 .161 .119 .101 .096 .093 RMSE1 .095 .162 .186 .144 .114 .105 .100 .099
 SIGMA .960 .497 .592 .756 .887 .968 1.025 1.260 SIGMA .974 .522 .604 .783 .895 .967 1.017 1.314
 RMSE2 .150 .512 .446 .320 .229 .199 .194 .314 RMSE2 .149 .492 .431 .286 .211 .180 .189 .365

 Case #16 Case #16

 THETA .615 .651 .644 .630 .619 .619 .621 .652 THETA .625 .613 .616 .615 .607 .603 .599 .573
 RMSE1 .101 .115 .115 .106 .101 .100 .104 .095 RMSE1 .101 .107 .109 .105 .101 .099 .098 .094
 SIGMA .971 .531 .634 .801 .915 1.000 1.059 1.348 SIGMA .967 .543 .639 .799 .909 .982 1.032 1.462
 RMSE2 .148 .482 .409 .286 .224 .193 .206 .397 RMSE2 .153 .470 .405 .278 .209 .189 .202 .504

 Case #17 Case #17

 THETA .623 .660 .650 .635 .627 .624 .623 .676 THETA .622 .590 .601 .604 .604 .604 .605 .506
 RMSE1 .095 .128 .122 .115 .106 .102 .102 .115 RMSE1 .102 .132 .131 .116 .114 .109 .108 .159
 SIGMA .963 .525 .615 .755 .863 .931 .971 1.619 SIGMA .963 .576 .659 .785 .859 .909 .942 1.840
 RMSE2 .145 .489 .422 .305 .222 .182 .181 .653 RMSE2 .145 .467 .404 .284 .216 .184 .172 .874

 Case #18 Case #18

 THETA .623 .617 .622 .622 .622 .622 .624 .579 THETA .612 .622 .622 .615 .612 .611 .611 .576
 RMSE1 .098 .127 .121 .112 .105 .099 .098 .132 RMSE1 .097 .133 .130 .126 .118 .109 .104 .140
 SIGMA .966 .524 .638 .790 .899 .962 1.003 1.398 SIGMA .963 .518 .612 .761 .863 .925 .969 1.570
 RMSE2 .148 .489 .405 .285 .208 .177 .168 .442 RMSE2 .149 .494 .423 .303 .224 .190 .175 .608

 1O ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA LS ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA

 Case #1 Case #1

 PHI .577 .565 .569 .570 .572 .575 .575 .574 PHI .566 .654 .692 .732 .763 .788 .799 .808
 RMSE1 .081 .111 .098 .091 .086 .082 .082 .079 RMSE1 .095 .129 .147 .171 .189 .202 .208 .213
 SIGMA .962 .696 .835 .921 .966 .996 1.016 1.071 SIGMA .951 .969 1.019 1.080 1.124 1.161 1.180 1.196
 RMSE2 .148 .345 .242 .187 .168 .161 .160 .169 RMSE2 .151 .166 .183 .213 .234 .251 .257 .263

 Case #2 Case #2

 THETA .631 .644 .634 .631 .631 .631 .630 .625 THETA .657 .296 .295 .315 .322 .289 .264 -.248
 RMSE1 .105 .162 .134 .121 .108 .105 .104 .096 RMSE1 .117 .429 .441 .443 .406 .443 .460 .850
 SIGMA .958 .697 .828 .907 .955 .986 1.003 1.064 SIGMA .956 1.750 1.735 1.610 1.504 1.521 1.553 3.139
 RMSE2 .147 .348 .245 .191 .173 .164 .165 .169 RMSE2 .147 1.373 1.254 .993 .708 .818 .775 2.165

 Case #3 Case #3

 THETA .625 .614 .608 .612 .612 .612 .612 .606 THETA .632 .820 .707 .645 .618 .602 .588 .534
 RMSE1 .101 .118 .100 .101 .093 .091 .090 .085 RMSE1 .107 .297 .201 .144 .122 .117 .109 .113
 SIGMA .958 .704 .834 .910 .955 .979 1.008 1.083 SIGMA .954 .947 .884 .921 .953 .978 .997 1.114
 RMSE2 .145 .335 .230 .184 .164 .156 .159 .176 RMSE2 .142 .698 .302 .195 .160 .158 .158 .191

 Case #4 Case #4

 PHI .568 .561 .562 .562 .564 .564 .565 .569 PHI .560 .676 .686 .698 .723 .746 .776 .862
 RMSE1 .086 .109 .098 .094 .089 .089 .089 .084 RMSE1 .096 .145 .151 .167 .184 .199 .218 .264
 SIGMA .964 .712 .837 .909 .950 .976 .999 1.139 SIGMA .964 .975 1.010 1.046 1.094 1.133 1.183 1.319
 RMSE2 .142 .335 .235 .189 .162 .160 .161 .208 RMSE2 .151 .176 .185 .214 .248 .279 .312 .372

 Case #5 Case #5

 THETA .624 .638 .629 .626 .622 .622 .622 .617 THETA .660 .299 .278 .268 .264 .246 .217 -.360
 RMSE1 .099 .166 .136 .115 .105 .104 .102 .098 RMSE1 .122 .426 .440 .467 .511 .497 .483 .962
 SIGMA .962 .695 .819 .888 .937 .968 .991 1.136 SIGMA .956 1.823 1.834 1.829 1.818 1.645 1.677 4.130
 RMSE2 .149 .348 .253 .199 .169 .161 .166 .212 RMSE2 .137 1.599 1.427 1.287 1.238 .869 .892 3.155

 Case #6 Case #6

 THETA .620 .608 .604 .604 .604 .605 .604 .603 THETA .627 .795 .697 .646 .623 .607 .598 .485
 RMSE1 .097 .110 .104 .102 .095 .092 .091 .086 RMSE1 .103 .274 .186 .128 .101 .101 .102 .143
 SIGMA .952 .699 .820 .890 .932 .963 .985 1.141 SIGMA .963 .929 .885 .921 .940 .964 .979 1.216
 RMSE2 .144 .342 .244 .189 .167 .159 .163 .210 RMSE2 .142 .717 .360 .234 .160 .155 .158 .277

 Case #7 Case #7

 PHI .571 .561 .565 .567 .567 .568 .569 .569 PHI .567 .710 .708 .695 .692 .697 .707 .895
 RMSE1 .088 .108 .101 .093 .090 .089 .086 .083 RMSE1 .094 .166 .175 .168 .166 .174 .183 .296
 SIGMA .957 .694 .814 .891 .929 .952 .964 1.226 SIGMA .964 .968 1.000 1.015 1.036 1.055 1.087 1.419
 RMSE2 .1 51 .348 .253 .1 97 .1 73 .1 63 .1 65 .289 R MSE2 .144 .1 63 .1 62 .167 .1 96 .217 .250 .466

 (continued)
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 Table 4. (continued)

 10 ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA LS ITV C = 2.25 2.50 2.75 3.00 3.25 3.50 ARIMA

 Case #8 Case #8

 THETA .636 .643 .633 .635 .634 .633 .634 .622 THETA .662 .250 .279 .257 .238 .237 .214 -.438
 RMSE1 .101 .145 .113 .119 .110 .110 .110 .086 RMSE1 .132 .486 .467 .463 .494 .555 .552 1.040
 SIGMA .965 .691 .823 .893 .932 .955 .970 1.228 SIGMA .967 2.016 1.924 1.940 1.970 1.939 1.837 5.277
 RMSE2 .145 .350 .248 .195 .168 .158 .159 .279 RMSE2 .148 1.960 1.817 1.497 1.562 1.602 1.151 4.308

 Case #9 Case #9

 THETA .614 .602 .601 .602 .601 .601 .600 .600 THETA .642 .804 .706 .662 .641 .632 .626 .447
 RMSE1 .099 .121 .102 .100 .093 .092 .092 .090 RMSE1 .111 .284 .184 .132 .110 .103 .096 .172
 SIGMA .957 .701 .823 .888 .926 .944 .960 1.236 SIGMA .962 .953 .882 .911 .943 .965 .972 1.347
 RMSE2 .154 .341 .243 .195 .174 .167 .168 .300 RMSE2 .142 .866 .356 .196 .178 .270 .270 .389

 Case #10 Case #10

 PHI .579 .533 .536 .553 .560 .563 .562 .562 PHI .551 .740 .745 .770 .796 .810 .808 .775
 RMSE1 .087 .153 .155 .128 .112 .101 .096 .087 RMSE1 .101 .171 .178 .197 .212 .217 .214 .183
 SIGMA .970 .559 .688 .859 .951 1.014 1.061 1.180 SIGMA .944 .696 .815 .945 1.046 1.112 1.153 1.462
 RMSE2 .137 .455 .361 .241 .192 .177 .181 .234 RMSE2 .149 .385 .333 .241 .216 .226 .249 .502

 Case #11 Case #11

 PHI .574 .452 .477 .518 .537 .548 .552 .416 PHI .564 .782 .770 .757 .746 .738 .733 .692
 RMSE1 .092 .211 .195 .157 .131 .117 .112 .212 RMSE1 .093 .196 .186 .171 .159 .152 .147 .111
 SIGMA .959 .556 .670 .808 .904 .960 .995 1.415 SIGMA .962 .626 .775 .939 1.046 1.103 1.138 1.332
 RMSE2 .151 .460 .380 .273 .213 .181 .168 .459 RMSE2 .142 .400 .315 .222 .201 .213 .235 .379

 Case #12 Case #12

 PHI .569 .462 .491 .526 .546 .559 .566 .439 PHI .569 .525 .535 .552 .563 .565 .564 .541
 RMSE1 .089 .198 .179 .143 .120 .107 .100 .191 RMSE1 .092 .149 .144 .117 .104 .097 .098 .106
 SIGMA .957 .551 .669 .816 .904 .950 .988 1.393 SIGMA .967 .540 .671 .812 .900 .945 .971 1.164
 RMSE2 .144 .463 .375 .262 .199 .167 .155 .437 RMSE2 .146 .477 .381 .264 .203 .177 .166 .238

 Case #13 Case #13

 THETA .618 .701 .715 .669 .634 .619 .615 .589 THETA .637 .658 .677 .650 .628 .617 .613 .542
 RMSE1 .100 .173 .197 .155 .125 .102 .100 .098 RMSE1 .115 .155 .186 .151 .120 .103 .101 .119
 SIGMA .959 .510 .612 .781 .884 .953 .990 1.285 SIGMA .958 .518 .609 .771 .879 .949 .985 1.426
 RMSE2 .153 .501 .481 .315 .225 .188 .176 .339 RMSE2 .146 .494 .436 .305 .212 .171 .159 .471

 Case #14 Case #14

 THETA .618 .716 .726 .679 .642 .627 .622 .617 THETA .632 .638 .666 .644 .627 .614 .607 .498
 RMSE1 .101 .171 .201 .158 .131 .109 .103 .083 RMSE1 .109 .135 .171 .144 .121 .105 .108 .128
 SIGMA .960 .507 .590 .746 .865 .938 .985 1.267 SIGMA .969 .537 .627 .780 .886 .952 .996 1.358
 RMSE2 .139 .501 .448 .314 .225 .182 .182 .316 RMSE2 .146 .477 .428 .290 .211 .181 .188 .404

 Case #15 Case #15

 THETA .621 .714 .723 .679 .641 .627 .626 .599 THETA .633 .629 .659 .645 .628 .621 .618 .471
 RMSE1 .098 .183 .200 .159 .119 .103 .099 .085 RMSE1 .103 .137 .162 .139 .119 .107 .106 .156
 SIGMA .960 .514 .595 .766 .889 .956 .998 1.265 SIGMA .953 .524 .612 .768 .884 .940 .978 1.364
 RMSE2 .147 .497 .436 .304 .209 .184 .178 .323 RMSE2 .149 .488 .424 .298 .211 .179 .178 .407

 Case #16 Case #16

 THETA .628 .652 .644 .632 .624 .619 .616 .652 THETA .627 .593 .600 .597 .594 .587 .578 .511
 RMSE1 .105 .119 .114 .109 .101 .095 .092 .098 RMSE1 .108 .114 .116 .110 .110 .109 .115 .130
 SIGMA .963 .523 .624 .778 .884 .942 .978 1.524 SIGMA .961 .547 .629 .778 .893 .960 1.015 1.566
 RMSE2 .150 .492 .416 .292 .210 .181 .167 .565 RMSE2 .145 .468 .406 .292 .209 .184 .193 .606

 Case #17 Case #17

 THETA .620 .643 .637 .623 .616 .610 .609 .638 THETA .631 .590 .606 .613 .614 .612 .610 .486
 RMSE1 .103 .119 .115 .102 .097 .094 .093 .099 RMSE1 .100 .123 .121 .110 .104 .102 .097 .172
 SIGMA .967 .524 .623 .774 .885 .954 .988 1.531 SIGMA .969 .563 .660 .784 .877 .933 .964 1.888
 RMSE2 .149 .492 .423 .306 .218 .181 .171 .569 RMSE2 .147 .470 .398 .288 .205 .175 .168 .919

 Case #18 Case #18

 THETA .628 .636 .634 .623 .619 .616 .615 .600 THETA .617 .611 .618 .617 .613 .611 .612 .544
 RMSE1 .100 .119 .117 .106 .102 .093 .092 .095 RMSE1 .098 .120 .120 .108 .100 .091 .089 .133
 SIGMA .958 .517 .624 .792 .902 .962 1.004 1.285 SIGMA .973 .522 .626 .776 .882 .950 .991 1.559
 RMSE2 .144 .495 .414 .278 .200 .178 .171 .333 RMSE2 .152 .490 .413 .298 .225 .187 .178 .599

 ITV: intervention model fitting; ARIMA: traditional ARIMA fitting; RMSE1: RMSE of the estimated model parameters; RMSE2: RMSE of the estimated residual standard deviations.

 timates over the 500 series. For each case and each type of

 outliers, there are eight sets of statistics, six of them associated

 with six different critical values, one with the intervention

 model (labeled as ITV), and the other with the usual ARIMA

 model without outlier adjustment (labelled ARIMA). The
 results associated with the intervention model may be re-

 garded as the best estimate in the sense that the correct in-

 formation of outliers has been used. The usual ARIMA es-
 timates are obtained without allowing for any outliers in the
 series. These estimates correspond to applying the proposed
 detection procedure with a critical value of infinity for outlier
 detection. The estimates associated with finite critical values
 can be interpreted as outcomes of the procedure allowing
 for various degrees of model perturbation in the form of
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 model (19). Examining the results presented in Table 4, we
 find that the AO, TC, and LS outliers may cause substantial
 bias in the estimation of model parameters, but the IO effect
 seems to be less serious on the model parameter estimates.
 It is not surprising to find that estimates of residual standard

 deviation are sensitive to all types of outliers, and the pro-
 posed procedure successfully obtains a more unbiased esti-
 mate of the residual standard deviation. It is found that AO
 and TC outliers occurring at the beginning and at the end
 of the series (cases 11, 12, 14, 15, 17, and 18) produce higher
 RMSE in the ARIMA estimates than do outliers in the mid-
 dle of the series. This finding suggests that outliers at the

 beginning and at the end of the series are more important
 in terms of their impact. When the critical values are too
 small (e.g., C = 2.25 and C = 2.5 in this study), the procedure

 tends to overadjust the series and produce unsatisfactory re-
 sults. When the critical values are gradually increased to a
 proper level, we observe that the estimates become more
 stable and more consistent with those obtained from the

 intervention models. But if the critical value is too large,

 fewer or no outliers will be detected and the results will be
 very close to those of usual ARIMA estimates. We find that
 in most cases there is a range of critical values with which

 the procedure produces comparable improvements on the
 parameter estimates and RMSE's with respect to the inter-
 vention model. In practice it is useful to use the proposed
 procedure on data subsets with a range of critical values.
 This may help reveal structural changes other than those

 discussed in this article. To obtain better understanding of
 the outlier effects, it is very informative to plot the adjusted
 series as well as the actual observed series.

 The cases of an LS outlier in an MA(1) (cases 2, 5, and
 8) require some explanation. The empirical distribution of
 the parameter estimates in this case is bimodal, with one
 mode near -.4 and the other mode near .5. The former is

 associated with situations in which the procedure fails to
 detect the LS outlier, and the latter corresponds to situations
 in which the LS outlier is successfully detected and adjusted.
 This is the reason that the sample mean of the parameter
 estimates is biased toward 0. These cases also indicate that
 the procedure may be less effective when the initial fitted
 model departs substantially from the true model.

 4. AN ILLUSTRATIVE EXAMPLE

 Here we consider the analysis of the variety store series
 discussed in Hillmer et al. (1983). In this example we dem-
 onstrate (a) the detailed steps of the new procedure, (b) the
 improvement provided by the new procedure, and (c) the
 comparison between estimates obtained from the interven-

 tion model incorporating the outliers and those from the
 proposed joint estimation procedure.

 The data analyzed here are the time series of the log-trans-

 formed monthly retail sales of variety stores after the ad-
 justment for trading day and holiday effects. The series begins
 in January 1967 and ends in September 1979. The plot of
 the series was given in Hillmer et al. (1983) . A strong seasonal

 pattern and a level drop during 1976 can be found in the

 time series plot. Hillmer et al. (1983) used this series to il-
 lustrate the application of an iterative outlier detection pro-

 cedure developed in Chang (1982). The following ARIMA
 model is found to be appropriate for the observed series:

 _771 (1 - 012B'12) (1 - (1 - - B 2B 2) at. (21)

 To contrast the results between the procedure described in
 this article and that used by Hillmer et al. (1983), only the
 AO and 10 types are considered in the first part of the anal-
 ysis. Table 5 summarizes the results using the 5% trimmed
 method to estimate the residual standard deviation. The re-
 sults obtained using the other two methods (the omit-one
 and the MAD methods) are quite similar and are not reported
 here. The critical value C = 3.0 is used to detect outliers.

 Table 5 is organized in three panels to provide the main
 results from each stage of the iterative procedure. The top
 panel summarizes the results of estimation and detection
 from iteration 1 to iteration 3 in Stage I. The procedure in
 this stage detects a total of six outliers. The middle panel
 covers Stage II, at which outlier effects are jointly estimated
 and the insignificant ones removed. In this case, outliers de-
 tected at t = 103 and t = 73 are not significant for the critical
 value C = 3.0 and are hence removed. The final estimates,
 reported in the row labelled 11.4, are obtained based on the
 series adjusted for the effects of the four outliers. The bottom
 panel reports on Stage III, during which the detection pro-
 cedure is run again without reestimating the model param-
 eters. Nine outliers are detected in the intermediate steps.
 However, after joint estimation of the outlier effects, only
 six outliers are considered significant, and the final results
 are reported at the last step of 111.2. Similar results are ob-
 tained using the MAD and the omit-one methods. The only
 major difference is the outcome in the intermediate steps of
 outlier detection. The 5% trimmed method tends to identify
 more outliers in the intermediate steps, but the step involving
 joint estimation of outlier effects successfully removes the
 spurious outliers.

 Applying the procedure considered in Hillmer et al.
 (1983), nine outliers are identified during six iterations of
 model estimation. Their outlier detection results are closely
 compatible with those obtained in the intermediate iterations
 of stage I and III in the new procedure, but their final results
 are different from those obtained from the new procedure-
 particularly the estimate for 012 (612 = .89 in Hillmer et al.
 versus b12 = .62 using the new procedure).

 To overcome potential misidentification of outliers, we
 now consider all four types of outliers, 10, AO, LS, and TC.
 The joint estimates of model parameters and outlier effects
 using the new procedure are listed below (numbers in pa-
 rentheses are the t values of the estimates):

 012 = .7128, X1 = -.6871, 2 =-.4617, aa=.02404.
 (12.84) (-9.08) (-6.11)

 Outlier Estimate t Value Type

 t =45 .094 5.19 TC

 t= 96 -.083 -4.36 AG
 t= 112 -.176 -10.20 LS

 These estimates are obtained using the 5% trimmed method
 for estimating the residual standard deviation. When the
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 Table 5. Parameter Estimation: The 5% Trimmed Method With Outlier Types AO and 10

 111. 1

 1.1 (Iteration 1) Inner Loop (1.2 and 1.3)

 012 01 102 aa Time Estimate t Value Type

 .8407 -.3969 -.2673 .02501 112 -.15 -5.98 10
 96 -.08 -3.83 AO

 (17.12) (-4.83) (-3.26) 113 -.09 -3.60 10
 45 .08 3.39 10
 103 -.07 -3.30 AO

 1.1 (Iteration 2) Inner Loop (1.2 and 1.3)

 .7040 -.5616 -.3361 .024653 Time Estimate t Value Type

 (12.28) (-6.97) (-4.18) 73 .07 2.67 10

 1.1 (Iteration 3) Inner Loop (1.2 and 1.3)

 .6864 -.5409 -.3161 No outlier detected

 (11.82) (-6.65) (-3.90)

 11.1-11.3 (Joint Estimation of Outlier Effect)

 Time Estimate t Value Type

 45 .091 3.30 10
 96 -.079 -3.63 AO
 112 -.150 -5.46 10
 113 -.121 -4.39 10

 11.4 (Final Estimation)

 012 ki 02 aa

 .6202 -.6062 -.3828 .02656

 (9.65) (-7.67) (-4.86)

 111.2, Step I (Outlier Detection Based on Final Parameter Estimates)

 Iteration 1 (Inner Loop) Iteration 2 (Inner Loop)

 Time Estimate t Value Type Time Estimate t Value Type

 112 -.15 -5.58 10 103 -.05 -2.83 AO
 113 -.13 -5.08 10 73 .07 2.67 10
 96 -.08 -3.83 AO 136 .07 2.65 10
 45 .09 3.54 10 Iteration 3 (Inner Loop)
 124 .08 3.19 10
 114 -.08 -3.16 10 No outlier detected

 111.2, Step 11 (Final Results of Outlier Detection)

 Time Estimate t Value Type

 45 .094 3.54 10
 96 -.079 -3.83 AO
 112 -.148 -5.58 10
 113 -.135 -5.08 10
 114 -.084 -3.16 10
 124 .085 3.19 10

 omit-one and the MAD methods are used, the results are
 similar except for some minor differences on the parameter
 estimates. It is useful to note that by allowing for a more
 complete set of outliers, we obtain fewer but more meaningful
 outliers. In addition, the estimated standard deviation is re-
 duced to &a = .02404 (compared with &a = .02667 when
 only AO and 10 are considered).

 Based on the preceding results, we can explicitly incor-
 porate the outlier effects in model (21) and estimate the fol-
 lowing intervention model:

 VV12 Yt - VV12IA(45) + W2VV12It(96)
 1- .7B

 + - 3VV12It(1 12)+ (1 -6012B'12) .22
 1-_B (1 - q51B -02 a2 (22

 Using the exact maximum likelihood method, the following

 estimates of model (22) are obtained

 b12 = .7123, kI = -.6877,
 (12.84) (-9.05)

 k2 = -.4622, Ca = .02352,

 (-6.10)

 = .0956, (02 = -.0837, (03 = 7.166.

 (5.35) (-4.44) (-10.42)

 It is found that the estimates obtained from the new joint

 estimation procedure are very close to those obtained from

 the intervention model with outlier information incorpo-
 rated. If we consider the results of the intervention model
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 to be the accurate ones, then the maximum difference in

 parameter estimates produced by the new procedure is less
 than 1% in this case.

 5. SUMMARY AND CONCLUSION

 In this article we study the issue of multiple outliers (AO,
 IO, TC, and LS) in time series modeling. We discuss potential

 masking and spurious effects using the traditional detection
 procedure and develop an iterative procedure for joint es-

 timation of model parameters and outlier effects. Applying
 the proposed procedure, we obtain estimates of the model

 parameters with the consideration of a potential departure
 from the usual ARMA models. In this sense, the procedure

 provides a tool to bridge the gap between the reality and the
 traditional ARMA models in time series analysis.

 Sampling behavior of the associated test statistics is in-
 vestigated through a simulation study. It is found that both

 the length of the series and the method of estimating the
 residual standard deviation have impact on the choice of the

 critical value. The memory pattern of the underlying model
 does not seem to have major influence on the behavior of

 the test statistics except for the level shift test statistic. In the

 performance study we find that the proposed procedure is
 quite effective in outlier detection and parameter estimation
 when proper critical values are used.

 An example is used to illustrate the application of the
 procedure. Based on this example and other studies, the pro-

 cedure seems to be effective in reducing spurious and mask-
 ing effects. The estimates of the model parameters using the
 new procedure are essentially identical to those obtained by

 explicitly incorporating the outliers in the model. Further
 applications of this joint estimation procedure to intervention
 analysis and transfer function modeling can be found in Liu
 and Chen (1991). It is shown that outlier adjustment is an
 indispensable part of intervention analysis.

 [Received September 1990. Revised November 1991.]
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