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INTRODUCTION

It is frequently desired to obtain certain derived quan-
tities from economic time series. These include smoothed
values. deseasonalized values, forecasts, trend estimates,
and measurements of intervention effects.

The form that these derived quantities should take is
clearly a statistical question. As with other statistical
questions. attempts to find answers follow two main
routes: An empirical approach and a model-based ap-
proach.

The first appeals directly to practical considerations,
the latter to theory. We shall argue that best results are
obtained by an iteration between the two and further
show how this process has led to a useful class of time
series models that may be used to study the questions
mentioned above.

A SIMPLE EXAMPLE

To illustrate with an elementary example. consider the
classical problem of selecting a measure of location M for
a set of repeated measurements Z1, Z2 Z,,. Arguing
empirically: (I) If it were postulated that a change in any
observation to should have a linear effect on the
location measure changing M to this would imply
that M was of the form

M= (I)

(2) Suppose it was further postulated that if the set of
observations all happened to be equal to some value Z,
then M should also be equal to Z. This would imply that

(2)

(3) Finally, if there were no reason to believe that any
single observation supplied more information about M
than any other, then the ws might be taken equal so that

;v,=n', (j=1, 2, ..., n) (3)

Thus, from this empirical argument, M would be the
arithmetic average, Z, of the data.

From a theoretical or model-based viewpoint, the same
quantity Z might be put forward if it were believed that

the generation of the measurements was realistically
simulated by random sampling from a Normal population.
From this premise, well-known mathematical argument
would lead to Z.

Iteration Between Theory and Practice

The empirical method and the model-based method of
attack are each employed by knowledgeable statisticians
and are sometimes thought of as rivals. But they are, we
believe, only rivals in the same sense that the two sexes
are rivals. In both cases, isolation is necessarily sterile,
while interaction can be fruitful.

The model-based approach works only if we can postu-
late a realistic class of models. But, from where are such
models to come? One important source is from empirical
procedures that have been found to behave satisfactorily
in practice. Suppose, for a particular type of data, practical
experience shows that the arithmetic average measures
location well. Then, we can be led to the standard
Normal model by asking what assumptions would make
Z a good measure of location.

But, if 2 can be arrived at empirically, where is the
need for a model? The answer is, of course, that the
existence of a model acts as a catalyst to further develop-
ment. In particular, a model allows—

I. Constructive criticism of the original empirical idea.
For instance, model-based arguments that recom-
mend 2 on Normal theory assumptions can also
warn of consequences. not easily foreseen from an
empirical standpoint, if the population is Cauchy-like
or contains an outlier. It can also suggest better
functions of the observations in these latter circum-
stances.

2. Generalization of the idea. For instance, in cases
where the Normal theory assumptions are sensible
for estimating a mean, they are equally sensible for
more general models, leading in particular to the
method of least squares estimation.
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310 SECTION V

History seems to show that most rapid progress occurs:
when theory and practice are allowed to confront, criti-
cize, and stimulate each other. A brief sketch of some
historical developments in time series analysis illustrates
this point.

ITERATIVE DEVELOPMENT OF SOME IMPORTANT
IDEAS IN TIME SERIES ANALYSIS

Visual inspection of economic time series, such as
annual wheat prices, suggests the existence of cycles.
When Beveridge [2] fitted empirical models containing
linear aggregates of cosine waves plus Normally distrib-
uted independent errors, statistically significant cycles,
indeed, appeared. However, these cycles had exotic and
mysterious periods for which no direct cause could be
found. This led Yule [35] to propose a revolutionary kind
of model in which it was supposed that time series could
be represented as the output from a dynamic system
excited by random shocks. The dynamic system was
represented by a difference equation, and the random
shocks were represented by independent drawings from a
Normal distribution.

For illustration, suppose the sequence {Z,} is a time
series with mean and {a,} is a sequence of independent
drawings from the distribution N(O, as), which we shall
call white noise. Then, an important model proposed by
Yule was the second-order autoregressive process

where

With B the back-shift operator, such that Bz1=z,_1, this
model may be written

(l—41B—42B2)z,=a, (4)

If in (4) the second-degree polynomial (with B treated
temporarily as a variable) has complex zeros, then the
impulse response of (4) can be oscillatory, and the
generated series can exhibit pseudocyclic behavior, like
that of the economic data.

More general dynamic characteristics may be obtained
with a model of the form

(5)

where the polynomial is
called an autoregressive operator of order P and
0(B)=l—01B—02B2—. . is called a moving average
operator of order q. The resulting model (5) is called an
autoregressive moving average process of order (P, q), or
simply an ARMA (P, q) process.

In the decades that followed Yule's proposal, evidence
was obtained for the practical usefulness of models of the
form of equation (5), and much study was given to them.

Authors, notably Bartlett, Durbin, Hannan, Jenkins,
Kendall, Quenouille and Wald, studied their properties
including their autocorrelation functions, methods for their
fitting, and tests for their adequacy.

Heavy emphasis had, up to this time, been placed on
the stationarity of time series, and it was known that, for
a stationary process, the zeros of in (5) had to lie
outside the unit circle. However, in the 1950's, operations
research workers, such as Holt [l4; 23] and Winters [33],
required methods for smoothing and forecasting nonsta-
tionary economic and business series. Their need sparked
a return to empiricism, resulting in the development and
generalization of exponential weighting for smoothing and
forecasting.

Suppose it is desired to measure the location at current
time t of a nonstationary economic time series {Z1}. For
this purpose, the first two postulates advanced before,
resulting in equations (I) and (2), would seem appropriate,'
so that

with >2w2=l
j=u j=u

However, it is sensible to require that the current value
Z, should be given more weight than the penultimate
value Z,_1, which, in turn, should have more weight than
Z,_2, etc. If the weights are made to fall off exponentially,
so that Ow3, where 0<0< I is a smoothing constant,
then, since it follows that The
measure M, was called an exponentially weighted average
and has the very convenient property that it can be
updated by the formula M,÷1=(l—6)Z,+1+OM,.

The practical usefulness of this measure soon became
apparent, and it was developed and generalized by Brown
[II; 12] and by Brown and Meyer [13]. One important
application was to employ as the one step ahead (lead
one) forecast Z,(l) of where the notation Z,(!) refers
to a forecast made! steps ahead from time origin t. Thus,
in this application

Z,(I)=(l0) >2 (6)
3=0

The practice-theory iteration proceeded through one
more important step when Muth [27] asked what stochas-
tic process would be such that (6) provided a forecast
having minimal mean square error. He showed that the
required stochastic process was of the form

—1<0<1 (7)

This is a nonstationary process of the form of (5) with
P=l, q= I, and I. Thus, a root of is on the unit
circle.

The account of further developments follows the ap-
proach adopted by Box and Jenkins [3; 4; 5; 6; 7; 8; 9].

Empirical evidence from control engineering also
pointed to the importance of nonstationary stochastic
models of the form of (5), having roots on the unit circle.

'The expressions that follow imply an infinite series of past data.
However, since in practice the weights quickly decay towards zero,
M1 can be calculated to required accuracy from a fairly short series.



• Long before the introduction of James Watt's governor,
empirical methods of feedback control were being devel-
oped; Mayr [26]. The earliest forms used control in which
the adjustment Xt at time t was made proportional to the
deviation et from target T of some objective function

The adjustment function, or controller, was,
thus, of the form Adjustments with such control-
lers lagged behind when trends occurred in the disturb-

• ance, and it was soon realized that control could often be
greatly improved by adding an integral term. Equivalently,
for discrete control with observations and adjustments
made at equally spaced times, a summation terms Se1 such

that Se1= was added yielding a controller

x1=—(k1e1+k2Se,)

Since such proportional plus integral controllers have been
eminently successful and continue to be widely used

lue throughout the process industries, it is natural to ask
ite "What theoretical setup would make such a controller
an optimal?" Supposing, as would often be the case, that the

dynamic relation between and Yt could be roughly
approximated by a first-order system, modeled by the

he difference equation It is easily shown that
ge the control equation (8) would be optimal for a disturbance

modeled by the stochastic process (7).
Thus, successful empiricism in two widely different

fields point to the usefulness of models in which a first
difference VZ,=(l-.B)Z,, or possibly a higher difference

could be represented by a stationary
model. It, subsequently, turned out that such a class of
models had, in fact, been proposed by Yaglom [34]. Such
models are, thus, of the form

where and with P=p+d. In this model,
is a stationary autoregressive operator of degree p.

having zeros outside the unit circle, is the
difference of the series, and 0(B) is of degree q and has
zeros outside the unit circle. Such a model is called an
autoregressive integrated moving average process or
ARIMA of order (p, d, q). More generally, these devel-
opments point to the possible usefulness of models in
which one or more of the zeros of p(B) in (5), although
not necessarily unity, lie on the unit circle. In what
follows, where is the mean of the series if
stationary and, otherwise, is any convenient origin.

Properties of the ARIMA Models

It now becomes appropriate to test whether these
generalizations of models arising from successful empiri-
cism are practical.

Two relevant questions are—

I. What kinds of dependence of a current value z1 on
past history can be represented by the model?

311

2. What kinds of projection or forecast of a time series
are possible with the model?

Dependence of Zt on Past Values

Any model of the form of (5) can be thought of as an
autoregressive model of possibly infinite order. Thus,

lrjz€_j+at+i (10)
J—0

In this model, the one-step-ahead forecast

is a linear aggregate of previous observations.

(8) Using parlance popular in econometrics, the forecast is
obtained by applying a distributed lag weight function2 to
previous observations. Alternatively, the weights can
be thought of as defining the memory of the past,
contained in the current value z1.

Now, many forms have been proposed by econometri-
cians for distributed lag-weight functions. How general
are those implied by (5)?

This equation may be written

(II)

which may be compared with (10), written as

ir(B)z1=a1 (12)

ir(B)= l—ir1B--ir2B2-...

By equating coefficients in the identity p(B)=0(B)ir(B),
(9) the ir weights may be calculated correspondingly for any

choice of the polynomials p(B) and 0(B). Also, the nature
of these weights may be deduced, and it can be shown
that using this form we can represent—

1. A finite set of ir weights that are functionally
unrelated when we have a pure autoregressive model
in which 0(B)=l.

2. Of more interest, a convergent series of ir weights
that, after any desired number of initial, unrelated
values, follows a function which can be any mixture
of damped exponentials, sine and cosine waves
satisfying the difference equation 0(B)ir,=0. Conver-
gence is assured by the requirement that the zeros of
0(B) lie outside the unit circle.

Convergence of the weights seems essential for any
sensible memory function. The class of functions included
is sufficiently rich to be capable of representing a very
wide variety of practical situations.

2 Distributed lag models are usually credited to Irving Fisher [18)
but were used earlier by R. A. Fisher [19].
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312 SECTION V

Forms of Projection Implied by the Model

The model in the form (10) forz,÷, is

lrjz,÷i_j+az+, (13)

Multiplying both sides by
and choosing the 1—I coefficients tjt2, ..., so that
the coefficients of zt+,_i, zg÷,—s, . . ., are all zero, we
can write (13) as

'—I

Zt+,

where 1. In fact, the ijs's are obtained by equating
coefficients in IT(B)ljs(B)= I, where iji(B) is the infinite
series l+iJi1B+*$i2B2+....

Now, suppose that (14) is written in the form

Then W) is the conditional expectation of z1÷, given all
past history up to time t which we will also write as

It may be shown (see, e.g., [32]) that this condi-
tional expectation is the minimum mean square error
forecast of z,÷1, made at origin t.

Consider the forecasts ...,
all made at origin t. The values together yield a forecast
fiinctionf(!, that constitutes the appropriate projection
of the series.

Specifically, (15) may be written

wheref(1, is some function of!, with bw
a vector of coefficients that are fixed for any origin t but
are updated when the origin is advanced.

For example, if the model (5) were of the form

(17)

it is readily shown that the forecast function at origin :
would be a straight line

(18)

Any series that could be regarded as an outcome of the
model (17) should, thus, be projected or forecasted along
a straight line.

Writing the model for Z,+i in the form of (5) and taking
conditional expectations

(19)

It is. thus, easily seen that possible forecast function8
are—

I. A set of unrelated values, followed by a fixed value
equal to the mean when we have a pure moving
average model with p(B)= I.

2. Of more interest, any mixture of polynomials,
damped exponentials and damped sine and cosine
waves, possibly preceded by one or more unrelated
values.

We see, therefore, that the forecast functions implied
(14) by the model are also sensible and of sufficient variety to

satisfy many practical needs.
The relationship (16) has a form that is of interest quite

apart from forecasting. The function f(!, supplies all
the information about that is available up to time t,
while represents information that enters the system at
a later time. If, in (5), P�q, then e,(1) is a

(IS) integral, andf(!, is the complementary function of(S),
i.e., it is the solution of

(21)

Adaptive Updating of Forecast Function

It may be shown, by taking conditional expectations,
that the coefficients in the forecast function are
automatically updated as the origin for the forecast is
advanced. Thus, for the model (l—B)2z, = (l—01B—02B2)a,,

(16) for which the forecast function is the straight line
the updating are

= X,a,÷ (22)

X0=l+92; X11—81—.82 and U1+1=Zf+1—Z1(1) (24)

Such formulas can be obtained for any stochastic model
of the form of (5) and its associated forecast function.

From this, we reach the following conclusions: Time
series models of the form of (5)—

I. Yield a sensible and rich class of memory functions,
relating the dependence of present on the past.

2. Yield a sensible and rich class of forecasi (comple.
mentary) functions for describing the future behavior
of the series, which depends on the past

Obviously, would be the updated intercept if no adjust.
ments in the coefficients were made. The constants A, and A,. which
are functions of the model memory parameters, determine the changes
necessary in the coefficients in the light of the discrepancy a,+,=z1+,—

(20) between prediction and actuality.
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3. Yield a sensible procedure for updating forecast
functions.

This serves to show that the proposed models are not
arbitrary. Indeed, if the desirable characteristics listed
were set out as requirements for a model, it can be

shown that we would inevitably be led to the form (5) for
the generating stochastic process. There is, thus, a strong
prima facie case in favor of this form of model.

Further properties. however, are needed for success,

It should be possible to build a model from available
data. When an actual time series is under study, the
appropriate form of the model within the general
class and appropriate values for the memory param-
eters and ç,=(p1 .p.)' should be
deducible from the time series itself. The deduced
stochastic model will then automatically determine
the form of the forecast and memory functions.
Evidence from many applications should show that
the models do adequately represent real series, and
application to problems, such as forecasting and
intervention analysis, Box and Tiao [10], ought to
have yielded satisfactory results with reasonable
consistency.

Model Building

Models have been built using the following three-stage
iterative procedure (identification-fitting-diagnostic check-
ing):

I. Identification seeks a tentative model form, worthy
to be entertained. In particular, it should suggest
appropriate orders for the polynomials 4(B) and
0(B), indicate needed transformation of the series,
and indicate appropriate orders of differencing. It is
usually accomplished chiefly by graphical inspection
of the time series and of computed auxiliary sample
functions, such as the autocorrelation function, par-
tial autocorrelation function, and, in some cases, the
spectrum.

2. Fitting involves the estimation, by maximum likeli-
hood, of the memory parameters and 0 and,
where necessary, the parameters of the transforma-
tion.

3. Diagnostic checking is intended to show up inadequa-
cies in the model and to suggest remedies. It is
usually accomplished by inspection of residuals and
of their computed auxiliary functions. When inade-
quacies are found, a further iterative cycle is initi-
ated.

Evidence From Applications

In recent years, applications of these methods have
become increasingly common not only in economics and

business but in widely diverse areas, such as environmen-
tal studies and educational psychology. Indeed, it is nearly
impossible to keep up with the literature. Up to now,
these applications have dealt with forecasting and with
intervention analysis. This literature seems to show that
models of this general class have usually worked success-
fully over a very wide field of subject matter.

Seasonality

Seasonality is a phenomenon commonly found in eco-
nomic, environmental, and other time series. Models of
the form (5) are, in principle, sufficiently general to
represent such series, but, to allow representation in a
most parsimonious fashion, special forms of (5) have been
worked out and have proved useful.

Seasonal series are such that similarities occur at
equivalent parts of a cycle. As an example, consider
monthly data for department store sales that might have a
seasonal pattern of Christmas, Easter, holidays,
summer vacations, etc. Now, sales for a particular month,
e.g.. December, might be related from year to year by a
model like (2.2) in which B is replaced by B'2. Thus,

'D(B '2)Ut (25)

We may suppose that a similar model applies to the other
months. However, the residual u,'s from such a model
would be expected to be dependent from month to month.
If they can be related by a model

p(B)u,=0(B)a, (26)

then, on substituting (26) in (25), we obtain the seasonal
model

'2)O(B)a, (27)

For illustration, a typical form of a seasonal nonstation-
ary model that has been identified and used successfully
in many economic series arises when the functional form
(7) represents both monthly and yearly components. It is,
thus,

(l—B)( I—B '2)z,=( l—01B)( l—02B '2)a, (28)

Figure Ia shows the ir weights for this model when it is
written as an infmite autoregressive process of the form of
(10)

(29)

To see the implications, note that if we use to mean
an exponential average of the form of (6), then the model
may also be written

z,+,=z,8'+ (30)
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Figure la. 11'WEIGHTS FOR MODEL (2.25)

SECTION V
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Figure lb. FORECAST FUNCTION FOR MODEL (2.25)
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takes the appealingly sensible form of a crude forecast
which is an exponential average taken over previous

months, corrected by an exponential average of discrep-
ancies between similar crude forecast and actuality for the
same month, discounted over previous years.

More generally, any model of the form of (27) may be
written

p(B)

0(B) e(B12)Ztt

which may be interpreted as before but with monthly and
seasonal weights following a more general, and not neces-
sarily, exponential pattern.

The particular model (28) written in the form of (16)
becomes

+e,(1)

The typical appearance of the forecast function is sketched
in figure lb. In this expression, the forecast function
consists of an updated straight line plus seasonal adjust-

ment factors such that These factors are

automatically adjusted as each new piece of data comes to
hand and are weighted averages of past data.

Alternatively, (33) may be written

51 /2jir\ 2jir 1
cos sin (—jy)J (34)

J=1

In this form, the seasonal component contains a complete
set of undamped sinusoids, adaptive in amplitude and
phase with frequencies 0, 1, 2, ..., 6 cycles per year.
These components are associated with the 12 roots of
unity on the unit circle produced by the operator
and indicated in figure lc. Thus, the complementary
function is a solution of

(1—B)(l--B '2)f(1,

Sununary

We have attempted to show that, as a result of the
practice-theory iteration extended over many decades and
carried on by many different investigators, a class of
stochastic models capable of representing nonstationary
and seasonal time series has evolved. When these models
have been employed for forecasting and intervention
analysis, they have worked well. There is no reason to
believe that they would be any less useful for a model-
based attack on problems, such as smoothing and seasonal
adjustment. These problems are now considered.

SMOOTHING AND SEASONAL ADJUSTMENT

Like other problems, smoothing and seasonal adjust-
ment can be tackled from either an empirical or a model-
based point of view. Also, like other problems, it is fairly
certain that an iteration between the two approaches in

(33) which each stimulates the other is likely to be most
fruitful. Inspired empiricism, as we have seen, first pro-
duced exponential smoothing and its generalizations. It
has also produced valuable methods for seasonal adjust-
ment, exemplified, in particular, by the census X—l I
procedure, Shiskin et al [29].

The additive version of the census procedure assumes
that an observed time series {Zt} can be written

(36)

where St is the seasonal component, Pt IS the trend
component, and e, is the noise component. Specific
symmetric filters of the form

(37)

with are employed to produce estimates Sb and
of these unobserved components. For the majority of

economic data met in practice, the weights used for
computing and are shown in figure 3, given later in
this section. The procedure has been widely used in
Government and industry and found to produce sensible
results.

r
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or equivalently of

(l—B2)(l+B+B2+... +B'1)f(1,

or equivalently of

+B2)(1 +B2)(l +B +B2)

(31) 1>13 (35)

More elaborate models produce appropriately more elabo-
rate weight functions and forecast functions.or

R(B)Q(B '2)z,=a,

where

R(B)=l-R1B-R2B2-... and

Now write

for the weighted sum R1z,+R2z,_1+...

and

for the weighted sum

Then

z1+1 {Zt_i t2} (32)
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The empirical success of this procedure motivated
Cleveland and Tiao [16] to ask the question: Are there
stochastic models for S1. p1 and e1 for which the census
procedure would be optimal? In general, if each of these
components follows a model of the form (5), then, the
minimum mean square error estimates of p1 and are,
respectively, the conditional expectations E(p,Ig) and

They showed that if the components follow the
models

(1—B)2p1=(1 +O.49B—0.49B2)c1

(1—B '2)S1=(1 (38)

and {c1}, {b1}, and {e1} are three independent Gaussian
white-noise processes, such that and

14.4, then the conditional expectations E(p1J;) and
will be of the symmetric form (37), with weights

almost identical to the corresponding weights of and St
for the census procedure. This finding makes it possible
to assess, at least partially, the appropriateness of the
census procedure in a given instance. Specifically, expres-
sion (38) implies that the overall model for is

(l—B)(l—B'2)z1=0(B)a1 (39)

where 0(B) is strictly a polynomial in B of degree 25, but
the two largest coefficients are and 012=0.42.
This model is broadly similar to the one in (28), although
the moving average structure is different. The implication
is that the use of the census procedure for seasonal
adjustment would be justified in situations where the
series can be adequately represented by the model (39).
On the other hand, if the model for a series {z1} were
found to be vastly different from (39), then the appropri-
ateness of the census decomposition would be in doubt.

The significance of this consideration is that it links the
empirically successful census decomposition procedure to
a model (39), for which this appropriateness can be
verified for any given set of data. It should be borne in
mind that, since only the series {z1} is available, any
smoothing or seasonal adjustment procedure in the frame-
work of (36) is necessarily arbitrary. On the other hand,
whatever procedure one uses must at least be consistent
with a model of z1 which can be built from the data. A
procedure satisfying this minimum requirement will be
called a model-based decomposition procedure.

We now consider what procedures would be produced
using the stochastic model in (5). We will suppose that,
by using past values of the series, a model has been
carefully built in exactly the same way as for any other
time series application, i.e., by an iterative sequence
involving identification of a model worthy to be enter-
tained, efficient fitting of the tentative model, and diagnos-
tic checking of the fitted tentative model. Based on such
a model for the observed series {z1}, we shall then derive
smoothing and seasonal adjustment procedures, illustrate
how these derived procedures behave with actual data,
and compare the results with other methods.

SECTION V

It is helpful for the development of ideas to first
consider the simpler smoothing problem when there are
no seasonal components and then to build onto this to
develop seasonal adjustment methods.

Trend Plus Noise

We make the following assumptions, referred to as
assumption I:

1. {T1} is an observed time series following the known
model with d1 being independent
drawings from N(O,

2.. ço(B) is a polynomial in B of degree p with zeros on
the outside of the unit circle, is a polynomial of
degree u with zeros outside the unit circle, and 42(B)
and has no common zeros.

3. with {p,} and {e1} being independent of
each other.

4. {pj is a stochastic process following some ARIMA
model.

5. is a Gaussian white-noise process, with mean 0
and variance

An estimate of p1 is required from the time series {T1}.
When the models for p, and e1 are given, the solution to
this problem has been derived by Weiner [30], Kolmogo-
roy [24], and Cleveland and Tiao [16]. In the analysis of
economic time series, however, it is reasonable to assume
that only the model for T1 is known. It is important,
therefore, to consider how the models for Pt and e1 are
restricted by this knowledge. On assumption I, the follow-
ing results are readily proved (see, e.g., Cleveland [IS]):

I. The autoregressive part of the model for Pt is the
polynomial

2. The model for p1 is where is a
polynomial in B of degree less than or equal to
max(p, u), and c1 are independently distributed as
N(O,

3. (40)

where Obviously, numerous combinations
of and a(B) will satisfy equation (40).

In the remainder of this section, we sketch the results
set out in more detail in Hillmer [22]. A model for p, is
called an acceptable model if, given the model for T1—

I. a(B) satisfies equation (40) for some and

2. The zeros of a(B) lie on or outside the unit circle.

It is easy to obtain the following results:

1. Every given model for T1 has at least one acceptable
model for Pt.

2. Given the model for T1 the possible values of are
bounded. We call this bound K*.
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3. Given the model for T,, then every in the range
determines a unique acceptable model

Result (I) follows from letting in which case p,=T,
with probability one. Result (2) follows from the fact
that, for a model to be acceptable, we require

for all BI= I. Then, from equation (40),

for all I. For result (3), if

then (F)=g(B) is nonnegative
for B on the unit circle. Therefore, g(B) determines a
unique moving average polynomial a(B).

When T1=p,, and there is no smoothing. When
on the other hand, the variance of the added

white noise is maximized.
An illustrative example—For illustration, consider the

rate of change in the consumer price index. Box and Tiao
[10] have studied this time series and found that the model

adequately describes its behavior from 1953 to 1971. If we
assume that this time series follows assumption I, then
the model for must be of the form

(l—B)p,=(l—aB)c1

Figure 2 shows the original and smoothed processes for
various values of oj and a. Also shown are the weight
functions, implicitly employed when the smoothed
value is written in the form

The functions illustrate the case in which the time series
available is T1, T2, . . and t is not close to an end
value. The details of how the smoothing was carried out
for this example are given later in this section.

While it seems natural in the practical circumstance
when oj is unknown to choose the variance of the added
noise as large as possible, it is also to be noted, as in this
example, that a wide range of models for correspond to
approximately the same Furthermore, for this exam-
ple, models for Pt with a in the range —I will imply
almost identical smoothed estimates.

Smoothing with maximum proceed then on the
basis that the smoothing to be used should maximize
It is readily shown that-

!. The bound K*, is attainable.
2. The bound K* occurs when the moving average

polynomial of the for has a zero on the
unit circle.

To see (I),

K*=min
(B)tp(F) I181=1

which can be calculated given the model for T1. Now for
(2), if we let

g(B) is a covariance generating function
that uniquely determines a and such that

Furthermore, is uniquely determined such that it
has at least one zero on the unit circle and the remainder
of its zeros on or outside the unit circle.

Deviation of the smoothing weights and calculation of
end values—Therefore, given any model for T1, we can
calculate the maximum that is consistent with the
model for We shall see that knowing oj is sufficient to
be able to carry out the smoothing. Cleveland and Tiao
[10] have established the following results:

I. When t is not close to the beginning or end of a
time series, the smoothed estimate, is a symmetric
moving average Qf T1 where the weights, are
given by the coefficients of B in the generating
function

a(B)a(F)

17 (B )q(F)

However, from equation (40), it follows that

(42)

so that knowledge of the model for together with
ol will enable us to perform the smoothing. A
method for computing the weights from (42) is
described in the appendix.

2. For values of near the end of the observed time
series the following modification is appropriate. Con-
ditional expectations (minimum mean square error
forecasts) given the observed series, of a sufficient
number of future values are first obtained. The
method to obtain the forecasts is given in Box and
Jenkins [3]. Then, the forecasted values are used as
observations in the formula appropriate for the mid-
dle of the series. Consequently, we only need one
set of weights. Precisely similar procedures are used
for t near the beginning of the series.

Examples—The next two examples will help clarify
the ideas that have been presented.

First, suppose follows the model

Under assumption I, the model for Pt must be of the form

for some a, and
(41)

l—17B )( 1—aB)( l—aF)+al( l—B)(l—F) (43)
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Figure 2. SOME POSSIBLE DECOMPOSITIONS INTO TRENDS AND ERROR, sen

CONSUMER PRICE INDEX EXAMPLE obtain

ORIGINAl. SERIES
when
It is e

(1 is

circle.
the mi

and

s' .7
- A

Fror..a.64

ESTIMTED TREND

give

Us'

UTIMATED ERROR -i
Co•. .4
ob

.74

UTIMIED TREND

T

WINATEDUJOR

TREND

ISTIMIED ERROR

• . —1.

s $44

£SHMTED TREND



r
BOX/HILLMER/TIAO

By setting B = 1/a in equation (43) and solving for we
obtain

2.____________
(1-a)2

It is easy to see that the maximum possible occurs
when a=-l. This agrees with the result that the maximum

is attained when the zero of (l-aB) is on the unit
circle. Consequently, the model for p1, corresponding to
the largest possible is

and

(l—B)p,=(l +B)c,

2 2

From (42), the appropriate smoothing weigbts are then
given by the generating function

B)—l
(l—B)(l—F)

— 4

Using the method given in the appendix, we find
l_2

—r. and Wj=CU_j=?7wj..1 for j=2, 3

Consequently, for estimating in the middle of the
observed T1 series, the smoothed estimate is

1— l 2

. }

Now, to smooth the observed series at the end, one can
proceed to first calculate the conditional expectations of

..., given These forecasts are:
... and

forj= 2, 3 Then,

or

1—
2

}

-
pn=

4

.}

Smoothed values for other observations near the end of
the observed series can be obtained in a similar manner.

Second, suppose the model for T1 is

Then, the model for p1 must be of the form

=(l—a1B—a2B2)c1

Seasonal Adjustment

(47)

(48)

p

- U
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for some unknown a1, a2, and From (41), the
maximum possible consistent with the given model for
Tis

K*=o2 mm
(l—./1B—4,B2)(

or, by letting B for we have that K*__
oj mm {f(w)}, where

—

— 1

— I

It is straightforward to numerically minimize f(w). given
specific values of and Once this is done, K*
can be calculated, and the appropriate smoothing weights
can be calculated from the equation

B -l
K*

)—

a nonseasonal T,. the smoothing method described
may be used directly to estimate the trend component Pi
in T,=p,+e1. Basically, the idea is to choose to extract
as much white noise from the observed time series as
possible.

It is now supposed that the model contains a seasonal
component S, so that, as in (36).

The problem is to estimate Pi in the presence of the
seasonal component S, and the noise component e,. To
do this, we must ask what the properties of the seasonal
component should be. The concept of a seasonal compo-
nent and, hence, its definition are, to some extent.
arbitrary. but it seems reasonable that it satisfies the
following conditions:

I. It should be capable of evolving over time.
2. It should be such that for monthly data the sum of

twelve consecutive components varies about zero
with minimum variance. The minimum variance
requirement in (2) arises because variation greater
than minimal variation in the twelve monthly sums
should properly be reflected in the trend component
p1 or the noise component e,.

To illustrate how the requirements for a seasonal
component can be incorporated into a model—based de-
composition procedure, we make a preliminary study in

(46)
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this section by considering the particular stochastic model
(28)

l...B)( I—B '2)z,=( l—01B)( I—02B '2)a,

which has been found to provide an adequate representa-
tion of many seasonal time series.

We proceed by making the following assumptions:

I. An observed time series is well represented by (28).
with °2 and known.

2. S, and T, in (48) are independent and follow models
of the ARIMA class. Then, necessarily (Cleveland
[IS]), the product of their autoregressive operators is
(I—B )(l—B'2).

3. T1=p1+e, follows assumption I.

As we have seen, the complementary function for this
model satisfies

or

( l—B)( 1—By1( I +'B + . . .

12

with >b" =0I n.m n.m
rn— I

SECTION V

Minimum variance solution—We require a solution
such that has the smallest variance. Let

and be an acceptable solution, i.e.
one which satisfies equation (3. 16). Consider the
ial

where

U(B)U(F)

U(B)U(F) i

(52)

It follows that g(B) is nonnegative for BI=l and hence
there exists a unique o'&>O and I/,*(B) such that

Now, (SI) can be written as

I—B )2( + U(B)U(F)H(B)

where

Clearly. H(B)>0 for IBI= I so that we can determine a
(49) unique and such that

Howe
so tha

OX/HU

Deten
md tree

the
estimat(

the n
and Tia

'and

The ge

I—F)2

The adaptive trend term, satisfies (53)

We

Thus, obtai
and the seasonal component satisfies

' h(B).

(I +B+... +B' =0 J_.B)2( it.
Tl'+o (54) obtaThus, an appropriate model for the seasonal component is

valut
(1+8+... +B")S,=(1-.4/I,B—. . .—*11B')b, It is 'shown in Hillmer [22] that the seasonal and trend the

(50) component model, corresponding to (54), has the desired TI
property that the sum S, has the smallest variance and, be u

and the corresponding model for the trend component is further, that the solution is unique. that
Thus, to obtain the minimum variance solution, we is re

must first find an acceptable model. As we shall see, for tren
estimating the seasonal component S, and the trend T,, itwhere (b,} and {d,} are two independent Gaussian white-
is only necessary to know From (SI), we see thatnoise processes with zero means and variances
an acceptable solution is one for which o2,>0 and(rf and respectively.

Letting
i9(B)= ( 1—(12B'2), and (55) Tht

U(B)=(l+B+... +Bu), we now observe that . ma
is nonnegative for and having four zeros at B=I.

(l_.B)(l_B12)z,=(l_B)(I_B12)S,+(1_B)(1_812)T, For the given we can then employ numerical
methods to obtain an and an having

It follows that this property. To find the desired note that (52)
can be alternatively written as

Ap

I o(B)O(F)U(B)U'(F)—*i(B)vi(F)}
(56)and

1111=11 (I.—B)2(l—F)2

l—B)2i/s(B)( I—F)2ift(F)
which can calculated using numerical methods. Once is

+ (51) obtained, the required can be determined from (53).

tin

ok
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total unemployed series. The political and economic im-
pact of this series has been especially important recently,
and we consider it an important series in which to try out
our methods.

By following the model building procedure. sketched in
the subsection on model building, we find that the model

(l—B)(l—B'2)z1=(l—O.75B'2)a,, (62)

S, adequately describes the behavior of the log of the
observed series. Therefore, we can apply the seasonal
adjustment and smoothing procedures previously outlined
to this data. We find—

I. An acceptable solution results when
and

'(B)U
2.

(l-.B)2(I—F)2
(58)

3, '4

24.
(l—B)2(l—F)2

The seasonal and trend weights obtained by our procedure
and by the census procedure are plotted in figure 3. It is

interesting that the seasonal weights of both procedures.
although arrived at quite differently, behave in a similar
manner. Notice, however, that the trend weights for the
two procedures are different. It should be remembered
that our weight functions will adjust appropriately depend-
ing on the parameters of the particular series. The census
weight function, however, is fixed for all series. The
observed time series and the three estimated components
derived from our procedure are plotted in figure 4a; the
analogous series for the census procedure are plotted in
figure 4b. Observe that the estimated seasonal components
appear similar to each other. The estimated trend compo-
nent from the census procedure is smoother than the
trend component from our procedure, but this may reflect
oversmoothing.

Generalization to other models—We have considered
seasonal adjustment when the observed time series follows
the model (28). Examination of the complementary func-
tion (49) led us to models for the seasonal and trend
components that seemed sensible. Because the class of
ARIMA models is more general than the model (28). it is

(61) dubtful whether all seasonal models in the ARIMA class
could be treated in a precisely similar manner. If this is
so, it will be because of the too limited nature of the
seasonal adjustment concept; this concept may need to be
widened. Every model in the ARIMA class will have a
corresponding complementary function. Appropriate ad-
justment, we feel, may turn on suitable factonzation of
this function. The problem is an important one for future
consideration.

..

j=—x

(57)

r
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Determination of the weight functions for the seasonal
trend components—It remains to obtain the smoothing

weights when the models for S, and T, are determined.
Let the estimated seasonal component be S1 and the
estimated trend puts ioise be T,. To estimate a component
in the middle of lime series, we have, from Cleveland
and Tiao [10], that

and

The generating function for the seasonal component is

O(B)O(F)

However, since we have that I =w(B)+h(B),
so that

h B)—
— 6(B)O(F)

We do not need to know since this ratio can be

obtained from the fact that h(l)=i. We suggest calculating
h(B), which can then be used to calculate T,. then S,=z, —
T,.

The smoothed values near the ends of the series are
obtained as before, by forecasting the required unobserved
values of z, and using these forecasts in the formula for
the center of the series.

The estimated trend plus noise component T, can now
be used to compute the estimate of the trend Noting
that T,=p,+e, and the model for T, is (I-B) it
is readily verified from the results in the subsection on
trend plus noise that

- IP:1 2
IT1 (60)

I j

The smoothest estimate of p, is obtained when is

maximized, i.e., when

(l_B)2(I_F)21

Application to the Times Series of Monthly U.S.
Unemployed Males, 20 Years Old and Over

These ideas will be illustrated by applying them to the
time series of monthly U.S. unemployed males, 20 years
old and over. This series is the largest component of the
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Figure 3. TREND AND SEASONAL WEIGHTS FOR THE
BUREAU OF THE CENSUS AND MODEL-BASED PROCEDURES
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Figure 4a. THE ESTIMATED COMPONENTS FROM THE MODEL-BASED PROCEDURES

FOR THE TIME SERIES OF UNEMPLOYED MALES, 20 YEARS OLD AND OVER
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Figure 4b. THE ESTIMATED COMPONENTS FROM THE CENSUS PROCEDURE
FOR THE TIME SERIES OF UNEMPLOYED MALES, 20 YEARS OLD AND OVER
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Estimation

Whittle [31] and Hannan and Dunsmuir [21] have
shown, for multivariate ARIMA models with normally
distributed errors, that maximum likelihood estimates have
desirable asymptotic properties. In particular. the esti-
mates are asymptotically consistent and efficient. In addi-
tion, a number of authors have preformed simulations
which indicate that maximum likelihood estimates have
desirable small sample properties. Several examples are
reported in Hillmer [22]. We will proceed to find maximum
likelihood estimates of the parameters. assuming that the
a,'s are normally distributed.

Most time series estimation procedures that have been
proposed to date are motivated by first considering the
likelihood function and, then, by making some simplifying
approximations to this function. (See, e.g., Anderson [I],
Box and Jenkins [9], and Hannan [20].) While most of the
simplifying approximations to the likelihood function have
no effect upon the asymptotic estimates, these approxi-

mations can have an effect upon the estimates in small
even moderately large samples. In particular, the approxi.
mations can have a significant effect when estimating
seasonal multiplicative ARIMA models. The likelihood
function is usually simplified by ignoring the effect of the
ends of the time series and by ignoring the changes that
occur in the normalizing determinant. For univariate time
series, Box and Jenkins [9] overcame the first problem by
proposing an exact method for computing the exponent in
the likelihood.

(63) Recent papers, have indicated that further worthwhile
improvement can be made in the estimation procedure jf
the terms in the determinant are not ignored. In the case
of univariate time series several procedures have been
recently proposed to obtain exact maximum likelihood
estimates, see in particular, Ljung [25] and Dent [17].

The problem of estimating the parameters in a multivar.
iate time series model is more difficult than the univanate
problem. However, Hillmer [22] has developed procedures
that give maximum likelihood estimates for multivariate
ARIMA models. In order to illustrate those ideas, we
give the details for a first-order moving average model.

First Order Moving Average Model

The multivariate MA(I) model is

:1, ...n (64)

where is a vector of k-observed time series, g, is a

vector of unobserved errors following a multivariate nor-
mal distribution with mean vector 0 and unknown covari-
ance matrix and 0 is a k x k matrix of parameters.
Our objective will be to estimate 0 and

First we derive the likelihood function of 0 and given
the observations z1 Consider the transformation

Bec

the

wI

N

U'

V

MULTI VARIATE GENERALIZATION OF THE
MODELS

When k series {Zit}, {z21}, ..., are considered
simultaneously, it is necessary to allow for dynamic
relationships that may exist between the series, for possi-
bilities of feedback and for correlations between the
shocks affecting the series. A useful class of models is
obtained by direct generalization of (5) to

In this model,

Zkt), Uk()

- - .

O(B)=I - 01B - 02B2_. . .

and the and OJ'S are k x k matrices of autoregressive
and moving average parameters. is a sequence of
vector-valued independent random shocks, distributed as
multivanate normal N(Q, that allows for contempora-
neous correlation between the elements a Uki.

While multiple time series models are naturally more
complicated to handle and experience in their use is more
limited, they provide a potential means of improving on
results from univariate models. For example, information
about z11, in addition to that contained in its own past,
may he available from other related series {z21}, {za}.
etc. When this is so, improved forecasts, smoothed
values, seasonal adjustments. etc., should be possible.

One difficulty that has previously impeded progress has
been the estimation of parameters contained in the models.
Initially. therefore, our attack has been directed at this
problem, and, in the next section. we describe a practical
means of computing exact maximum likelihood estimates.

g0=g0
z1=a1—0a0
-. -

- Ik 0] g0or DCJ a

where z=(z1

—o 'k 0•..O
o —o

'k

0

(65)

(66)
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Øecause the a, are independently distributed as Nk(Q, Observe, from equation (69), that
the joint probability density function of g0 and g is

n

k(n+I) S(a0, zlO, 4)=n+i
2

Furthermore, g0, ;, for t=1, .. .n, we can
calculate the a1's from the recursive relationship

[g°i
1 (67)ajJ

where ® denotes the Kronecker product of two matrices, which is defined by the transformation in equation (65).
Noting that the Jacobian of the transformation (66) is Similarly, we can calculate SCa0, zj0, 42). given 0, and
unity, expression (67) implies that the joint probability g0. by calculating
density function of a,, and is

=Z, + for I,

On + I)
11+1

P(g0. zIO. (68)
and then

j_

where
S(aozIO, (74)

S(r:0,
+

The important point to observe from this discussion is
that the likelihood function can be evaiuated for any given
0 and * very quickly once and have been
calculated. Consequently, we focus our attention upon the
calculation of and a0. Note that011

c-'j (69)

lÀ

0
By completing the square for a0 in the quadratic form
S(g,,. zJO. we obtain .

z 0. = 0. + (u0—â0)'A (70) .

where
9'' Ohs_2 . .0

=[lk, [ 'k 1
then, tiom equation (71). we obtain

(71)Lc'D] ,i,,= -'o+... -'o" (75)

and One easy way to perform the calculation of is by the

= —D'C (72)
calculation

Ao=$' andA,=*'+O'Aj_i8 for/=1, . . .n (76)
Consequently, we have that

Calculation of A,, can he quickly pci-formed on a computer
k(n + I)

,+1 with a minimum of storage. Next. consider the calculation
p(g0. ;)

=
of a,,. From (72).

:18. By multiplying out the matrices, we have that

By integrating out in z). we obtain the probability D'C'' {/,.®$_I}C1
density function of z. By treating this probability density
function as a function of 8 and we obtain the likelihood where the matrices are defined by equation (76). The

function of 0 and given; as vector D'C'' {l,,®* '}C'; can be calculated recur-
sively as follows:

L(0, A"12 *)} (73)
let g0 Q and A0 *;let gj 0'{gj_, for
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then and 012 are 3 x 3 matrices. The parameters in this model
are estimated as follows:

To summarize, we have the following algorithm for the - 0.36 0.53 0.75

calculation of and a0: (0.12) (0.09) (0.79)

I. —0.29 I.30 —2.00

2. For j=l, ...n. let and let (0.15) (0.11) (0.83)
A,=

3. —0.05 0.04 0.79
(0.0l) (0.01) (0.07)

For any given 0 and + we now have a way to calculate
A,, Thereforette can use these values to calculate 0.93 0.03 0.03 -

the exact likelihood function. (0.06) (0.06) (0.21)

We desire to maximize L(0, z) with respect to the
parameter matrices 0 and We have illustrated a way = 0.20 0.75 0.20

to evaluate for any particular values of 0 and (0.07) (0.08) (0.27)

What is needed is some maximization algorithm that
will systematically search over the parameter values and 0.01 —0.01 0.93

find the 0 and that will maximize There are (0.01) (0.03)..

numerous optimization algorithms that can he used. We
have used a nonlinear regression algorithm to estimate the
parameters in the multivariate ARIMA examples given in —0.22 0.31 —3.22 -
the next section. (0.16) (0.11) (0.90)

—0.25 0.53 —3.62
Application: The Durable Shipments, Durable New (0.24) (0.16) (1.07)
Orders, and Durable Inventories Series

—0.05 0.02 0.50
We shall use the three series— (0.02) (0.03) (0.10).

I. Shipments of durable goods 0.54 0.08
2. New orders of durable goods r(O.l I) (0.08) (0.43)
3. Inventories of durable goods

I —0.02 0.57 0.58
to illustrate an analysis of seasonal multivariate models. A 012

useful identification step is to build univariate models for

=

II) (0.12) (0.65)

the three series: they are: 0.04 —0.01 0.76

I. (I—B)( l—B)( (0.02) (0.01) (0.06)_

00093 with z11=log-durable ship-

*
[0.000548 0.000596

0.001464 -.0.0000l4J (79)ments.
0.000021J

2. (l—B)( l—0.26B)( l—0.80B12)a21 (77)

°a2 0.00 179 with new
orders.

The numbers in the parentheses are the estimated standard
3. errors of the parameter estimates. The residuals from this

model are plotted in figure 5. and the autocorrelation and
with z31=(l—B) log- cross-correlation functions of the residuals are plotted indurable inventories.

figure 6. Examination of these plots does not suggest any

From consideration of the univariate models we tenta- inadequacies in the model.

tively entertained the multivariate seasonal model Inspection of the fitted model reveals a structure that
seems to be readily capable of interpretation. This is

(78) made clearer if we simplify the model by setting to zero
coefficients that are small, compared with their standard

where errors, and make other minor adjustments.

z2j, a=(gu, a31) and
A valuable feature of the multivariate maximum likeli-

hood program is that it permits any chosen coefficient to
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Figure 5. RESIDUALS FROM THE MULTI VARIATE FIT IN THE DURABLES EXAMPLE

Residuals
Log Shipments

Residuals
Log New Orders

Residuals
(l-B)Log Inventories



Figure 6. AUTOCORRELATIONS AND CROSSCORRELATIONS OF THE RESIDUALS FROM THE
ESTIMATED MULTI VARIATE MODEL FOR THE DURABLES SERIES
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bC tentatively fixed at any desired value and, in particular.
to be set equal to zero. It also allows coefficients to be
estimated under a given constraint. For example. two
coefficients may be estimated subject to the constraint
that they be equal. This permits any desired simplification
o be explored and makes it easier to see the implications

a given model. In the present example. the matrices
and are, apart from elements that are not large

compared with their standard errors, very nearly diagonal.
Also, the diagonal elements in are large. two of them
being close to unity. Now, moderate changes made in
can be very nearly compensated by appropriate changes
in °12' In refitting, therefore. was simplified to he an
identity matrix, and 012 was made diagonal. Furthermore.
corresponding elements in (l the first row and second
column and (2) the second row and third column of
and are not significantly different. This has a particular
interpretation that forecasted values may he used directly
in the equations. Thus. in refitting. each of these two
pairs of elements were tentatively set equal. The results
are given in (80). It will he noted that the diagonal
elements of associated with the one step ahead
forecast errors of the refitted model. are somewhat larger
than those in (79) hut still much smaller than the corre-
sponding variances in (77) obtained for the univariate
models. No strong evidence of lack of lit shown in
the residual analysis.

where i,(1) is the log of the (undifferenced) inventories.
The solution, thus, involves a quadratic trend component
plus a seasonal component. This holds out the possibility
that upturns and downturns in inventories might be
forecast.

New orders—Again, using a notation adopted earlier,
we write to mean an exponentially smoothed value

with smoothing coefficient 0.

Thus, equation (83) may be written aproximately as

+(121, =0.00166

The implication is that the change in new orders from last
month's (smoothed) value is just such as will balance the
(smoothed) value forecast for last month's change in
inventories. Since we are dealing with logged data, it
should be remembered that change refers to percentage
change.

(80) Shipments—Equation (82) may be written

1111=111 +0.2 {1'2, 1—2(1 }

Implications of the model—If we write + I .7{tt'3, 1—F"tt'3. t_2(1)} +a1,

(I—'1)12B'2)z, (81) Now, whereas a3, appears to be independent of a1, and
a21, a1, and a2, have a correlation of 0.69. Correspondingly,
if we write

1—12' 1—12' 1—12 with =0.000339
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where, for example,

zt. ,_12=0.23(z1, (_36+.,.)

Thus, the w's are deviations from seasonal exponentially
discounted averages and have the effect of removing the
seasonal component. The relationships between these
deviations are now approximately as follows:

tv11—0.8w1, ,1=a11+0.2(tt'2, ,_1)+ 1 .7a3, (82)

w21—w2 =a21—0.4a2 ,...1—a3, (83)

(84)

We will now consider the implications of these equa-
tions.

Inventories—Inspection of in (80) shows that there is
no evidence that a3, is correlated with a1, and a3,; also,
(84) does not contain & Thus, rather remarkably,
the inventory series behaves independently of the other
two series, and its complementary (forecast) function is
very nearly such that

(I—B)3 (l+B+' +B")i,(I)=O

01 =

0.79 0.20 . I.
(0.05) (0.05)

0.97 .,.0.69 - — . I.
(0.06) (0.36)

0.90 . .

(0.04)

0.20 —1.72 0.77

(0.05) (0.25) (0.04)

0.36 —0.69 — . 0.74

(0.80) (0.36) ' 12 (0.05)

0.40 . . 0.75
(0.08) (0.05)

0.000644 0.000711 —0.000007

0.001655 -0.000002
0.000027

then
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then at is uncorrelated wim Thus, we can obtain
three equations that have independent errors by taking the
third to be

+ 1 1_2(1)}

=0.00034

Thus, this month's shipments are increased over last
month's when—

1. Forecast orders for last month exceeded shipments.
2. Increases in inventories for last month exceeded that

forecasted.
3. Current new orders exceed last month's forecast.

It is gratifying to see that this model makes economic

sense.
Forecasting—As already noted, there is a substantial

reduction in the variance of the shipments and new order
series when the multivariate model is used. A correspond-
ing increase is found in the accuracy of the forecasts, as
shown in figure 7. Therefore, by multivariate extensions of
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the arguments used in this paper, it is to be expected that
even more precise methods for smoothing and seasonal
adjustment should be derivable for sets of related series.

SUMMARY

It is argued that most rapid progress in statistical
methods occurs when the empirical approach and the
model-based approach iteratively interact. Such progress
has led to the useful and rich class of ARIMA models
that may be fitted to a wide variety of time series. We
illustrate, in this paper. how a fitted model can then
determine appropriate techniques for smoothing and sea-
sonal adjustment of a particular series.

The development of methods for convenient computa-
tion of exact maximum likelihood estimates for multivar-
iate extensions of these models makes the multivariate
ARIMA models more accessible. Using the shipments-
order-inventories series, we have illustrated how such
multivariate models permit the analysis of complex rela-
tionships, allow more accurate forecasts, and have the
potential for improving smoothing and seasonal adjustment
methods still further.
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APPENDIX

EXPANSION OF THE GENERATING FUNCTION

Specifically,

i—i

j=2, ..., r (A.2)

and for j>r, the C,'s can be recursively computed from
the relation

(A.3)

IC1. . Cr

C=

.C1
Q 1

which define a set of r+ I linear equations in r+ I
UflkflOWflS X0 Xr, so fhat

(A.6)

2. Forj>r, the X,'s can be computed recursively from
the relation

(A.7)

Finally, the weights wj's in (42) are

2

... (A.8)
0d

For the convenience of the reader, we will sketch a
method by which the weight functions wj's in (42) may be
determined. Note that 4(B) and q(B) are polynomials in
degree p and u, respectively. With no loss in generality
we may write

çb(B)= 141B—. . . 4)rB', Y7(B)= B—. . . 7)rB'

where r=max(p, u). First set

where C(B)= I +C1B+C2B2+
77(B)

and solve for the Ci's by matching coefficients of if' in

(A.l)

Note that the largest degree of F on the left hand side of
(A.4) is r. By matching coefficients of F' in (A.4), we find
that

I. Forj=O, 1, ..., r

where

X'=(X0, .:., Xr), ...,

(A.5)
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Next, set

where

Equivalently,
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COMMENTS ON "ANALYSIS AND MODELING OF SEASONAL TIME SERIES"
BY GEORGE E. P. BOX, STEVEN C. HILLMER, AND

GEORGE C. TIAO

George A. Barnard
University of Essex

II wish to make clear, at the outset, that I have no claim
to expertise in the matter of time series analysis. On the
rare occasions when I have referred to stochastic proc-
esses in published papers, I have taken care to base my
remarks on models to which none of the existing theory
applies. As the domain of existing theory extends, it
becomes a little more difficult to do this—but only a little
more difficult. It is, perhaps, worthwhile to point out that,
since the universe, in its evolution, can be regarded as the
exemplification of a stochastic process, a full treatment of
the theory of such processes still has a very long way to
go before it can be said to be complete. Such a reflection
is not merely philosophical. It is relevent to the issues we
are here to discuss in that attempts to claim universality
for any one method of analysis are bound to fail. The
iterative process of empirical analysis, interacting with
model building so well emphasized by the authors of this
paper, should converge when related to a particular case,
on the basis of given data; but, in relation to the set of all
possible cases, it will clearly have an open-ended charac-
ter.

Such knowledge as I have gained over the years in
connection with time series has been almost wholly
derived from conversations with George Box and with
Gwilym Jenkins. These began in the mid-fifties, when I
had the privilege of hearing Box's first thoughts on the
subject of nonstationary series. Perhaps he found me a
sympathetic listener, because one of the difficulties I had
had with the subject, up to that time, was with the near
universality of the assumption of stationarity, which con-
flicted fundamentally with my own evolutionary view of
nature and society. I record this here, because it is not
clear, from the sketch of history given in the paper, that
although it has subsequently turned out that their work
was in some respects anticipated by others, such as
Yaglom, Box and Jenkins developed their theoretical and
practical approach almost entirely independently. I believe
that the coherence of the various aspects and methods,
which is such a strong feature of their work and that of
their school, is, to a large extent, due to this.

Up to now, the lessons in time series analysis that I
have had from Box and Jenkins have come in doses
sufficiently small and well expounded that I have been
able to digest them without undue effort.
the present instalment represents the work of several of
Box's coworkers at Madison, it comes here as an advance

in the theory of such magnitude that its implications will
take me, at least, a considerable time to assimilate. The
traditional approach to seasonality and smoothing has
been to process the series in question through a set of
filters to remove, as far as possible, the high frequency
noise, and the excess amplitude of frequencies associated
with seasonality and, then, to set up a model for the
residual trend. What the authors propose here is to turn
this process upside down—to model the process as it
stands and, then, the model as the sum of the
traditional three components. That something of this kind
needs to be done, at least in some cases, especially in
economic contexts, is indicated by the experience of most
workers in the field, that even the highly sophisticated
seasonality adjustments, such as the census X—lI program
or the mixed-multiplicative and additive-adaptive methods
studied on the other side of the Atlantic, always seem to
leave some element of seasonal pattern in each series to
which they are applied. And, it is common sense to think
that the way in which each series reacts to and remembers
seasonal factors is bound to have some degree of individ-
uality about it, so that methods which, in principle,
assume the same type of reaction to seasonal influences
are bound to be limited in application.

In so far as our current ideas and practice with seasonal
adjustments are based on dating, we are, in effect,
assuming that the factors that are influencing the series we
are concerned with and whose effect we wish to separate
out, are directly and simply related to the position of the
earth in its orbit round the sun. This will be true of series
in which the date, by itself, has major significance—one
thinks primarily here of the influence of, e.g., Christmas
on sales figures. But, already with the date of Easter, we
have to consider not only the position of the earth relative
to the sun, but also its position in relation to the Paschal
moon, so that series (such as the Irish consumption of
Guinness Stout) for which Easter is an important festival
will exhibit peaks that sometimes occur in March and
sometimes in April. And, in the many series for which the
major influence of this kind is the weather, the patterns
will still be more complicated. Most series will be influ-
enced by a mixture of such factors, in proportions peculiar
to the particular series, and, perhaps more important, the
degree to which these influences are remembered by the
system in question will vary, so that an approach, such as
that taken in this paper, would certainly have advantages.

335



336

Whether the advantages would, in all cases, be worth the
extra effort, involved in dealing with each series individ-
ually, is a point worth discussion.

My own understanding of the history of the exponen-
tially weighted moving average is that the idea occurred to
my friend Arthur A. Brown, working for Arthur D. Little,
who was working on stock control problems. It occurred
to him, waiting for a plane at O'Hare International Airport,
that the EWMA would require, in a computerised setup,
only two storage locations per series to be forecast. I say
this, partly by way of comment on the historical section of
the author's paper, but more especially because the
subsequent history of the associated model would suggest
that an optimistic attitude to the simplicity of the real
world (something that one is trained as a mathematician to
despise—mostly to one's detriment) has a lot to be said in
its favour. Correspondingly, while, as I have said, I have
little doubt that the approach to seasonality, proposed by
the authors, will have, in principle, many advantages, the
differences between the final results of the census treat-
ment of the unemployed males series and that of the
authors' is perhaps arguably small enough to be ignored
for most "practical" purposes.

I put "practical" in quotation marks, because I wish it
to be understood in the sense in such contexts where there
is usually an element of the short run involved in the
"practical." In the long run, the difference of
involved in the difference of approach can have enormous
practical consequences. Because, as the authors note, it
raises the whole question of why we attempt to deseason-
alise our series, and what we understand ourselves to be
doing when we so treat them.

One approach to this question would suggest that we
can draw a distinction between factors, such as the motion
of the earth around the sun or variations in the weather,
that are exogenous to the social system and that are
altogether beyond our control, and, on the other hand,
factors, such as tax rates, bank rates, and perhaps social
attitudes, that also are exogenous to most aspects of the
social system but which are, to some extent, within our
control. Usually, it is assumed that the factors beyond our
control will, in some sense, average themselves out in the
future, and what planners and politicians need to concern
themselves with are the controllable factors. The recent
drought in Western Europe is exceptional in that it has
brought into prominence, for practical politicians, the fact
that most of their policies are based on an extrapolation of
present weather conditions that may, in fact, be unjusti-
fied. To help with this, they need to have a model of the
times series they are concerned with that has the effects
of the uncontrollable factors removed or averaged out. If
we understand the purpose of deseasonalisation, in this
sense, we shall want to further develop the ideas ex-
pressed in this paper, especially in relation to the sketch
of the approach to multiple time series. We shall also want
to develop the ideas of intervention analysis that Box and
Tiao have put forward but which they have not dealt with
in the present contribution.

SECTION v

But, perhaps, a simpler notion will serve. It is that those
who use deseasonalised and smoothed series regard such
series as representing the average, relatively long-term
behaviour of the series in question. Smoothing gets rid of
the month-to-month random fluctuations, while deseason.
alising enables one to get an idea of the movement of the
yearly average, If this point of view is adopted, then
instead of focussing attention, as we do now, on the
periodic motion of the earth, we may begin to pay
attention to what perhaps in some countries, is becoming
a more important length of time—the 4-, 5-, or 6-year term
between elections. Would it be too much to hope that one
day will be able to discount the effects of the
loosening of credit and other inflationary measures tha(
are becoming all too common, even in advanced countries
in preelection periods, so that politicians will be judged
more on the long-term effects of their policies? The
common man has much more sense than the credit he is
usually given. If he is given the information that he needs
to judge the long-term effects of political and economic
policies, he can be relied upon to look to the reasonable
future, instead of the immediate present.

What I am suggesting is that instead of producing, along
with the raw data, the smoothed and deseasonalised
values, we should think in terms of producing (for
instance) a forecast of the discounted future values of the
series that we are concerned with in the notation of their
paper, e.g.,

where is a discounting factor that might be around 0.008
for a monthly series. Such forecasts, updated from month
to month, would surely be a better guide to policy and its
effects than the values we now use. It is a feature of the
methods proposed by the present authors that they provide
a reasonably objective procedure for doing this. The
necessity of having such an objective procedure is, per-
haps, illustrated by some of the U.K. Government's recent
White Papers, where assumptions about, e.g., growth
rates are embodied without proper stress being laid upon
the possibility that such assumptions could prove wrong.

To return to the paper and its details, it is perhaps
worth emphasising that one aspect of the model-building
process that can make it an essential adjunct to the
empirical approach is its capacity to bring to bear infor-
mation different, in kind, from the basic numerical data.
As an example, it could be that someone who knew the
processes used in stores in adjusting their prices could
bring evidence that the extreme value a = — 1 for the
coefficient of B in the forcing function for the smoothed
model of the consumer price index was too large in
absolute value, and a value near to would better
accord with practical experience. Examining the curves,
given for a=O and for a=—l, shows that the data, by
themselves, throw very little light on the values of a
within this range.
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The authors' somewhat apologetic tone in referring to
their use of the Nelder-Mead procedure in solving the
equations for the coefficients of the seasonal component
of the male unemployment series is surely not appropriate.
Methods of function minimisation, developed by Powell
and others in recent years, have become so powerful that
even for the solution of large sets of linear equations it
may be preferable to minimise directly the sum of a
residuals rather than use the (unstable) algorithms of
pivotal condensation, etc. If I may suggest it, perhaps the
authors should draw their problems to the attention of a
numerical analyst working in this area; one gets the
impression that theory has run ahead of practical prob-
lems.

Finally, in reference to the remarks concerning the
calculation of the likelihood function and the virtues of
maximum likelihood estimates, perhaps, the name of Ian
McLeod should be added to that of Kang as having
provided a practicable procedure for obtaining more exact
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maximums and showing, by simulation, that the improve-
ment is worthwhile. And, it should, perhaps, be mentioned
that Barnard and Winsten showed, using the data cited by
Whittle in the paper referred to, that examination of the
whole likelihood function threw a much clearer light on
the estimate and its error than would come from calcula-
tions based on asymptotic results, The problem of exhib-
iting, in a usable form, the likelihood function for many
parameters is not yet solved; but, good progress is being
made. There really is no substitute for this, in the case of
most economic time series, since the effective lengths of
series are typically much too small for asymptotic results
to be of relevance.

Since the form and content of my remarks is typical to
an opening of discussion on my home round at the Royal
Statistical Society, may I follow the custom there and
conclude by moving, with much pleasure, a hearty vote of
thanks to our three authors for a most rich and stimulating
paper.
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Emanuel Parzen
State University of New York at Buffalo

I would like to express my thanks to the authors for
their important and seminal paper that will contribute
greatly towards clarifying what is meant by seasonality in
time series and developing useful methods for its analysis
and modeling.

Given observed time series (or. in general. statistical
data) that we seek to model, we are confronted with the
basic questions: What do we mean by a model? and
where do models come from? One can distinguish between
two types of models that can be given names as follows:

Type 1: Fundamental or structural
Type II: Technical or synthetic

1 will use the adjectives "structural" and "synthetic."
A structural model comes from subject-matter theoreti-

cal considerations, and the statistician's role is usually to
estimate its parameters or test its fit to data.

A synthetic model comes from statistical and probabilis-
tic considerations, either from empirical data analysis
procedures that have been found satisfactory. in practice.
or from representation theory of random variables.

In time series analysis. both statistical and probabilistic
considerations yield a simple general definition of what
we mean by a model: It is a transformation (often a linear

filter) F' on the data {Z1} that whitens the time series {Zt}.
In symbols. let {a1} be a white-noise series such that

{zt}_f F }{at}

then the transformation F is the model.
The essence of the successful Box-Jenkins approach to

time series analysis seems to be to develop empirical
procedures for discovering a filter F (in the univariate case
of the form 0 _l(B)ço(B)Vd) for which one can write
conclusions similar to that which the authors write follow-
ing their model in equation (79): "The residuals from this
model are plotted in figure 5 and the autocorrelation and
cross-correlation functions of the residuals are plotted in
figure 6. Examination of these plots does not suggest any
inadequacies in the model."

The models (means) to be used in time series analysis
should depend on the intended ends or applications (thus.
the eternal conundrum: Can one find means robust against
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ends?). I believe one may distinguish six basic types of
applications of time series analysis:

Forecasting (or extrapolation)
2. Spectral analysis (or interpolation, by harmonics)
3. Parametrization (or data compression)
4. Intervention analysis (significant changes in forecasts

or parameters)
5. Signal plus noise decomposition
6. Control

There is no doubt that ARIMA models are important
and can provide means for all these ends. However, other
ways of formulating equivalent models should not be
discarded from (or fail to be incorporated into) the time
series analyst's bag of tools. In particular, spectral and
state space representations are often indispensable means.

I believe there can be no disagreement with the conclu-
sion stated at the end of the section on the iterative
development of some important ideas in time series
analysis that ARIMA models are "a class of stochastic
models capable of representing nonstationary and seasonal
time series" and with the assertion that a successful
seasonal nonstationary model for economic time series
with both monthly and yearly components is given by
their equation (28). which we shall call model 1:

(J—B)(IB 12)

A question that I believe should be investigated is whether
model I. by itself, can yield seasonal adjustment proce-
dures, or is it necessary to pass (algorithmically and
conceptually) from model I to the traditional representa-
tion of a time series z1 as having a seasonal component S1
and trend-noise component T1. which we call model 11:

z1=S1+ T1=S1+p1+e1

where T1=p1+e1 is the sum of a trend and white noise
e1. The authors' main aim in the section on smoothing
and seasonal adjustment is to outline approaches to pass
from model 1 to model II. Whether this trip is necessary
will be discussed.

Some technical comments on the section on smoothing
and seasonal adjustment are the following: In estimating

from T1, the authors consider onl.y two-sided filters that
use both past and future values of T1: would it not be
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more appropriate to use one-sided filters that use only
past values? Then, to estimate from T1, one would use
Kalman filtering techniques. In. regard to estimating
models for and e1, an important reference seems, to
me, to be Pagano [I].

The aim of the section on multivariate generalization of
the models is to develop multivariate seasonal models
such as that given by equation (75), which we call model
Ill:

12)

where is a k vector and and are kxk matrices.
The time available to me for discussion prevents my
commenting further on the section concerning multivanate
generalization of the models other than to note my view
that its results are pioneering and impressive and should
stimulate much further research.

I believe this paper is important and seminal, because
the problems considered by Box, Hilimer, and Tiao in the
third and fourth sections are the problems at the heart of
the problem of seasonal adjustment. In the remainder of
my discussion, I would like to outline, from the point of
view of my own approach to empirical time series
analysis, why and how it might suffice to obtain seasonal
adjustment procedures directly from a suitable reinterpre-
tation of models, such as I (and. more generally. Ill).

A fundamental decomposition of a time series can
be given in terms of its one-step-ahead infinite-memory
predictors

zr=E[ztIzt_1, z1—2, ... j

and its one-step-ahead infinite-memory prediction errors
or innovations

For a noristationary time series, the modeling problem
is first to find the whitening filter (that transforms to
{zr}) and, second, to interpret it as several filters in
tandem:

D0: A detrending filter that, in the spectral do-
main, eliminates the low-frequency compo-
nents corresponding to trend.
A deseasonal filter that, in the spectral do-
main, eliminates the components correspond-
ing to a periodic component with period A or
to the harmonics with frequencies that are
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gc. or H: An innovations filter that transforms the series
Zrtat)=DODAZb representing a transformation
of Zt to a stationary series, to white noise.

The time series modeling problem is, thus, to find the
filter representation

Detrend Deseasonal Innovations

zc D0
...

where we admit the possibility of several different periods
A1,.. .,Ak (e.g., in monthly data A values are often 12 and
3, in daily data A values are often 7 and 365, and in
hourly data A values are often 24 and 168).

Given this decomposition, one can form various derived
series:

= D0z1, the detrended series.
= the seasonally adjusted series.
= the detrended season-

ally adjusted series.
zr = the innovations series.

Instead of universal detrending and seasonal adjustmenC
procedures, what is being suggested are filters accomplish-
ing the same ends that are custom tailored for each series.

Such decompositions seem to be crucial to the study of
the relations between time series and To
study their relations, it seems clear that if one relates
Y1(') and Y2() without filtering, one will often find
spurious relationships. It has been suggested, therefore,
that one attempt to relate and the individual
innovations of each series. What remains to be examined
is the insight to be derived from relating

and the seasonally adjusted series or
y(1stat)(() and the detrended and seasonally ad-
justed series.

The question remains of how to find, in practice, the
detrending and deseasonal filters. To seasonally adjust for
a period A in data, several possibilities are available that
may be interpreted as seasonal adjustment filters.

A filter with the same zeroes in the frequency domain
as some usual procedures, which is recursive (acts only
on past values) and yields a variety of filter shapes (in the
frequency domain) between a square wave and a sinusoid,
is the one-parameter family of filters

I-B

where the parameter 0 is chosen (usually by an estimation
procedure) between 0 and 1. When 0=0, the filter is
denoted and called A-th difference.

To understand the role of the filter denote it for

Then

The innovation time series (z'} is white noise and, indeed,

2ir
multiples of
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brevity by D and rewrite it, writing
we obtain

SECTION V

(l—8)B"
D=i— )}

Then, the output of a filter D with input z, can
be written

I

In words, zTh is the result of subtracting, from the
exponentially weighted average of

It seems to me open to investigation whether the filter
D (of mixed autoregressive moving average type) is
superior to the approximately equivalent autoregressive
filter

D' =(i—B l.-13)B

Z(—x—OZ(—2x

It appears to me that the role of moving averages in
Box-Jenkins ARIMA models is to build filters of the type

Thus, the ARIMA model

(i—B)(i—B '2)zr=(i—O1B)(i--s9i2B '2)a,

should be viewed as the whitening filter

i-B i-B12
D,(01)

l—01B ) (

I should like to emphasize that the output of the filter
D1(01) D12(012) is often not white noise but is only a
stationary time series. For purposes of one-step-ahead
prediction. it is often not important to differentiate be-
tween the case that D12D1z, is white noise or not, since
most of the predictability is obtained by finding a suitable
transformation to of the form D1D12. (Next,
we will discuss naive prediction as a transformation to
stationarity.)

A moral can be drawn from the foregoing considera-
tions. To find a transformation of a nonstationary time
series to stationarity, it may suffice to apply pure differ-
encing operators, such as i—B and However, the
transformation of the residuals to the innovations series
should be expressed. if possible, in terms of factors
corresponding to the filters i-.i91B and i—012B'2, since
such factors enable us to interpret the overall whitening
filter

Deseasonal Innovations
filter filter

which can be interpreted as helping to provide solutions
to the seasonal adjustment problem.

NAIVE PREDICTION AND TRANSFORMATIONS TO
STATIONARITY

To predict a time series z1, one can often suggest a
naive predictor of the form

nalve_
Z1

The prediction error of this predictor is given by

XI)(J....B

In words, taking A1-th and X2-th differences is equivalent
to forming the naive prediction errors.

A criterion that z1 be nonstationary is that it be
predictable (in the sense that the ratio of the average
square of to the average square of z1 is of the order of
lIT). When is stationary (nonpredictable), one models it
(see app.) by an approximate autoregressive scheme

which can be used to form the best one-step-ahead
predictor of

The best one-step-ahead predictor of is given by

to prove this, note the identity

— naive —

Zt—Zt Zi

and form the conditional expectation of both sides of this
identity with respect to z1—1,

A remarkable fact is the equality of the prediction
errors of z, and

M_Z, —Zt—Z1 Zt

for a nonstationary time series z1 (which includes almost
all time series with seasonal components), it suffices to
apply any one-sided filter (which, in practice, would be

as a series of filters in tandem

I Detrend
ZI —.1 filter

SI

whose output

can be written

'z,

It follows that, to find the whitening filter

l Whitening
filter

}-.

a1
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suggested by an ad hoc deseasonalizing procedure) whose then yields the whitening filter. While the filter leading to
output is stationary. The tandem filter is not unique, the overall filter leading to is unique.

The final seasonal adjustment procedure is a filter Dk
that comes from interpreting the overall whitening filter as
a series of filters in tandem, which can be interpreted as
detrending and deseasonalizing filters. An illustration of

Zg the application of this approach to real data is contained
in 12].
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APPENDIX

ESTIMATION OF THE WHITENING FILTER OF A STATIONARY TIME SERIES

A rigorous definition of the whitening filter can be The autoregressive spectral approximator
given when the time series is stationary zero mean
and has a continuous spectral density function
where, for mathematical convenience, we use the defini- 2ir
tion

may be shown to converge to f(w) as rn tends to as

f(w) = does to and to
2ir Estimators of these quantities from a finite sample

{Zb t= 1, S.., T} can be constructed as follows: Define
- —

I. The sample spectral density
Assume that log 1(w) and (w) are integrable; then there
is a frequency transfer function

2

T
'-' z1e

gw(z)=I+aiz+a2z2±... +amZm+... 11

such that 2. covariances

Rr(v)=je!"°'fr(w) dø

Further. is a whitening filter 3. Sample order m autoregressive coefficients j= I,
., m, as the solution of the normal (or Yule-

Zt=Qt Walker) equations

where {a1} is the innovation series (white noise) with
variance k=l m

.1=1

2]

4. Sample memory in mean square prediction error
We call gx the ARTF (autoregressive transfer function). It
is the same as the transfer function H(B), defined in the m

authors' equation (12).
To every finite memory rn, one can define finite

memory one-step-ahead prediction errors s. Sample order m autoregressive transfer function

Im(Z)=l+&i,mZ+.. +&mmZm

where
6. Sample order m autoregressive spectral estimator

+am.mZm
I

fm (cu)=—
is the polynomial of degree rn minimizing 2ir

I 1w 2 d
Finally, we estimate and f(co) by

)I f(cü) 0) and%(cu), respectively, where th is chosen by an
order-determination criterion. In [3], I have proposed

among all polynomials of degree in with constant coeffi- choosing th as the' value of in, minimizing the criterion
cient equal to 1. The memory in mean square prediction function CAT (criterion autoregressive transfer function)
error is denoted by

CAT

343



344 SECTION vi

where

and

CAT(O)=-l--(l/T)

When m=o; we say that the time series is white noise.
Having determine the maximum order th, to help

interpret (z), it is useful to use stepwise regression
techniques to determine the significantly nonzero autore-

g13 (z)=( 1—Oi z)( l—012z'2)

In my approach to empirical time series analysis, the
identification stage is not accomplished chiefly by
cal inspection of the time series and of computed
sample functions, such as the autocorrelation function
partial autocorrelation function, and spectrum. Rather,
the infinite parametric ARTF is directly estimated and
parsimoniously parametrized.

gressive coefficients. As an example on monthly data, if)
one had determined that 13, it would be of interest to
determine whether were approximately of the
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