
 

 
An ARIMA-Model-Based Approach to Seasonal Adjustment
Author(s): S. C. Hillmer and  G. C. Tiao
Source: Journal of the American Statistical Association, Vol. 77, No. 377 (Mar., 1982), pp.
63-70
Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association
Stable URL: http://www.jstor.org/stable/2287770
Accessed: 01-06-2017 08:34 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/2287770?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

American Statistical Association, Taylor & Francis, Ltd. are collaborating with JSTOR to digitize,
preserve and extend access to Journal of the American Statistical Association

This content downloaded from 193.204.90.105 on Thu, 01 Jun 2017 08:34:01 UTC
All use subject to http://about.jstor.org/terms



 An ARIMA-Model-Based Approach to Seasonal

 Adj ustment
 S. C. HILLMER and G. C. TIAO*

 This article proposes a model-based procedure to decom-
 pose a time series uniquely into mutually independent
 additive seasonal, trend, and irregular noise components.
 The series is assumed to follow the Gaussian ARIMA
 model. Properties of the procedure are discussed and an
 actual example is given.

 KEY WORDS: ARIMA model; Seasonal adjustment;
 Census X-1 1 program; Pseudospectral density function;
 Model-based decomposition; Canonical decomposition.

 1. INTRODUCTION

 Business and economic time series frequently exhibit
 seasonality-periodic fluctuations that recur with about
 the same intensity each year. It has been argued (c.f.,
 Nerlove, Grether, and Carvalho 1979, p. 147) that sea-

 sonality should be removed from economic time series
 so that underlying "business cycles" can be more easily
 studied and current economic conditions can be ap-
 praised. Of the large number of seasonal adjustment pro-
 cedures, the most widely used is the Census X- 1I method
 described in Shiskin, Young, and Musgrave (1967). The

 X-1 1 program and other methods that have been empir-

 ically developed tend to produce what their developers
 feel are desirable seasonal adjustments, but their statistical
 properties are difficult to assess from a theoretical view-
 point. Recently, there has been considerable interest in
 developing model-based procedures for the decomposi-
 tion and seasonal adjustment of time series (see, e.g., the
 work of Grether and Nerlove 1970; Cleveland and Tiao
 1976; Pierce 1978, 1980; Box, Hillmer, and Tiao 1978;
 Tiao and Hillmer 1978; and Burman 1980). Following this
 line of work and motivated in part by the considerations
 in the X-1 1 program, this article proposes a model-based
 approach that decomposes a time series into seasonal,
 trend, and irregular components.

 We suppose that an observable time series at time t,

 Zt, can be represented as

 Zt = St + T, + N,, (1.1)
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 where S,, T,, and N, are unobservable seasonal, trend,
 and noise components. It may be the case that a more

 accurate representation for Z, would be as the product
 of S,, T,, and N,. In that situation the model (1.1) would
 be appropriate for the logarithms of the original series.

 We assume that each of the components follows an
 ARIMA model,

 ~s(B)St = rs(B)bt

 4,T(B)T, = rjT(B)c, (1.2)

 4N(B)N, = nN(B)dt

 where B is the backshift operator such that BS, = St
 each of the pairs of polynomials {4>s(B), -rs(B)}, {4)T(B),

 )T(B)}, and {4N(B), 'rjN(B)} have their zeros lying on or
 outside the unit circle and have no common zeros, and
 b,, c,, and d, are three mutually independent white noise

 processes, identically and independently distributed as

 N(O, Ub2), N(O, u,2), and N(O, Ud2), respectively. Then
 it is readily shown that the overall model for Z, is the
 ARIMA model

 p(B)Z, = 0(B)a,, (1.3)

 where (p(B) is the highest common factor of 4ps(B), '4T(B),
 and N(B), and 0(B) and ucr2 can be obtained from the
 relationship

 0(B)0(F)Ua2 _2 Ts(B)TJs(F)Ub2

 (p(B)(p(F) -4s(B)4+s(F)

 + +(B)T(F)u 2 nN(B)nN(F)Ud

 4)T(B)4 T(F) 4XN(B)4)N(F)

 (1.4)

 where F = B- '. We also assume that the parameters in
 (1.3) are known. In practice a model for the observable
 series Z, can be built from the data, and the estimated
 parameter values used as if they were the true values.

 The ARIMA form has been found flexible enough to
 describe the behavior of many actual nonstationary and
 seasonal time series (Box and Jenkins 1970). There are

 situations in which such models by themselves may not
 be adequate; for example, a series describing employ-

 ment may be dramatically affected by a strike and the
 model (1.3) does not cover such contingencies. However,
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 in these situations ARIMA models can frequently be
 modified to approximate reality; for instance, interven-
 tion analysis techniques described in Box and Tiao (1975)
 might be used to account for the effects of strikes and
 other exogenous events.

 Given the observable Z, and the structure in (1.1), (1.2),
 and (1.3), the problem is to decompose Z, into S,, T,, and

 N,. Our approach is as follows: (a) We first impose re-

 strictions on (ps(B) and XT(B) for the component models
 (1.2) based in part on considerations in the Census X-1 1

 program. (b) A model for Z, is derived from observable
 data. (c) A principle is adopted that uniquely specifies
 the component models in a manner consistent with the
 imposed restrictions and the model derived for Z,. (d)

 Given the component models, known signal extraction
 methods are applied to decompose Z, into (estimates of)
 the components. Properties of the procedure are explored
 and an illustration using an actual time series is presented.

 2. DECOMPOSITION WHEN THE COMPONENT
 MODELS ARE KNOWN

 If in (1.1) the stochastic structures of S,, T,, and N, in
 (1.2) are known, then estimates of S, and T, can be readily

 obtained (see, e.g., Whittle 1963 and Cleveland and Tiao
 1976). Specifically, Cleveland and Tiao have shown that,

 when all the zeros of Xs(B), XT(B), and dN(B) are on or
 outside of the unit circle, the minimum mean squared
 estimates of the seasonal and trend components S, and
 T, are, respectively,

 St = Ws(B)Z, and T, = WT(B)Z,, (2. 1)

 where

 - ( b2 p(B)p(F)-qs(B)-qs(F)

 VTSw; - Ua2 O(B)O(F)4)s(B)4)s(F)

 and

 W (u2 p(B)(p(F)'qT(B)'qT(F)

 WT(B) = (a2 O(B)O(F)+T(B) T(F)

 Because in practice the S,, T,, and N, series are unob-
 servable, it is usually unrealistic to assume that the com-
 ponent models in (1.2) are known. As a result, the weight
 functions Ws(B) and WT(B) cannot be determined and
 the values S, and T, cannot be calculated. We can, how-
 ever, get an accurate estimate o-f the model (1.3) from the
 observable Z, series. Consequently, it is of interest to

 investigate to what extent a, known model for Z, will
 determine the models for the component series.

 3. PROPERTIES OF SEASONAL AND TREND
 COMPONENTS

 It is well known that the Census X-1 1 procedure may
 be approximated by a linear filter (for instance see Young

 1968 and Wallis 1974). One important feature of the X- 11
 filter weights for the trend and the seasonal components
 is that the weights applied to observations more removed

 from the current time period decrease. This feature was

 incorporated into the X- 11 program probably because of
 the belief that the trend and seasonal components of many
 series change over time; consequently the information
 about the current trend or seasonal is contained in the
 values of Z, close to current time. Therefore, in devel-
 oping a decomposition procedure we should allow for
 evolving trend and seasonal components.

 Stochastic Trend

 Economic data often exhibit underlying movements
 that drift over time. While locally such movements might
 be adequately modeled by a polynomial in time, a fixed
 polynomial time function is clearly inappropriate over the
 entire time span. Thus a stochastic trend model is needed,
 and we assume that the trend component, T, follows the
 nonstationary model

 (1 - B)dT, = TlT(B)C,, (3.1)

 where qT(B) is a polynomial in B of degree at most d,

 and c, are iid N(0, ,'2). Box and Jenkins (1970, p. 149)
 have shown that the minimum mean squared error fore-
 cast function of (3.1) is a polynomial time function of
 degree (d - 1) whose coefficients are updated as the
 origin of forecast is advanced; therefore (3.1) can be re-
 garded as a polynomial model with stochastic coefficients.

 It is also of interest to consider the trend component
 in the frequency domain. Intuitively, the spectral density
 function of a trend component should be large for the low
 frequencies and small for higher frequencies. Since the
 model (3.1) is nonstationary, the spectral density function
 is strictly speaking not defined. However, we can define
 a pseudospectral density function (psdf) for (3.1) by

 f T(W) = c 2T(ei-)T(e iW)1(1 eiw)d(I - e-iw)d,

 O c w < Tr. (3.2)

 Now the psdf (3.2) is infinite at w = 0 and very large for
 small w. This is consistent with what could be viewed as
 a stochastic trend component.

 Stochastic Seasonal

 A deterministic seasonal component St of period s
 would have the property that it repeats itself every s pe-
 riods and that the sum of any s consecutive components
 should be a constant, that is,

 S= S,. and U(B)S, = c, (3.3)

 where U(B) = 1 + B + . . . + Bs-' and c is an arbitrary
 constant that can be taken as zero. Such a model, how-
 ever, implies that the seasonal pattern is fixed over time.
 For business and economic time series, it seems reason-
 able to require that the seasonal component should be
 capable of evolving over time but that locally a regular
 seasonal pattern should be preserved. In other words,
 U(B)S, should be random but cluster about zero. Con-
 sider the nonstationary model

 U(B)S, = nqs(B)b,, (3.4)
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 where -rs(B) is a polynomial in B of degree at most
 s - 1 and b, are iid N(O, Ub). That is, the consecutive
 moving sum of s components, U(B)S,, follows a moving
 average model of order (at most) s - 1. It is readily shown
 that the forecasting function of (3.4) at a given time origin
 follows a fixed seasonal pattern of period s, but the pat-
 tern is updated as the origin is advanced. Also, EU(B)S,
 = Eqs(B)b, = 0. Thus, the model (3.4) preserves a local
 cyclical pattern but allows seasonality to evolve over
 time.

 It is also informative to consider the psdf, fs(w), of the
 model in (3.4)

 fs(w) = ('w-q(e i
 U(eiw) U(eiw) (3.5)

 It can be shown that fs(w) has the following properties:
 (a) fs(w) is infinite at the seasonal frequencies w = 2karl
 s for k = 1, . . ., [sl2], where [xl denotes the greatest
 integer less than or equal to x; (b) fs(w) has relative
 minimum at w = 0 and near the frequencies w = ((2k
 - 1)7r)Is for k = 2, . . , [sl2]. Therefore, the psdf of
 (3.4) has infinite power at the seasonal frequencies and
 relatively small power away from the seasonal frequencies.

 4. MODEL-BASED SEASONAL DECOMPOSITION

 From considerations in the previous section, we re-
 quire 9(B) to contain the factor U(B) before we impose
 a seasonal component S, and to contain the factor (1 -
 B)d before we impose a trend component T, for Z,. We
 further require that in (1.2) the autoregressive polynomial
 of N,, XN(B), has no common zeros with either (1 - B)d
 or U(B), because otherwise it would imply the existence
 of additional seasonal and trend components that could
 then be absorbed into S, and T,. Thus, we shall suppose
 that in (1.3)

 p(B) = (1 - B)dU(B)4N(B), (4.1)

 where the three factors on the right side have no common
 zeros. In other words, knowing the model for Z, and
 assuming that a decomposition is possible, the autore-
 gressive polynomials of S,, T,, and N, can be uniquely
 determined. Also, the relationship (1.4) becomes

 O(B)O(F) Ua2 = -qs(B)-qs(F) Ub2
 qp(B)~p(F) U(B) U(F) U

 + (1 ~T(B)TIT(F) 2 9 + qN(B)1)N(F) 2

 (I - B)d(I - F)d -N(B)+N(F)

 (4.2)

 The more difficult task is to determine the moving av-
 erage polynomials and the innovation variances. Within

 the class of -qs(B) and IT(B) whose degrees are at most
 (s - 1) and d as required by (3.1) and (3.4), any choice
 of the three moving average polynomials rs(B), YT(B),
 and 'qN(B) and the three variances ub2, ac2 and ad2 sat-
 isfying (4.2) will be called an acceptable decomposition

 because it is consistent with information provided by the
 model for the observed data Z,.

 We now give a necessary and sufficient condition for
 the existence of an acceptable decomposition. Assuming
 that p(B) takes the form (4.1), we may perform a unique
 partial fraction decomposition of the left side of (4.2) to
 yield

 O(B)O(F) 2 Qs(B)

 ((B)y((F) U(B) U(F)

 + QT(B) + QN(B)
 (I -B)d(l -F) + N(B)+N(F)

 (4.3)

 where

 s-2

 Qs(B) = qos + I qis(B1 + F1),

 d-I

 QT(B) = qOT + z qiT(B + F1),

 and QN(B) can be obtained by subtraction. The unique-
 ness in (4.3) results from the fact that the degrees of

 Qs(B) and QT(B) are lower than the degrees of the cor-

 responding denominator. Now for 0 c w c iT, let

 El = mmn -Qs(e 11') w IU(e'w) 12
 QT(e - i", )

 E2 = min l 1-" 2d' 4) E2 w -eiI 2d(4.4)
 and

 QN(e - iw)
 w IjN(e')l

 We now show that an acceptable decomposition exists

 if and onlyifEl + E2 + E3 >_
 Proof. By writing B = e-iw, 0 ? w ? 7r, each of the

 three terms on the right side of (4.2) is a psdf.

 Since -rs(B) is of degree at most s - 1 and -1T(B) is of
 degree at most d, by comparing (4.2) with (4.3) we can
 write

 Krls(e-iw) 2 ub2 Qs (e +
 I U(e ') 12 = U(e w) 12 + ,

 -iw 2 2 QT(eiw)
 19T(e1 ~ QT_____e

 o*c ____ ____ ____ + -Y 2 ,

 11i - w 11 -Ie-i 12d (4.5)
 and

 I TN(e ) 12 ud2 QN(e_iw)

 I 4v(e ) 12 1 4>N(e-iw) 12 +3'

 where -y I Y2, and Y3 are three constants such that 1
 + Y2 + Y3 = 0. The constants yi provide a means to
 change from the initial partial fractions decomposition
 (4.3) to an acceptable decomposition if one exists. Thus,
 an acceptable decomposition implies and is implied by
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 the fact that yi + Ei ' 0 for i = 1, 2, 3 or equivalently
 that El + E2 + E3 _ 0.

 From the previous discussion, when 1 + E2 + E3 ?
 0, every set of yi's corresponds to a unique acceptable
 decomposition; thus a unique decomposition exists if and
 only if El + E2 + E3 = 0. On the other hand, when El
 + E2 + E3 > 0, there are an infinite number of ways of
 adding constants to the three terms on the right side of
 (4.3) to obtain acceptable decompositions.

 5. A CANONICAL DECOMPOSITION

 In the absence of prior knowledge about the precise
 stochastic structure of the trend and seasonal compo-
 nents, all of the information in the known model of Z,,
 (1.3), about S, and T, is embodied in (4.2). However,
 when E1 + E2 + E3 > 0, this information is not sufficient
 to uniquely determine the models for S, and T,. To per-
 form seasonal adjustment of the data, an arbitrary choice
 must be made. Considering that the seasonal and trend
 components should be slowly evolving, it seems reason-
 able to extract as much white noise as possible from the
 seasonal and trend components subject to the restrictions
 in (4.2). Thus, we seek to maximize the innovation var-

 iance Cd of the noise component N,. Therefore, we de-
 fine the canonical decomposition as the decomposition
 that maximizes d 2subject to the restrictions in (4.2).

 Properties of the Canonical Decomposition

 In the following we denote the canonical seasonal com-
 ponent by S,, the canonical trend component by T,, and
 use the same convention when referring to the moving
 average polynomials and innovation variances of the can-
 onical decompositions. We prove the following properties
 of the canonical decomposition in the appendix. (a) The
 canonical decomposition is unique. (b) It minimizes the
 innovation variances Ub and ucr2. (c) The polynomials

 is(B) and XT(B) have at least one zero on the unit circle
 so that the models for S, and T, are noninvertible. (d) If
 S, and T, are any acceptable seasonal and trend compo-
 nents other than the canonical decomposition, then S,
 = S, + e, and T', = T, + a,, where e, and a., are white
 noise series. (e) The variance of U(B)S, is minimized for
 the canonical decomposition.

 One may lend justification of the (arbitrary) choice of
 the canonical decomposition on the basis of these prop-
 erties. In particular, property (b) is intuitively pleasing
 since the randomness in S, arises from the sequence of
 b,'s and the randomness in T, arises from the sequence
 of c,'s. Thus, minimizing Ub2 and u, 2 makes the seasonal
 and trend components as deterministic as possible while
 remaining consistent with the information in the observ-
 able Z, series. Also, from property (d) any acceptable
 seasonal component can be viewed as the sum of the
 canonical seasonal and white noise. But S, is a highly
 predictable component that accounts for all of the sea-
 sonality in the original series and e, is a completely un-

 predictable component. Thus, one might argue that the
 choice of an acceptable decomposition other than the
 canonical decomposition only produces a more confused
 seasonal component than necessary. Finally, property
 (e) is intuitively pleasing since E[ U(B)S,] = 0 and a small
 value for var[ U(B)S,] will help ensure that the sum of s
 consecutive seasonal components remains close to zero.

 6. APPLICATION TO SOME SPECIAL SEASONAL
 MODELS

 We now illustrate the results in the preceding sections
 with the following three special cases of (1.3). These
 models have been frequently used in practice to fit sea-
 sonal data (see, e.g., Box and Jenkins 1970, and Tiao,
 Box, and Hamming 1975).

 (1 - Bs)Z, = (1 - 02Bs)a,, (6.1)

 (1 - B)(1 - Bs)Z, = (1 - 01B)(1 - 02Bs)a,, (6.2)

 and

 (1 - Bs)Z, = (1 - 01B)(1 - 02Bs)a,. (6.3)

 Without loss of generality, we assume that (a2 = 1. For
 these models, the general approach is as follows. We first
 divide the denominator of the left side of (4.3) into the
 numerator to obtain QN(B) and a remainder term R(B);
 we then perform a partial fractions expansion of R(B)I
 (p(B)p(F) to obtain Qs(B) and QT(B); and finally we find
 the minimum values El, E2, and E3 in order to investigate
 whether an acceptable decomposition exists.

 The model (6.1)

 In this case, d = 1 and XN(B) = 1. By partial fraction,
 (4.3) becomes

 (1 - 02Bs)(I - 02FS)

 (1 - Bs)(1 - Fs) (6.4)

 Qs(B) QT(B) + 02

 U(B) U(F) (1 - B)(1 - F)

 where

 QT(B) = I2 (1 - 02)2

 and

 Qs(B) = (1 - 02)2 1 -_I U(B)U(F)J

 (1 - B)(1 - F)

 = 612 (1 - 02)2

 -s-I

 x (1 - 1)1(1 + 1)(Bs-l + Fs-1)
 1=2

This content downloaded from 193.204.90.105 on Thu, 01 Jun 2017 08:34:01 UTC
All use subject to http://about.jstor.org/terms



 Hilimer and Tiao: ARIMA-Model-Based Seasonal Adjustment 67

 For the trend component, we see that QT(e-iw) 1 -
 e - i 2 is monotonically decreasing in w and

 = - 02)2.

 For the seasonal component, it is easy to show that

 Qs(eiw) I U(e ') I-2 ? 0 and has a local minimum at
 w = 0. Also, we conjecture that w = 0 is in fact the
 global minimum. This conjecture is verified analytically
 for s < 3 and numerically for s from 4 to 20. Assuming
 this is true for all s we find that

 min I - I I U(e 'i) 12}/| 1 - e-'w 12(65

 = (s2 - 1)/12

 so that El = (1 - 02)2(s2 - 1)112s2. Since E3 = 02, for
 an acceptable decomposition to exist it is required that

 (1 - 02 )2 (S2 -1)(1 02)2
 E1 + E2 + E3 = 02 + 42 + ( 12 2

 or equivalently

 (5s2 - 2) + 2s6(S21)

 02 >' (S2 + 2) (6.6)
 Values of the lower bound- of 02 for selected values of s
 are given in the following tabulation:

 s 2 4 6

 L.b.02 - .1716 - .1170 - .1080

 8 10 12 X
 - .1049 - .1035 - .1027 - .1010

 Therefore, there are values of 02 for which the model
 (6.1) is not consistent with an additive decomposition as
 we have defined it; however, a value of 02 > - .1010 will
 always lead to an acceptable decomposition.

 When strict inequality is obtained in (6.6), there will
 be an infinite number of acceptable decompositions. The
 canonical decomposition corresponds to

 CF b2-s(B)is(F) Qs(B) s2 - I

 U(B)U(F) U(B)U(F) 12s2

 and (6.7)

 UC tT(B)T(F) 1 2(1 + B)(1 + F)
 (1 - B)(1 - F) 4s2' (1 -B)(1 -F)

 The Model (6.2)

 For this model, d = 2 and 4w(B) = 1. After some
 algebraic reduction, we find

 (1 - 01B)(1 - 02Bs)(1 - 01F)(1 - 02Fs)

 (1 - B)(1 - Bs)(1 - F)(1 - Fs) (6.8)
 Qs(B) + QT(B)-

 U(B)U(F) (1 - B)2(1 - F)2 1Z

 where

 (1 - 01)2(1 - 02)2

 __ __ (S2 - ) (1 + 0i)2

 { ji+ [( - 02)2 12 4(1 _O )2]

 x (1 - B)(1 - F)}

 and

 (1 - 02)-2(1 - B)2(1 - F)2 Qs(B)

 = (1- 0i)2 { I - U(B)U(F)} + 01 (I- B)(1 - F)

 1212 4 (1- 01)2 + (1 + 1)2} (1 - BS)(1 -Fs).

 We now show that an acceptable decomposition exists
 if 02 ?0 .

 Proof. First, setting B = - 1 (or w = aT in B = e -i'l)
 in QT(B)(1 - B)-2(1 - F) -2, we have

 QT( 1) (1 - 02)2
 16 48s2

 x {(1 - 01)2(s2 - 1) + 3(1 + 01)2} (6.9)

 + 02(1 - 01)2 c
 4

 say. The right side of (6.8) can now be written as

 -QS*(B) + QT* (B) _ 2(1 + 01)2 (.0
 U(B) U(F) (1 - B)2(1 - F)2 + 02 4 , (6.10)

 where

 QT*(B) = QT(B) - C(1 - B)2(I - F)2

 and

 QS = Qs(B) + U(B)U(F) {C - 02(1 - 0 }

 Also, it can be verified that

 (1 - 02) 2(1 - B)2(1 - F)2 Qs*(B)

 _(1 -O 2
 -( 4 ) (l+B)(l +F)

 4

 x {l - I U(B) U(F)
 2 ~~~~~~~~~~(6.11)

 -( -1 (I - Bs)(1 - Fs)
 12s 2 (

 +( + (1-2 (I B)(l -F) 4

 x {l - 2 U(B)U(F)(I + B)(l + F)}. 4s 2

 When 02 ? 0, one can readily show that QT(eiw) 1
 - e-iwj -2 i monotonically decreasing in w so that the
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 second term in (6.10) is nonnegative for all w. Now, on
 the right side of the equation in (6.1 1), the second term
 with B = e-"' is clearly nonnegative for all w and, from
 (6.5), so is the first term. Thus, an acceptable decom-
 position exists and is given by (6.10).

 The Model (6.3)

 In this case, d = I and 4N(B) = 1. By partial fraction,
 we find

 (I - 01B)(1 - 0iF)(1 -02Bs)(1 - 02FP)
 (I - BS)(1 -FS)

 Qs(B) QT(B) (6.12)
 + + QN(B),

 U(B)U(F) (I - B)(1 - F)

 where

 QT(B) = 1 - O1)2(l - 02),

 (1 - 02) 2(1 -B)(1 -F)Qs(B)

 -( + 1) (I -B)(l -F)

 + (1- 01)2 j1 + B)(1 + F)- U(B)U(F)j,

 and

 QN(B) = 02(1 - 01B)(l - 0,F).

 Noting that

 mn QT(e - 11 - e - -v2 = 0-(l 0)2(1 -0 ) 2

 we can express the right side of (6.12) alternatively as

 + (1Q_B + QN*(B),9 (6.13)
 U(B)U(F) (- B)(1 - F)

 where

 QT*(B) = QT(B) - 4 2(1 - 01)2

 X (1 - 02)2(1 - B)(1 - F),

 QN*(B) = QN(B) + 4 - (1 + 01)2(1 - 02)2,

 and

 (I - 02) 2(1 - B)(1 - F)Qs*(B)

 = (1 - 0 B)(l - 01F) {1 - I U(B)U(F)}

 Similar to the model (6.2), when 02 ? 0, all three terms
 in (6.13) are nonnegative for all w so that acceptable
 decompositions exist.

 For the models (6.2) and (6.3), acceptable decompo-
 sitions also exist for negative values of 02 near zero. The
 precise lower bounds are difficult to determine analyt-
 ically. However, for these as well as for any model of the

 1340Z _
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 Figure 1. Monthly Unemployed Males Aged 16 to 19
 (January 1971-August 1979) and the Estimated Trend
 Component Series

 form (1.3) satisfying the condition (4.1), the existence of
 acceptable decompositions and the corresponding can-
 onical form can always be determined by numerical meth-
 ods. A computer program to determine the canonical
 component models and to compute the estimates S,., Tt,
 and N, is available on request.

 7. AN EXAMPLE

 We now apply the model-based decomposition pro-
 cedure to the monthly series of U.S. unemployed males
 aged 16 to 19 from January 1965 to August 1979, obtained
 from the Bureau of Labor Statistics. The series is a com-
 ponent used in constructing the monthly unemployment
 index.

 The series is plotted in Figure 1. The variability of the
 series appears relatively constant over time; thus we de-
 cided to model the series in the original metric. It is found
 that the data can be adequately represented by the model
 (6.2) with

 s= 12, O = .313, and 02= .817, (7.1)
 (.075) (.035)

 33,-.
 la

 E

 E V
 z

 -14

 Year

 Figure 2. Estimated Seasonal Component Series for
 the Unemployed Males Data
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 Table 1. Weight Function for Estimating the Seasonal Component: Unemployed Males Data

 Lag j W]

 0-11 .085 -.007 -.008 -.008 -.008 -.008 -.008 -.007 -.007 -.007 -.007 -.007
 12-23 .076 -.007 -.007 -.007 -.006 -.006 -.006 -.006 -.006 -.006 -.006 -.006
 24-35 .062 -.006 -.005 -.005 -.005 -.005 -.005 -.005 -.005 -.005 -.005 -.005
 36-47 .051 -.005 -.004 -.004 -.004 -.004 -.004 -.004 -.004 -.004 -.004 -.004

 with the standard errors of the parameter estimates given
 in parentheses below the estimates.

 Assuming the estimates in (7. 1) are the true values, we
 computed the corresponding canonical decomposition
 and, from (2.3), the associated weights for the estimates
 of the seasonal and trend components. These weights are
 given in Tables 1 and 2 from the center through lag 47.
 In both cases the remaining weights can be obtained by

 using the equation wj = .313 wj_1 + .817 w_12 - .256
 Wj_ 13. We observe that the weights associated with the
 seasonal component die out slowly and span a large num-
 ber of years. This is in contrast to the weights associated
 with the standard Census X-1 1 program whose weights
 die out in about three years (see, e.g., Wallis 1974). We
 note that the rate at which the weight in the model-based
 approach decreases is primarily determined by the value
 of the parameter 02 = .817, which is determined from the
 original series.

 The estimated trend component T, is shown in Figure
 1 and the estimated seasonal component S, is plotted in
 Figure 2. We make the following observations. (a) The
 estimated trend component appears to capture the basic
 underlying movements of the series. (b) The seasonal
 component seems to have been adequately removed by
 the model-based decomposition. (c) The estimated sea-
 sonal component varies around a zero level and it is
 slowly changing over time. Therefore, for this particular
 series it appears that the model-based seasonal adjust-
 ment procedure has led to intuitively pleasing results.

 8. DISCUSSION

 In this article, we have proposed a model-based pro-

 cedure to decompose a time series uniquely into mutually
 independent seasonal, trend, and irregular noise com-

 ponents. The method can be readily extended to models
 other than the ones discussed. For example, when s =
 12, the autoregressive part of the seasonal component
 need not be U(B), but can be any product of the factors

 (1 + B), (1 + B2), (1 + B + B2), (1 - B + B), (1 +
 V3B + B2), and (1 - \/iB + B2). Also, the trend com-
 ponent may be augmented into a "trend-cycle" compo-
 nent by allowing the autoregressive part to take the form

 (1 - B)d T*(B), where XT*(B) has all its zeros lying on
 the unit circle (but distinct from B = 1 and those of the
 seasonal component). The possibilities are unlimited, de-
 pending on the form of the known model of Z, and the
 nature of the problem.

 Finally, we remark here that in illustrating the decom-
 position procedure with the models (6.1) to (6.3), in each
 case the values of 02 are restricted essentially to be non-
 negative to yield acceptable decompositions. While we
 have rarely seen in practice a negative estimate of 02, it
 is conceivable that this could happen. One possible ex-
 planation for a negative 02 iS that the white noise b, and
 c, for the seasonal and trend components are correlated.
 As an extreme example of the model (6.1) with s = 2,
 suppose the component models are

 (1 + B)S, = (1 -B)b,

 (1 - B)T, = (1 + B)c,, (8.1)

 and

 N, 0.

 The reader can readily verify that if Ub2 = (Cu2 and b, and
 c, are perfectly positively correlated, then 02 = - 1.
 Thus, by allowing the component models to be depend-
 ent, we could increase the range of the models of Z, for
 which acceptable decompositions exist. This seems to be
 an interesting topic for further study.

 APPENDIX

 In this appendix we sketch the proof of the properties
 of the canonical decomposition given in Section 5. Upon
 multiplying each expression in (4.5) by the denominator
 on the left side of the corresponding equation, we obtain

 Table 2. Weight Function for Estimating the Trend Component: Unemployed Males Data

 J Wi

 0-11 .318 .212 .072 .028 .014 .010 .008 .008 .007 .005 .001 -.012
 12-23 - .021 - .012 .001 .005 .006 .006 .006 .006 .006 .004 .001 - .009
 24-35 - .018 -.010 .001 .004 .005 .005 .005 .005 .005 .004 .001 - .008
 36-47 - .014 - .008 .001 .003 .004 .004 .004 .004 .004 .003 .001 - .006
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 I qs(e- w) 12 CUb2 = Qs(e-iw) + 'y' I U(e - iw) 12

 = fs(w, -y),

 I 1T(e ) 12 c2 = QT(e iw) + Y2 1 - e-w 2d (A.1)

 = fT(W, Y2)

 I N (e ) 12 Cd2 = QN(eiw) + 'y3 I 4N(e ) 12

 = fN(W, Y3)-

 Using a result of Hannan (1970, p. 137), we have that

 Cb(_1) = exp {27 If7 In fs(w, -y) dw}

 Uc2(Y2) = exp I f in f T(W Y2) dw}, (A.2)

 urd2(Y3) = exp { I f in fN(W, Y3) dw}.

 Now in (A. 1), fN(W, Y3) does not depend on Y3 if 4N(ei!)
 = 0 and is otherwise strictly increasing in Y3; thus cd2
 is maximized when Y3 = E1 + E2. From the restrictions
 that y1 + Y2 + Y3 = 0 and yi + Ei ' 0, i = 1, 2, 3, we
 have that for the canonical decomposition yi = - E and

 Y2 = -E2. Therefore, the canonical decomposition is
 unique and furthermore, from (A.1) and (A.2), the in-

 novation variances Crb2(y) and ucr2(Y2) are minimized for
 the canonical decomposition. In addition, if we take yl
 = -El and Y2 = -E2 in (A. 1), both fs(w, -E1) and fs(w,
 - E2) are zero for some 0 c w ? wl implying that -s(B)
 and iT(B) are not invertible.

 If we let

 fs(w) = Qs(e -i w) I U(e ') 12 - El

 denote the psdf of S, and let fS(w) denote the psdf of any
 other acceptable decomposition S, then it follows that

 fs(w) = fs(w) + cre2 (A.3)

 with Cre2 > 0. Equation (A.3) implies S, = S, + e,, where
 e, is white noise with variance Cre2

 Finally, from (4.5) the variance of U(B)S, is

 var[U(B)S,]

 =- f | [Qs(e-"i) + yi I U(e-iw) 12] dw. (A.4)

 It is evident that (A.4) is minimized when -y is made as
 small as possible or yl = - E, the value corresponding
 to the canonical decomposition.

 [Received October 1980. Revised June 1981.]
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