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Statistical matching is a technique for combining information from different sources. It can be
used in situations when variables of interest are not jointly observed and conclusions must be
drawn on the basis of partial knowledge of the phenomenon. Uncertainty regarding
conclusions arises naturally unless strong and nontestable hypotheses are assumed. Hence, the
main goal of statistical matching can be reinterpreted as the study of the key aspects of
uncertainty, and what conclusions can be drawn. In this article we give a formalization of the
concept of uncertainty in statistical matching when the variables are categorical, and
formalize the key elements to be investigated. A consistent maximum likelihood estimator of
the elements characterizing uncertainty is suggested. Furthermore, the introduction of logical
constraints and their effect on uncertainty are studied. All the analyses have been performed
according to the likelihood principle. An example with real data is presented and a
comparison with other approaches already defined is performed.
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1. Introduction

Information plays a key role with regard to understanding phenomena. In some cases it

may be obtained by combining two or more data sources: some examples are database

marketing (Kamakura and Wedel, 1997 and 2003) and economic research via

microsimulation (e.g., the Social Policy Simulation Database created at Statistics Canada,

Singh et al., 1993, and references therein). Another particularly suitable field of

application is Official Statistics, this because of the large number of files maintained in

National Statistical Institutes (NSIs) (D’Orazio et al., 2001).

Integration of data from different sources can be performed by means of three different

methodologies: merging, record linkage and statistical matching. The first two are

designed to link the same units from two or more different files: merging needs error-free

matching variables, while record linkage is a statistical decision procedure that can be used

when matching variables are affected by errors. Both these techniques require that the sets

of observed units in the two sources overlap. Statistical matching faces the problem of

integration when the files do not contain the same units. The main target of statistical

matching is to give joint information on variables observed in different sources. This

q Statistics Sweden

1 Italian National Statistical Institute (ISTAT), via Cesare Balbo 16, 00184 Rome, Italy. Emails:
madorazi@istat.it, dizio@istat.it, and scanu@istat.it
Acknowledgments: We are very grateful to the referees and an Associate Editor for their helpful comments.

Journal of Official Statistics, Vol. 22, No. 1, 2006, pp. 137–157



integration problem may be represented by the following situation. There are two different

sources, A and B, two groups of variables never jointly observed, Y in A and Z in B, and one

group of variables available in both data sources, X (see Figure 1).

Different statistical matching techniques have been developed since the 1970s (see

references in Rässler 2002) and may be broadly divided into three large groups. The first

one contains those techniques (implicitly) based on a specific model: Y and Z are

probabilistically independent conditionally on X (Conditional Independence Assumption,

CIA henceforth). When this model is not adequate, the integrated synthetical dataset may

be significantly different from the truth, and the application of the usual parameter

estimators may result in highly misleading estimates (Rodgers 1984, Paass 1986, Barry

1988, Goel and Ramalingam 1989, Singh et al. 1993, Renssen 1998). The second group of

techniques faces this problem using auxiliary information on (Y, Z) (e.g., an additional

outdated, proxy or confidential file C on (Y, Z) or (X, Y, Z), see Singh et al., 1993, and

references therein). In particular, Singh et al. (1993) show by simulation studies how the

accuracy of results of the matching procedure can be improved in this setting. Although

this is an important special case, it is not always feasible (Ingram et al., 2000) because the

required external information on the parameters regarding the statistical relationships

between Y and Z or on the (Y, Z) distribution is rarely available. Both the previous two

groups of techniques are constrained to just a single world: in the first we assume that the

world is that described by the CIA, in the second we describe the closest world (with

respect to the Kullback-Leibler distance; see Csizár 1975) to that of the auxiliary

information (e.g., previous year) and coherent with data currently observed. Actually

many distributions on (X, Y, Z) are compatible with the available partial information, i.e.,

many worlds may have generated the observed data, and those worlds are

indistinguishable. This problem leads to the third group of techniques that addresses the

so-called identification problem. This approach consists in assessing all the possible

worlds, i.e., all the parameter values consistent with the available information. This

problem was defined by Manski (1995) for the missing data problem and addressed by

Kadane (1978), Rubin (1986), Moriarity and Scheuren (2001, 2003) and Rässler (2002) in

the matching problem for continuous variables.

In this article we describe an approach to statistical matching in the identification

problem framework for categorical data. First (Section 2) we analyze the case of marginal

complete information on (X, Y) and (X, Z) and discuss what we mean by uncertainty. Then

(Section 3) we consider the case when marginal information on (X, Y) and (X, Z) is

provided by two independent samples. In this case, uncertainty is estimated following the

Maximum Likelihood (ML) approach, i.e., all the possible worlds maximizing the

likelihood function are regarded as equally informative and are taken into consideration.

We also suggest the use of the elements characterizing uncertainty to some conclusions

Y X Z

Fig. 1. Typical situation for statistical matching in a unit (row) by variable (column) matrix. Spaces in grey

correspond to observed data, while white spaces are missing data. The first block of data corresponds to source A,

and the second to source B.
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(decisions) regarding parameter values. In order to exclude some impossible worlds, it is

important to introduce logical constraints, i.e., constraints characterizing the phenomenon.

In Section 4 we will consider structural zeros and inequality constraints between pairs of

distribution parameters. Their introduction implies, as expected, a decrease of the overall

parameter uncertainty. Finally, in Section 5, we introduce an example with NSI data to

better show advantages and drawbacks of the proposed method. In the last section,

concluding remarks and some directions for further research are presented.

All the considerations in the next sections have been developed when X, Y and Z are

univariate variables. The extension to the multivariate context is straightforward, provided

the blocks of observed data are as in Figure 1.

2. Uncertainty in a Statistical Matching Context

The statistical matching context is inevitably characterized by uncertainty, i.e., even in the

optimal case of complete knowledge on the (X, Y) and (X, Z) distributions, it is not possible

to draw unique and certain conclusions regarding the overall distribution (X, Y, Z) unless Y

or Z can be exactly predicted by X due to a deterministic relationship between X and Y or

between X and Z. Moreover in a real context, just two samples from respectively (X, Y) and

(X, Z) are available, introducing an additional source of imprecision: sampling variability.

The statistical analysis for this latter context is discussed in Section 3.

Let D define the cells of the table of the triplet (X, Y, Z) with respectively I, J, and K

categories,

D ¼ {ði; j; kÞ : i ¼ 1; : : : ; I; j ¼ 1; : : : ; J; k ¼ 1; : : : ;K}

The (X, Y, Z) joint distribution is multinomial with parameters:

u*
ijk ¼ PðX ¼ i; Y ¼ j; Z ¼ kÞ i; j; k [ D ð1Þ

If the overall distribution (1) of (X, Y, Z) is unknown, the “true” but unknown parameter

vector u* ¼ {u*
ijk} may take values in the following set:

Q ¼ u : uijk $ 0;
ðijkÞ[D

X
uijk ¼ 1

8<
:

9=
; ð2Þ

Actually the vector u * is totally uncertain.

Let us now assume that the marginal distributions for the two pairs (X, Y) and (X, Z) are

perfectly known:

u*
ij i ¼ 1; : : : ; I; j ¼ 1; : : : ; J ð3Þ

u*
i:k i ¼ 1; : : : ; I; k ¼ 1; : : : ;K ð4Þ

Information in (3) and (4) restricts the set of possible parameters (2) to the following
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subset:

Q ¼

k

X
uijk ¼ u*

ij: i ¼ 1; : : : ; I; j ¼ 1; : : : ; J

j

X
uijk ¼ u*

i:k i ¼ 1; : : : ; I; k ¼ 1; : : : ;K

uijk $ 0;
ðijkÞ[D

X
uijk ¼ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

Each set (2) and (5) represents uncertainty, i.e., multiplicity of plausible solutions given

the available information. In particular (5) may be considered as a description of the

uncertainty connected to the statistical matching problem when complete knowledge

regarding the marginal distributions is available.

Both (2) and (5) have the following characteristics:

. the true, but unknown, parameter u*
ijk lies in an interval uL

ijk # u*
ijk # uU

ijk; in particular

in set (2) uL
ijk ¼ 0 and uU

ijk ¼ 1 for all (i, j, k), while in set (5) uL
ijk . 0 and uU

ijk , 1

possibly for some (i, j, k);

. for each ði; j; kÞ [ D; the frequency of all the plausible values for uijk forms a

distribution, mijk(u), uL
ijk # u # uU

ijk. Generally speaking, this distribution “counts” all

the parameter vectors u [ Q such that uijk ¼ u. More formally, given that uijk lives in

a continuous space, mijk(u) is a density function. An example of the shape of the

distribution mijk(u) is outlined in the Appendix.

These characteristics represent the uncertainty regarding each single parameter. In

particular a key role is assumed by the distribution mijk(u) and its dispersion: the less it is

dispersed, the less we are uncertain about the parameter value, or, in other words, the more

the imposed constraints are informative. We remark that this distribution suggests an

additional dimension to consider in the sensitivity analysis for statistical matching: the

distribution mijk(u) is not just characterized by its range, but also by its variability. The

range remains the only important information when mijk(u) is flat for any ði; j; kÞ [ D. For

instance, this happens when I ¼ J ¼ K ¼ 2 and the constraints in (5) hold.

The dispersion of mijk(u) may be studied by traditional descriptive measures, among

others the standard deviation, the coefficient of variation or the interquartile range.

Furthermore, the dispersion of mijk(u) can suggest also a punctual approximation of the

true parameter u*
ijk. For instance, a reasonable approximation for u*

ijk can be the average

with respect to mijk(u). Let �uijk be this average value:

�uijk ¼

ðuU
ijk

uL
ijk

umijkðuÞdu ð6Þ

It is easy to see that u ¼ { �uijk} describes a distribution (each parameter is nonnegative and

their sum is 1). As a limit case, when the dispersion is null, the marginal distributions are

sufficient for determining u*
ijk.

An overall measure of dispersion in Q is the following: take the set of u compatible with

the imposed constraints u*
ij: and u*

i:k; ði; j; kÞ [ D and determine its volume, V ¼
Ð
Q

du
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(computed just on the uncertain parameters, i.e., those parameters with the corresponding

uncertainty distribution mijk(u) not concentrated on one value). This measure is

particularly important when logical constraints (common in real cases) are available: for

example in Official Statistics logical constraints are frequently used in the error

localization phase (Fellegi and Holt 1976). These additional constraints are useful in order

to exclude impossible distributions in (5), thus shrinking Q, reducing V and, hence, the

overall uncertainty. This aspect is studied in Section 4.

Note that similar definitions of uncertainty are not just for categorical variables, but hold

also for continuous ones. For instance, let (X, Y, Z) be a trivariate multinormal random

variable. In this case, uncertainty is defined fixing all the parameters suggested by the

(X, Y) and (X, Z) distributions (means, variances, correlations for (X, Y) and (X, Z)) as the

set of all the correlations for (Y, Z) compatible with the fixed parameters. It can be proved

that the uncertainty distribution for rYZ is a uniform distribution between a minimum and

maximum value (these extrema are well studied and discussed in: Kadane 1978, Moriarity

and Scheuren 2003, Rässler 2002). However, when either Y or Z is not univariate the

uncertainty distributions for the uncertain parameters might be different, as suggested by

Figure 3 in Rässler (2004). We defer discussion on uncertainty for continuous variables to

a future work.

3. The Statistical Model

Let us consider n i.i.d. realizations of (X, Y, Z). Dealing with discrete variables from the

multinomial distribution in (1) and denoting the vector of observed frequencies

n ¼ {nijk; ði; j; kÞ [ D}

where nijk is the number of units in the sample with (X ¼ i; Y ¼ j; Z ¼ k) the complete

likelihood is:

LðujnÞ ¼
i;j;k

Y
u

nijk

ijk u [ Q ð7Þ

The statistical matching context in Figure 1 is present when the n statistical units are

divided in two subgroups A and B (two independent subsamples) of respectively nA and nB

units, nA þ nB ¼ n. Let us assume that Z is not observed in A and Y is not observed in B. A

usual assumption (see for instance: Kamakura and Wedel 1997, Rässler 2002, pp. 75–76)

is that this missing data mechanism is ignorable. Under this assumption, in the situation of

Figure 1, marginalization of the complete data likelihood (7) gives the observed data

likelihood (Little and Rubin 1983):

LðujnA; nBÞ ¼
i;j

Y
ðujjiui__

Þn
A
ij:

i;k

Y
ðukjiui__

Þn
B
i:k u [ Q ð8Þ

where ujji ¼ uij:=ui__
; ukji ¼ ui:k=ui__

; and nA and nB have the same meaning as n. Note that

the factorization in (8) is a straightforward application of the Factorization Lemma in

Rubin (1974). Although (8) is a function of the overall vector u [ Q; the right-hand side

depends explicitly only on some marginal parameters. The maximum of (8) with respect to
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these parameters is uniquely determined by:

ûjji ¼
nA

ij:

nA
i__

; ûkji ¼
nB

i:k

nB
i__

; ûi__
¼

nA
i__
þ nB

i__
n

ði; j; kÞ [ D ð9Þ

The previous statements allow us to derive the final estimates for the following

parameters:

ûij: ¼
nA

ij:

nA
i__

nA
i__
þ nB

i__
n

; ûi:k ¼
nB

i:k

nB
i__

nA
i__
þ nB

i__
n

; ûi__
¼

nA
i__
þ nB

i__
n

ði; j; kÞ [ D

However, we are interested in estimating the overall vector u *. The maximum of the

observed likelihood function (8) in uijk is not unique. Every vector u ¼ {uijk} that satisfies

the following set of equations:

k

X
uijk ¼ ûij: ¼

nA
ij:

nA
i__

nA
i__
þ nB

i__
n

� �

j

X
uijk ¼ ûi:k ¼

nB
i__k

nB
i__

nA
i__
þ nB

i__
n

� �

uijk $ 0;
i;j;k

X
uijk ¼ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

is an ML estimate. The set constituted by all the ML estimates forms a region called the

likelihood ridge. It is easy to see that the likelihood ridge is the ML estimator of the set (5),

and consequently may be used for estimating the uncertainty of the statistical matching

process. Given that the likelihood ridge is composed of ML estimates, all the distributions

in it are equally informative, given the data. A consequence of the properties of ML

estimators is that uncertainty is estimated according to the likelihood principle.

One of the most important features of (10) is that it is dependent on the samples nA and

nB through the ML estimates ûij: and ûi:k; ði; j; kÞ [ D. The sample variability of the

likelihood ridge (10) decreases when nA and nB diverge to þ1, due to the consistency of

the ML estimators of the marginal distributions ûij: and ûi:k; ði; j; kÞ [ D. In other words,

the likelihood ridge converges (almost surely) to the set of distributions in (5) that

describes the uncertainty connected with the statistical matching context when complete

knowledge regarding (X, Y) and (X, Z) is available. Another consequence is that we can use

the MLE counterpart of uU
ijk; u

L
ijk and mijk(u) in the following û

U

ijk; û
L

ijk and m̂ijkðuÞ: All these

estimators are consistent, and can be usefully considered for the computation of (6). Since

uncertainty is a factor strongly characterizing statistical matching, the most important

thing is to reduce uncertainty, i.e., reduce the dispersion of the distributions mijk(u),

ði; j; kÞ [ D. One possibility is offered by logical constraints (Section 4).

We also underline that the likelihood ridge (10) contains the solutions under the CIA. In

fact, the parameter vector u assumes the form:

uijk ¼
uij:ui:k

ui__

;ði; j; kÞ [ D ð11Þ
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Consequently, the (unique) ML estimates are

ûijk ¼
nA

ij:

nA
i__

nB
i:k

nB
i__

� �
nA

i__
þ nB

i__
n

� �
;ði; j; kÞ [ D ð12Þ

and these estimated parameters are clearly inside the likelihood ridge (10). Similar results

hold also in the continuous Gaussian case (e.g., Moriarity and Scheuren 2001).

4. Logical Constraints

There are situations when it is possible to introduce logical constraints. We intend for

logical constraints those rules that make some of the parameter vectors in Q illogical for

the investigated phenomenon. Thus their introduction is needed in order to eliminate

impossible worlds. There are various examples of logical constraints. Two frequent cases,

which we will use in the next paragraphs, are:

. existence of some quantities: e.g., it cannot be accepted that a unit in the population is

both ten years old and married;

. inequality constraints: e.g., the probability of being a worker with a diploma is higher

than the probability of being a manager with a degree.

For the statistical model described in Section 3, they can be expressed as:

uijk ¼ 0 for some ði; j; kÞ ð13Þ

uijk # ui 0j 0k 0 for some ði; j; kÞ; ði0; j0; k 0Þ ð14Þ

Constraint (13) is usually called structural zero (see, e.g., Agresti 1990). This constraint

occurs when: (a) (i, j, k) contains at least one pair of incompatible categories or (b) each

pair in (i, j, k) is plausible but the triplet is incompatible.

Note that great caution should be exercised when it comes to the definition of the set of

logical constraints. In fact, if the constraints are not compatible with each other, Q results

in an empty set (see Bergsma and Rudas 2002, for more details and references therein).

From now on, we suppose that the chosen logical constraints are compatible.

A further remark is that not all the imposed constraints are of the same nature: some of

them are certainties (this happens for the structural zeros) while others are validated by

subject matter experts (it is very unlikely that they do not happen). In the following, we

will not distinguish between them, and we will assume that they are all strictly valid.

Further studies should be devoted to the introduction of a suitable probabilistic device to

deal with the nonstrictly logical constraints.

The main effect of these constraints is the possible reduction of the dispersion of the

plausible parameters in the likelihood ridge. It is clear that the size of the reduction is

dependent on the amount of information introduced. In some circumstances, information

carried by logical constraints can be so informative that, using them in addition to the

observed marginal distributions (X, Y) and (X, Z), it is possible to reduce the likelihood

ridge to a unique distribution. This happens, for instance, when (J 2 1) (K 2 1)

independent structural zero constraints are set for each X ¼ i; for i ¼ 1; : : : ; I (i.e.,

maximum dependence between Y and Z conditional on X). Structural zeros are also very

effective because, with the exception of limit cases, parameter vectors {uijk} [ Q based
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on the CIA become illogical. In fact, when uijk is set to 0 for some (i, j, k), the CIA (i.e.,

parameters as in (11)) holds only when ûij: ¼ 0 and/or ûi:k ¼ 0; otherwise that distribution

is outside the restricted parameter space and cannot be considered in the estimation phase

(D’Orazio et al. 2002).

Let us suppose that the imposed logical constraints restrictQ to a subspaceV , Qwhich

is closed and convex (any combination of structural zeros and inequality constraints leads

to such a restriction). The problem of the likelihood function maximization when

constraints are imposed may be solved following two different strategies. These strategies

refer to these situations: 1)V has a nonempty intersection with the unconstrained likelihood

ridge (10); 2) V has an empty intersection with the unconstrained likelihood ridge (10).

In the first case the likelihood ridge reduces to the set of solutions of:

k

X
uijk ¼ ûij: ¼

nA
ij:

nA
i__

nA
i__
þ nB

i__
n

j

X
uijk ¼ ûi:k ¼

nB
i:k

nB
i__

nA
i__
þ nB

i__
n

u [ V

8>>>>>>>><
>>>>>>>>:

ð15Þ

In the second case, the set of equations in (15) has no solutions, i.e., V does not contain a

vector u such that the likelihood function derivative with respect to some uij. and ui.k is

equal to zero. In other words, the maximum(s) of the likelihood (8) may be located only on

the border of the subspace V (border determined by the admissible marginal distributions

{uij.} and {ui.k} that are in V). In this case, we suggest using an iterative algorithm in order

to find the maximum in u of (8) constrained to u [ V. An example of such a situation will

be given in Section 5.2.

The likelihood maximization problem in a proper closed and convex subset has been

studied by many authors by means of different approaches (see e.g., Judge et al. 1980,

Chapter 17). We adopt a version of the “projection method” described in Winkler (1993)

that makes use of the EM algorithm (Dempster et al. 1979). It consists of the following

steps:

. initialize the algorithm with a û0 [ V;

. if at iteration t, t $ 1; the EM unconstrained estimate û t does not satisfy the

constraints, such solution is “projected” to the boundary of the closed and convex

subspace V; otherwise it is left unchanged.

Such an approach is convenient in our context because the likelihood in (7) is a mixture of

multinomial distributions. In this case, a theorem by Haberman (Theorem 4, 1977; see also

Winkler 1993) suggests the following: if û t21 and û t; t $ 1; are successive estimates, and

û t21 [ V while û t � V; then û t should be replaced by the linear combination of û t21 and

û t so that aû t21 þ ð1 2 aÞû t lies on the boundary of V (0 # a # 1). Given that V is

closed and convex, such a exists and is unique. Additionally, the theorem by Haberman

states that the likelihood of the successive M step solutions of this modified EM algorithm

(Winkler calls this method EMH) is nondecreasing. Winkler (1993) warns that this

algorithm may stick at a relative maximum in V. In order to get only the global maxima, it
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is worth starting the EMH algorithm from different points and analyzing the likelihood

computed on the results. For instance, in the example in Section 5 we start from 100,000

different initial values and only the results with the (same) highest likelihood are retained.

Another warning (Winkler 1993) relates to the computation of a that may require

additional iterative algorithms, but in the present setting a may be computed directly.

Structural zero constraints (13) may be easily fulfilled by setting to zero the corresponding

û
0

ijk in the initialization step of the EM algorithm (for details see Schafer 1997, pp. 52–53).

Also inequality constraints are easily fulfilled. In fact, Inequality (14) is satisfied when

a ¼
û

t

i 0j 0k 0 2 û
t

ijk

û
t21

ijk 2 û
t21

i 0j 0k 0 2 û
t

ijk þ û
t

i 0j 0k 0

If more than one inequality constraint is imposed, the smallest a should be considered.

We remark that the multinomial model in (7) is saturated, and consequently each M step

in the EM algorithm gives solutions in closed form. However, if a different loglinear

model is assumed, the ECM algorithm can be adopted instead of the EM algorithm, as in

Winkler (1993).

We finally remark also that, as stated by Equation (15), the overall uncertainty

represented by the volume of the set of parameters compatible with the estimable ones (the

volume V of the likelihood ridge) is always reduced by the introduction of constraints. This

is a straightforward result when constraints are compatible with maximum likelihood

estimates of the estimable parameters. When such compatibility does not hold, the new

likelihood ridge is the projection of the unrestricted likelihood ridge on the restricted

space. Hence, also in this case there is an overall reduction of the uncertainty. An example

of this situation is outlined in the next paragraph.

5. An Example

In order to show how to introduce logical constraints and the corresponding advantages

and drawbacks, we have developed an example with Official Statistics data where logical

constraints are frequently used. A subset of 2,313 employees (people at least 15 years old)

has been extracted from the 2000 pilot survey of the Italian Population and Household

Census. Only three variables have been analyzed: Age (AGE), Educational Level (EDU)

and Professional Status (PRO). For the sake of simplicity and without loss of information

in respect of our aim, the original variables have been transformed by grouping

homogeneous response categories. The results of this grouping are shown in Table 1.

Table 1. Response categories for the variables considered in the example

Variables Transformed response categories

Age (AGE) “1” ¼ 15–17 years old; “2” ¼ 18–22; “3” ¼ 23–64;
“4” ¼ 65 and above

Educational Level (EDU) “C” ¼ None or compulsory school; “V” ¼ Vocational school;
“S” ¼ Secondary school; “D” ¼ Degree

Professional Status (PRO) “M” ¼ Manager; “E” ¼ Clerk;
“W” ¼ Worker
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To reproduce the situation in Figure 1, the original file has been randomly split into two

almost equal subsets. The variable Educational Level has been removed from the first

subset (file A), containing 1,148 units, and the variable Professional Status has been

removed from the second subset (file B), consisting of the remaining 1,165 observations.

Table 2 shows the true relative frequencies of the original dataset for each cell.

Structural zeros are represented by “–”. For instance, in Italy a 17-year-old person cannot

have a university degree. Tables 3 and 4 show, respectively, the distribution of Age vs

Professional Status in file A, and Age vs Educational Level in file B, after the original

dataset has been split. Note that each structural zero in a marginal table implies a set of

structural zeros on the joint distribution. The joint distribution has some additional

structural zeros that cannot be inferred from the marginals in Table 3 and Table 4 because

they refer to structural zeros of the variables (PRO, EDU). This happens, for instance, in

Cells 3 and 4 that correspond to managers (PRO ¼ “M”) but with at maximum a

compulsory school educational level (EDU ¼ “C”).

5.1. Matching Results

If the two files are matched by means of a technique based only on the common variable

Age, without considering any auxiliary information about the relationship existing

between the two variables Educational Level and Professional Status, the final output will

give estimates under the CIA. In our case, results under the CIA are reported in the last

column of Table 2. As can be observed, the CIA yields unrealistic estimates for some cells.

In particular, it gives nonzero estimated probabilities for certain events that cannot happen

in real life, i.e., structural zeros for (PRO, EDU). On the other hand, as expected, structural

zeros are preserved when observed in the marginals in Tables 3 and 4, e.g., Cells 9, 25 and

41 corresponding to the structural zero (AGE ¼ “1”), (EDU ¼ “S”).

In order to explore the likelihood ridge, we have decided to run the EM algorithm with

different random starting points:

S0 starting point in the full space Q;

S1 starting point in the space V restricted by structural zeros;

S2 starting point in the space V restricted by structural zeros and the following

inequality constraint: P(AGE ¼ “3”, EDU ¼ “D”, PRO ¼ “M”) $ P(AGE ¼ “3”,

EDU ¼ “D”, PRO ¼ “E”).

The last inequality states that a person with Age in class “3” and with Educational Level in

class “D” has a higher probability of being a Manager (PRO ¼ “M”) (Cell 15) than of

being a Clerk (PRO ¼ “E”) (Cell 31). Although this inequality is not true for general

populations, it is consistent with our dataset, and we have used it to show the effect of this

type of constraint on the results. In order to satisfy constraints in S2, the EMH has been

applied instead of the EM algorithm.

It is worthwhile to underline that different starting points produce different EM results

and, given that the EM algorithm may stick at suboptimal points, we have considered only

the maximum likelihood ones.

Table 5 reports the simulation extremes of the likelihood ridge found by running EM

100,000 times for each of the above-mentioned starting vectors û0 (note that each

simulation gave rise to a global maximum likelihood result). As expected, when no
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Table 2. True cell counts (nijk) and relative frequencies (uijk), and corresponding CIA estimates (ûijk)

Cell AGE EDU PRO nijk uijk ûijk

1 1 C M – – –
2 2 C M – – –
3 3 C M – – 0.0540
4 4 C M – – 0.0048
5 1 V M – – –
6 2 V M – – –
7 3 V M – – 0.0143
8 4 V M – – –
9 1 S M – – –

10 2 S M – – –
11 3 S M 142 0.0614 0.0649
12 4 S M 4 0.0017 0.0013
13 1 D M – – –
14 2 D M – – –
15 3 D M 220 0.0951 0.0220
16 4 D M 5 0.0022 0.0009
17 1 C E – – –
18 2 C E – – 0.0022
19 3 C E – – 0.1336
20 4 C E – – 0.0009
21 1 V E – – –
22 2 V E 1 0.0004 0.0009
23 3 V E 123 0.0532 0.0350
24 4 V E 0 0 0
25 1 S E – – –
26 2 S E 8 0.0035 0.0022
27 3 S E 653 0.2823 0.1604
28 4 S E 3 0.0013 0.0004
29 1 D E – – –
30 2 D E – – –
31 3 D E 87 0.0376 0.0545
32 4 D E 0 0 0
33 1 C W 15 0.0065 0.0065
34 2 C W 27 0.0117 0.0078
35 3 C W 759 0.3281 0.1466
36 4 C W 12 0.0052 0.0017
37 1 V W 0 0 0
38 2 V W 7 0.0030 0.0035
39 3 V W 90 0.0389 0.0385
40 4 V W 0 0 0
41 1 S W – – –
42 2 S W 12 0.0052 0.0073
43 3 S W 143 0.0618 0.1755
44 4 S W 0 0 0.0004
45 1 D W – – –
46 2 D W – – –
47 3 D W 2 0.0009 0.0597
48 4 D W 0 0 0.0004

Total 2313 1.0000 1.0000
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restrictions are imposed on the starting point (S0), EM produces nonnull estimates in

correspondence with the structural zeros as under the CIA. In this case the CIA solution is

always included in the range of values found through EM. On the other hand, when

structural zeros are introduced in the starting point (S1), EM produces zero estimated

probabilities in correspondence with structural zeros. Moreover, for nonnull probabilities

it can be observed how the introduction of this kind of auxiliary information results in

a general reduction of the ranges of estimated cell probabilities. When, in addition

to structural zeros, the inequality constraint involving Cells 15 and 31 is introduced

(S2), the results change quite markedly: it makes the likelihood ridge shrink (see e.g.,

Figures 2 and 3).

In general, in comparison with the initial situation of absence of auxiliary information

about the phenomena under study (S0), an overall reduction of ranges for most of the

estimated probabilities can be observed. Note that sometimes the maximum of S1 is larger

than the maximum of S0. This is caused by the exploration of the likelihood ridge with a

finite number of points. When there is compatibility between the unrestricted maximum

likelihood estimates and the structural zeros, the maximum of S1 is never greater than the

maximum of S0.

When the final ranges of estimated probabilities (S2) are compared with those of S1, it

emerges that about half of them remain unchanged while a decrease occurs for the others.

This reduction is really marked in case of Cell 31 where the upper bound for this estimated

probability reduces from 0.1364 to 0.0678. On the other hand, in the case of Cell 15 the

upper bound remains unchanged while the lower bound increases from 0 to 0.0260. In the

case of Cells 33–36 it can be observed that the introduction of structural zeros is so

Table 3. Distribution of Professional Status vs Age in file A

Age Professional Status Total

M E W

1 – – 9 9
2 – 5 17 22
3 179 443 486 1108
4 6 1 2 9

Tot. 185 449 514 1148

Table 4. Distribution of Educational Level vs Age in file B

Age Educational Level Total

C V S D

1 6 0 – – 6
2 14 6 13 – 33
3 387 102 464 158 1111
4 10 0 3 2 15

Tot. 417 108 480 160 1165
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Table 5. Range of probability estimates in 100,000 runs of EM with three different starting settings compared

with the true counts (nijk) and frequencies (u*
ijk)

Cell AGE EDU PRO nijk u*
ijk S0 S1 S2

Min Max Min Max Min Max

1 1 C M – –
2 2 C M – –
3 3 C M – – 0.0000 0.1549
4 4 C M – – 0.0035 0.0067
5 1 V M – –
6 2 V M – –
7 3 V M – – 0.0000 0.0839
8 4 V M – –
9 1 S M – –

10 2 S M – –
11 3 S M 142 0.061 0.0000 0.1549 0.0186 0.1550 0.0186 0.1290
12 4 S M 4 0.002 0.0000 0.0021 0.0024 0.0031 0.0024 0.0031
13 1 D M – –
14 2 D M – –
15 3 D M 220 0.095 0.0000 0.1260 0.0000 0.1363 0.0260 0.1364
16 4 D M 5 0.002 0.0000 0.0014 0.0013 0.0021 0.0013 0.0021
17 1 C E – –
18 2 C E – – 0.0000 0.0054
19 3 C E – – 0.0000 0.3261
20 4 C E – – 0.0000 0.0012
21 1 V E – –
22 2 V E 1 0.000 0.0000 0.0043 0.0000 0.0043 0.0000 0.0043
23 3 V E 123 0.053 0.0000 0.0880 0.0014 0.0881 0.0015 0.0881
24 4 V E 0 0 0 0 0 0 0 0
25 1 S E – –
26 2 S E 8 0.004 0.0000 0.0054 0.0011 0.0054 0.0011 0.0054
27 3 S E 653 0.282 0.0000 0.3776 0.1591 0.3776 0.2279 0.3780
28 4 S E 3 0.001 0.0000 0.0012 0.0000 0.0007 0.0000 0.0007
29 1 D E – –
30 2 D E – –
31 3 D E 87 0.038 0.0000 0.1362 0.0000 0.1364 0.0000 0.0678
32 4 D E 0 0 0.0000 0.0011 0.0000 0.0007 0.0000 0.0007
33 1 C W 15 0.006 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065
34 2 C W 27 0.012 0.0047 0.0101 0.0101 0.0101 0.0101 0.0101
35 3 C W 759 0.328 0.0000 0.3278 0.3342 0.3342 0.3342 0.3342
36 4 C W 12 0.005 0.0000 0.0023 0.0052 0.0052 0.0052 0.0052
37 1 V W 0 0 0 0 0 0 0 0
38 2 V W 7 0.003 0.0000 0.0043 0.0000 0.0043 0.0000 0.0043
39 3 V W 90 0.039 0.0000 0.0880 0.0000 0.0866 0.0000 0.0865
40 4 V W 0 0 0 0 0 0
41 1 S W – –
42 2 S W 12 0.005 0.0040 0.0094 0.0040 0.0083 0.0040 0.0083
43 3 S W 143 0.062 0.0000 0.3926 0.0000 0.0866 0.0000 0.0866
44 4 S W 0 0 0.0000 0.0021 0 0 0 0
45 1 D W – –
46 2 D W – –
47 3 D W 2 0.001 0.0000 0.1361 0.0000 0.0855 0.0000 0.0859
48 4 D W 0 0 0.0000 0.0014 0 0 0 0
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informative (in terms of degrees of freedom) that it makes the EM converge to a unique

value, in all cases close to the true one.

The width is not the only element to consider as an evaluation measure of the

uncertainty on the parameters. The density mijk(u) of each single parameter uijk in the

likelihood ridge is another important aspect (Section 2). We have approximated such

density with the frequency distribution relative to the 100,000 simulations. In general, the

dispersion reduces, also for those cells where the width of the interval does not change

from S1 to S2.

In Figures 2 and 3, we represent the evolution of this density in the three simulation

contexts here considered for Cells 15 and 27.

The joint analysis of the range and dispersion is essential to understand uncertainty.

Figure 2 shows how the final distribution (S2) of the parameter in the likelihood ridge is

totally different from the initial one (S0), and in particular it is more concentrated. In other

words, there is at the same time a shrinkage of the interval of values for the parameter and

a higher concentration in its distribution. In Figure 3, the dispersion and width of the

interval again decreases from S1 to S2. This does not happen when S2 is compared with

S0, although the effect of the constraints is still important. In fact, in this case the S2

distribution is more concentrated near the true value than S0.

In Table 6 we have reported the average value ð �uijkÞ of the 100,000 estimates

respectively for S0, S1 and S2, as representative parameter values among those in the

ridge. In addition, as a synthetic measure of the dispersion and closeness of estimates with
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Fig. 2. Likelihood ridge for Cell 27 when no constraints (left), structural zeros (center) and the additional

inequality constraint (right) are imposed. The vertical bar is the true probability.
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Fig. 3. Likelihood ridge for Cell 15 when no constraints (left), structural zeros (center) and the additional

inequality constraint (right) are imposed. The vertical bar is the true probability.
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respect to the true parameter values, we have computed the Relative Root Mean Squared

Error (RRMSE in Table 6). In particular, for each cell the MSE is obtained as:

1

100; 000

X100;000

s¼1

û
ðsÞ

ijk 2 u*
ijk

� �2

ð16Þ

RRMSE is then computed by dividing the squared root of (16) by the true value. If, for

example, Cell 15 is considered, we see how the inequality constraint on it yields a marked

decrease of the corresponding RRMSE from 0.6548 (S1) to 0.3236 (S2). The same

happens for Cell 31. In this case, however, the introduction of structural zeros (S1) results

in an increase of RRMSE with respect to S0. Generally speaking, there can be cases when

the reduction of the overall uncertainty (i.e., the reduction of the number of vectors u

compatible with the imposed constraints) does not lead to a reduction of the marginal

uncertainty of some parameters (see the Appendix for an extreme case, when a structural

zero induces a flat marginal uncertainty distribution in one parameter, and certainty in the

others). Further studies should be devoted to the relationship between the reduction of the

overall uncertainty (i.e., the shrinkage of Q) and of the marginal uncertainty distributions.

Table 6. True probabilities (u*
ijk), average values according to the density mijk(u) in the likelihood ridge ( �uijk)

and corresponding RRMSE

Cell AGE EDU PRO u*
ijk

�uijk RRMSE

S0 S1 S2 S0 S1 S2

11 3 S M 0.0614 0.0683 0.1146 0.0850 0.5661 0.9925 0.4812
12 4 S M 0.0017 0.0014 0.0027 0.0027 0.3375 0.5648 0.5645
15 3 D M 0.0951 0.0196 0.0404 0.0700 0.8136 0.6548 0.3236
16 4 D M 0.0022 0.0010 0.0018 0.0018 0.5662 0.1982 0.1979
22 2 V E 0.0004 0.0009 0.0017 0.0017 2.4742 4.1619 4.1506
23 3 V E 0.0532 0.0361 0.0700 0.0730 0.5023 0.4363 0.4679
24 4 V E 0 0 0 0
26 2 S E 0.0035 0.0022 0.0037 0.0037 0.5330 0.3135 0.3138
27 3 S E 0.2823 0.1587 0.2353 0.2698 0.4933 0.2125 0.0852
28 4 S E 0.0013 0.0002 0.0004 0.0004 0.8432 0.6739 0.6735
31 3 D E 0.0376 0.0553 0.0782 0.0408 0.9327 1.3897 0.3823
32 4 D E 0 0.0001 0.0003 0.0003
33 1 C W 0.0065 0.0065 0.0065 0.0065 0 0 0
34 2 C W 0.0117 0.0078 0.0101 0.0101 0.3527 0.1355 0.1355
35 3 C W 0.3281 0.1453 0.3342 0.3342 0.5875 0.0184 0.0184
36 4 C W 0.0052 0.0016 0.0052 0.0052 0.7077 0 0
37 1 V W 0 0 0 0
38 2 V W 0.0030 0.0034 0.0026 0.0026 0.3088 0.3823 0.3815
39 3 V W 0.0389 0.0403 0.0181 0.0150 0.5409 0.6751 0.7248
40 4 V W 0 0 0 0
42 2 S W 0.0052 0.0072 0.0057 0.0057 0.4662 0.2259 0.2254
43 3 S W 0.0618 0.1737 0.0508 0.0459 2.0993 0.3882 0.4178
44 4 S W 0 0.0005 0 0
47 3 D W 0.0009 0.0615 0.0178 0.0257 75.6145 25.2834 33.7404
48 4 D W 0 0.0003 0 0
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5.2. Empty Intersection Between the Unconstrained Maximum Likelihood Ridge and the

Imposed Logical Constraints

As a last remark, logical constraints not only help in reducing uncertainty for inestimable

parameters, but also may improve the ML estimators for estimable parameters (i.e., the

ones with a unique ML estimate, in our example the ones for the marginal distributions

(AGE, PRO) and (AGE, EDU)). In particular, the ML estimator for estimable parameters

has the following behavior:

. for those samples whose unconstrained likelihood ridge is compatible with the

constraints (i.e., some distributions in the ridge satisfy the constraints), the ML

estimate of the estimable parameters remains unchanged in the constrained and the

unconstrained case;

. for those samples whose likelihood ridge is not compatible with the constraints, the

ML estimate of the estimable parameters is forced to respect the constraints.

Hopefully, in the second case each constrained ML estimate is moved towards the true

parameter.

We have shown this last situation in our example, where some structural zeros (imposed

in S1) are not compatible with the unconstrained likelihood ridge (10) when the samples in

Tables 3 and 4 are observed. For instance, let us consider

u4CM ¼ PðAGE ¼ “4”; EDU ¼ “C”; PRO ¼ “M”Þ

The unconstrained ML estimates are

û4:M ¼
6

9
£

9 þ 15

2313
; û4C: ¼

10

15
£

9 þ 15

2313
; û4__

¼
9 þ 15

2313

From the standard inequality

max{0; uij: þ ui:k 2 ui__
} # uijk # min{uij:; ui:k}

it holds that

û4CM $
6

9
£

9 þ 15

2313
þ

10

15
£

9 þ 15

2313
2

9 þ 15

2313
. 0

which is not compatible with the constraint so far introduced that (AGE ¼ “4”,

EDU ¼ “C ”, PRO ¼ “M ”) is a structural zero. As a consequence, this structural zero

restricts Q to a set V where u4C. cannot be equal to its unconstrained ML estimate û4C::98

In fact, the constrained ML estimate of this parameter is moved towards the true value.

Table 7 shows the effect of all the imposed structural zeros (S1) on some parameter

Table 7. Comparison among some probability estimates and the corresponding marginal true probabilities u *

u * MLE (S0) MLE (S1)

P(PRO ¼ M, AGE ¼ 4) 0.0039 0.0069 0.0044
P(EDU ¼ S, AGE ¼ 4) 0.0030 0.0021 0.0031
P(EDU ¼ D, AGE ¼ 4) 0.0022 0.0014 0.0021
P(EDU ¼ C, AGE ¼ 4) 0.0050 0.0069 0.0052
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estimates. Note that the constrained ML estimates for these marginal parameters are

unique, and may be obtained by marginalizing the corresponding estimates of �uijk:

Furthermore the derivative of L(u) with respect to u4CM ¼ 0 cannot be zero because it is

not an unconstrained ML estimate. Given that the restricted space V is closed and convex,

it cannot happen that the maximum likelihood function is inside V, otherwise the

derivative would have been zero for each parameter. Thus the maximum must lay on the

boundary of V. In this simple case, the boundary is the zero value for u4CM, given that only

that value of u4CM is admissible.

6. Conclusions

In recent years, the main goal of the statistical matching procedures has been reinterpreted,

it may be said, as the efficient use and combination of all available and relevant

information. However, in the statistical matching context, the available information is in

terms of partial knowledge of the phenomenon (e.g., two independent samples of some

marginal distributions). Therefore, we can just draw conclusions under uncertainty.

Whenever it is possible to also use auxiliary information, we can draw conclusions

regarding the parameters with a lower degree of uncertainty. Extreme cases are those

where particular models can be assumed, such as the CIA, or external information like that

in Singh et al. (1993). In these cases it is possible to provide a unique conclusion regarding

the joint distribution.

When neither the CIA nor external auxiliary information is usable, uncertainty

regarding conclusions can rarely be avoided. Following ideas already applied for

continuous variables, we analyze uncertainty through the description of all the plausible

solutions, i.e., all those distributions coherent with the observed data according to the

likelihood principle. In this context we have focused on some aspects of uncertainty and

we have proposed some statistics in order to draw conclusions concerning the

phenomenon at different levels, for instance regarding either single parameters of the

distribution or the entire distributions.

We also describe the situation where particular auxiliary information is available:

logical constraints. Logical constraints can be very useful for reducing uncertainty as to

parameter values. Their usage is not immediate, and an algorithm for introducing them in

the statistical matching procedure has been proposed.

Finally we remark that all the analyses of uncertainty due to partial knowledge of the

phenomenon investigated are made with respect to the likelihood principle.

This article considers only categorical variables. The case of continuous variables has

been frequently studied in statistical matching. Future research will be devoted to the use

of logical constraints also for continuous variables.

Since the concept of uncertainty and partial knowledge has been deeply investigated in

other contexts than statistical matching, for instance in artificial intelligence, we feel it is

very important to analyze the common aspects and the solutions proposed there. The

contamination with other frameworks is worth studying not only concerning uncertainty

(as with the imprecise probabilities; see Walley 1991), but also for the use of logical

constraints (e.g., Coletti and Scozzafava 2002 and Vantaggi 2003). Further research will

be devoted to the inspection of these other scientific contexts.
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Appendix

As in Section 2, let us assume that the marginal distribution {uij.} of (X, Y) and {ui.k} of

(X, Z) are perfectly known. One of the key elements in assessing uncertainty of the

parameter values is the description of the set of vectors u [ Q that satisfy the set of

conditions in (2) or (5). For this reason, in Section 2 we introduced the distribution

mijk(u), uL
ijk # u # uU

ijk for each parameter uijk, ði; j; kÞ [ D. The distribution mijk(u)

describes, i.e., counts, the set of vectors u satisfying the constraints in (2) or the

additional marginal constraint (5) for the single parameter uijk and, usually, is not

uniform. To illustrate this we will use the case where X has two categories (I ¼ 2),

Y has two categories (J ¼ 2) and Z has three categories (K ¼ 3). Given that the

parameters of the multinomial distribution lie in a continuous interval, the distribution

mijk(u) will be described by its density. For the sake of simplicity, we will study only

the parameter u111.

When the only (natural) constraint is that the parameters of the multinomial

distribution are nonnegative and their sum is one, i.e., Q is defined by (2), m111(u)

assumes the form:

m111ðuÞ ¼ c

ð12u

0

dx1

ð12u2x1

0

dx2: : :

ð12u2

X9

v¼1
xv

0

dx10 ¼ c
ð1 2 uÞ10

10!
0 # u # 1

where c is a normalizing constant. Note that once u111 has been fixed to u, there are

just 10 parameters that are free to take values in a nondegenerate interval, due to the

constraints in (2). Generally speaking, if the multinomial distribution has W þ 2

categories, the previous distribution will have been cð1 2 uÞW=W!; u [ ð0; 1Þ. Note also

that the density is decreasing in u. This is due to the fact that there are more

distributions with a small u than with a large one. Additionally, the density function is

a polynomial function in u.

When the marginal distributions of (X, Y) and (X, Z) are known, i.e., Q is reduced

to (5), the aspect of m111(u) changes. First of all, once u111 has been fixed to u, just

three other parameters are allowed to take values in nondegenerate intervals, say u112,

u211, and u212. Analyzing the constraints for all the parameters uijk, the new range of

m111(u) is

uL
111 ¼ max{u1:1 2 u12:; 0} # u # min{u1:1; u11:} ¼ uU

111

and the integrals to consider for determining the shape of m111(u) will have the

following bounds:

bL
112 ¼ max{0; u11: 2 u2 u1:3}; bU

112 ¼ min{u1:2; u11: 2 u}

bL
211 ¼ max{u2:1 2 u22:; 0}; bU

211 ¼ min{u21:; u2:1}

bL
212 ¼ max{0; u21: 2 u211 2 u2:3}; bU

212 ¼ min{u2:2; u21: 2 u211}

where bL
ijk and bU

ijk are the bounds for uijk conditional on u111 ¼ u (and they may differ

from the unconstrained bounds uL
ijk and uU

ijk). Note that the bounds for u211 and u212

contribute with a constant in u to the computation of m111(u). As an example,
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consider the marginal distributions in Table 8. In this case, the possible u111 values

are between 0 and 0.16, and its density is:

m111ðuÞ ¼ c

ðbU
112

bL
112

du112

ðbU
211

bL
211

du211

ðbU
212

bL
212

du212 ¼ ~c

ð0:25

0:252u

du112 ¼ ~cu ð17Þ

where c is a normalizing constant and ~c is c times the result of the integrals with

respect to u211 and u212.

Additional constraints change the form of m111(u). If there is the structural zero u121 ¼

0; then m111(u) is concentrated in just one point, i.e., u111 ¼ u1:1 ¼ 0:16 with certainty. If

there is the structural zero u122 ¼ 0; then m111(u) is uniform in (0, 0.16). Actually it seems

there is more variability, contradicting our view. But in this case, each time u111 is held

fixed in u, the parameter u112 is constrained to assume just one value; consequently the

joint density is less variable. Finally, an inequality constraint, as u111 . u121 reduces (17)

to assume values only in (u1:1=2 ¼ 0:08; 0:16).

When the marginal distributions of (X, Y) and (X, Z) are estimated from the two samples

at hand, the distribution mijk(u) is estimated from the subset of u that lies on the likelihood

ridge. All the other u are not considered.
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