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Optimization with the spatial method
Let us suppose we want to design a sample survey with   target variables, each one of them correlated
to one or more of the available  frame variables.

When frame units are georeferenced or geocoded, the presence of spatial auto-correlation can be
investigated. This can be done by executing for instance the Moran test on the target variables: if the null
hypothesis is rejected (i.e. the hypothesis of the presence of spatial auto-correlation is accepted) then we
should take into account also this variance component.

As indicated by deGruijter et al. (2016) and deGruijter, Wheeler, and Malone (2019), in case  is the
target variable, omitting as negligible the fpc factor, the sampling variance of its estimated mean is:

We can write the variance in each stratum  as:

The optimal determination of strata is obtained by minimizing the quantity :

Obviously, values  are not known, but only their predictions, obtained by means of a regression model.
So, in Equation we can substitute  with

where  is the squared correlation coefficient indicating the fitting of the regression model, and , 
 are the model variances of the residuals. The spatial auto-correlation component is contained in the

term .

In particular, the quantity  is calculated in this way:

where  is the Euclidean distance between two units i and j in the frame (calculated using their
geographical coordinates, that must be expressed in meters), the  and  are estimates of the prediction
errors in the single points and range is the maximum distance below which spatial auto-correlation can be
observed among points. The value of range can be determined by an analysis of the spatial variogram.

To summarize, when frame units can be geo-referenced, the proposed procedure is the following:
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acquire coordinates of the geographic location of the units in the population of interest;
fit a kriging model (or any other spatial model) on data for each ;
obtain predicted values together with prediction errors for each  and associate them to each unit
in the frame;
perform the optimization step.

In order to illustrate the “spatial” method, we make use of a dataset generally employed as an example of
spatially correlated phenomena (in this case, the concentration of four heavy metals in a portion of the
river Meuse). This dataset comes with the library “sp”:

We analyse the territorial distribution of the lead and zinc concentration, and model (by using the universal
kriging) their relations with distance from the river, using the subset of 155 points on which these values
have been jointly observed:

Z

Z

library(sp)
# locations (155 observed points)
data("meuse")
# grid of points (3103)
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse)<-c("x","y")
coordinates(meuse.grid)<-c("x","y")
lm_lead <- lm(log(lead) ~ dist,data=meuse)
lm_zinc <- lm(log(zinc) ~ dist,data=meuse)

library(automap)
kriging_lead = autoKrige(log(lead) ~ dist, meuse, meuse.grid)
plot(kriging_lead,sp.layout = NULL, justPosition = TRUE)



kriging_zinc = autoKrige(log(zinc) ~ dist, meuse, meuse.grid)
plot(kriging_zinc, sp.layout = list(pts = list("sp.points", meuse)))



Using these kriging models, we are able to predict the values of lead and zinc concentration on the totality
of the 3,103 points in the Meuse territory:

df <- NULL
df$id <- meuse.grid$id
df$lead.pred <- kriging_lead$krige_output@data$var1.pred
df$lead.var <- kriging_lead$krige_output@data$var1.var
df$zinc.pred <- kriging_zinc$krige_output@data$var1.pred
df$zinc.var <- kriging_zinc$krige_output@data$var1.var
df$lon <- meuse.grid$x
df$lat <- meuse.grid$y
df$dom1 <- 1
df <- as.data.frame(df)
head(df)



The aim is now to produce the optimal stratification of the 3,103 points under a precision constraint of 1%
on the target estimates of the mean lead and zinc concentrations:

To this aim, we carry out the optimization step by indicating the method spatial:

#   id lead.pred  lead.var zinc.pred  zinc.var    lon    lat dom1
# 1  1  5.509360 0.1954937  6.736502 0.2007150 181180 333740    1
# 2  2  5.546006 0.1716895  6.785460 0.1749260 181140 333700    1
# 3  3  5.488913 0.1784052  6.698883 0.1826314 181180 333700    1
# 4  4  5.388320 0.1855561  6.558216 0.1906426 181220 333700    1
# 5  5  5.584415 0.1463018  6.841612 0.1465346 181100 333660    1
# 6  6  5.525538 0.1533757  6.749216 0.1549663 181140 333660    1

library(SamplingStrata)
frame <- buildFrameSpatial(df=df,
                      id="id",
                      X=c("lead.pred","zinc.pred"),
                      Y=c("lead.pred","zinc.pred"),
                      variance=c("lead.var","zinc.var"),
                      lon="lon",
                      lat="lat",
                      domainvalue = "dom1")
#  id       X1       X2       Y1       Y2      var1      var2    lon    lat domainvalue
# 1  1 5.509360 6.736502 5.509360 6.736502 0.1954937 0.2007150 181180 333740           1
# 2  2 5.546006 6.785460 5.546006 6.785460 0.1716895 0.1749260 181140 333700           1
# 3  3 5.488913 6.698883 5.488913 6.698883 0.1784052 0.1826314 181180 333700           1
# 4  4 5.388320 6.558216 5.388320 6.558216 0.1855561 0.1906426 181220 333700           1
# 5  5 5.584415 6.841612 5.584415 6.841612 0.1463018 0.1465346 181100 333660           1
# 6  6 5.525538 6.749216 5.525538 6.749216 0.1533757 0.1549663 181140 333660           1

cv <- as.data.frame(list(DOM=rep("DOM1",1),
                         CV1=rep(0.01,1),
                         CV2=rep(0.01,1),
                         domainvalue=c(1:1) ))
cv
#    DOM  CV1  CV2 domainvalue
# 1 DOM1 0.01 0.01           1

set.seed(1234)
solution <- optimStrata (
  method = "spatial",
  errors=cv, 
  framesamp=frame,
  iter = 15,
  pops = 10,
  nStrata = 5,
  fitting = c(summary(lm_lead)$r.square,summary(lm_zinc)$r.square),
  range = c(kriging_lead$var_model$range[2],kriging_zinc$var_model$range[2]),
  kappa=1)

# *** Domain :  1   1
#  Number of strata :  3103
# GA Settings
#   Population size       = 10
#   Number of Generations = 15



obtaining the following optimized strata:

#   Elitism               = 2
#   Mutation Chance       = 0.111111111111111
# 
# 
# 
#  *** Sample cost:  79.87774
#  *** Number of strata:  4
#  *** Sample size :  80
#  *** Number of strata :  4
# ---------------------------

plotStrata2d(solution$framenew,
             solution$aggr_strata,
             domain=1,
             vars=c("X1","X2"),
             labels=c("Lead","Zinc"))



that can be visualised in this way:

frameres <- SpatialPointsDataFrame(data=framenew, coords=cbind(framenew$LON,framenew$LAT) )
frameres2 <- SpatialPixelsDataFrame(points=frameres[c("LON","LAT")], data=framenew)
frameres2$LABEL <- as.factor(frameres2$LABEL)
spplot(frameres2,c("LABEL"), col.regions=bpy.colors(5))



We can now proceed with the selection of the sample:

whose units are so distributed in the territory:

s <- selectSample(solution$framenew,
                  solution$aggr_strata)

# *** Sample has been drawn successfully ***
#  80  units have been selected from  4  strata
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