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i. Introduction 

Nonobservation in sample surveys occurs in 
three ways: noncoverage, total nonresponse and 
item nonresponse. Noncoverage represents a 
failure to include some units of the target 
population in the sampling frame. Total 
nonresponse occurs when no information is 
collected from a sample unit, and item nonresponse 
occurs when some but not all the required 
information is collected from a sample unit. 
Compensation procedures are often employed to try 
to reduce the biasing effects of nonobservation on 
survey estimates. Compensation for noncoverage is 
ty p i c ally implemented by making weighting 
adjustments based on an external data source. 
Compensation for total nonresponse is usually 
carried out by some form of weighting adjustment, 
while compensation for item nonresponse is 
commonly made by imputation, that is by assigning 
values for missing responses (Kalton, 1981). This 
paper reviews and evaluates several commonly used 
imputation procedures. 

Item nonresponse may occur because a sample 
unit refuses or is unable to answer a particular 
question, because the interviewer fails to ask the 
question or to record the answer, or because an 
inconsistent response is deleted in editing. The 
extent of item nonresponse varies greatly between 
questions. Items such as race and sex usually 
have few nonresponses; on the other hand, receipts 
of various sources of income may have high 
nonresponse rates (Coder, 1978; Kalton, Kasprzyk 
and Santos, 1981). The multivariate nature of 
surveys, with all variables potentially subject to 
missing data, suggests the need for a general 
purpose strategy for handling item nonresponses. 
As such a strategy, imputation has three desirable 
features. First, like weighting adjustments for 
total nonresponse, it aims to reduce biases in 
survey estimates arising from missing data; the 
success of various imputation procedures in 
meet ing this objective for various forms of 

estimates is discussed later. Second, by 
a s s igning values at the microlevel and thus 
allowing analyses to be conducted as if the data 
s e t were complete, imputation makes analyses 
easier to conduct and results easier to present. 
Complex algorithms to estimate population 
parameters in the presence of miss ing data 
(e.g. the EM algorithm of Dempster, Laird and 
Rubin, 1977) are not required. Third, the results 
obtained from different analyses are bound to be 
consistent, a feature which need not apply with an 
incomplete data set. 

Imputation does, however, have its drawbacks. 
It does not necessarily lead to estimates that are 
less biased than those obtained from the 
incomplete data set; indeed the biases could be 
much greater, depending on the imputat ion 
procedure and the form of estimate. There is also 
the risk that analysts may treat the completed 
data set as if all the data were actual responses, 
thereby overstating the precision of the survey 
estimates. Analysts working with a data set 
containing imputed values should proceed with 
caution, and be aware of the extent of imputation 
for the variables in their analyses as well as the 
details of the procedures used. Aspects of the 

imputation process which should be monitored to 
evaluate the possible impact of imputation on 
survey results are described by I. Sande 
(1979a,b). At a minimum, imputed values should be 
flagged so that analysts can distinguish between 
actual and imputed responses, and thus obtain an 
indication of the potential effect of imputation 
on their results. Providing imputed values are 
flagged, analysts are also in a position to ignore 
them and treat the incomplete data set in a way 
that is tailor-made for their particular needs. 

The following sections describe a variety of 
imputation procedures and their properties. 
Practical considerations in their implementation 

and other issues are also discussed. 

2. Imputation Methods 
Wh en i tem nonresponse occurs, substantial 

information about the nonrespondent is usually 
available from other items on the questionnaire. 

Most imputation methods use a selection of these 
items as auxiliary variables in assigning values 
for the missing responses. In general, the value 

imputed for the i-th nonrespondent for item y may 

be described by ymi = f(zli,Z2i,...,Zpi) + emi, 
where f(z) is a function of the auxiliary 
variables (z) and emi is an estimated residual. 
Often f(z) may be expressed as a linear function, 
~o + Y Bjzji, and the B's may be estimated from the 

respondents" data as brj(j = O,l,...,p) (Santos, 
1981a,b). 

The maj or consideration in choosing the 
auxiliary variables is their ability to predict 
the missing y-values. The use of techniques like 
regression, SEARCH, and log-linear models with the 
respondents" data can be helpful in determining a 
good set of auxiliary variables. If a sizeable 
amount of nonresponse is ant icipate d f o r a 
specific survey item, the inclusion of alternative 
questions aimed at providing auxiliary information 
for imputation purposes may be useful. Thus, for 
example, wage earners in the 1978 Income Survey 
Development Program Research Panel were asked to 
report not only their quarterly earnings from 
records (y), but also their hourly rates of pay 
(Zl) , usual numbers of hours worked per week (z 2 ) 
and numbers of weeks worked in the quarter (z3). 
In cases where they did not report their quarterly 
earnings, their missing y-values could be imputed 

using the function f(z) = Zl.Z2.Z 3 (Kalton, 
Kasprzyk and Santos, 1981). 

Imputation methods can be classified along two 
dimens ions : ( 1 ) by their use of auxiliary 
variables, and (2) by the value assigned to the 
residuals. Some methods make no use of auxiliary 
variables. Other methods treat them a s 
categorical, classifying the sample members into 
imputation classes according to their combination 
of responses to these variables; continuous 
auxiliary variables, such as age or income, are 
categorized for use with these methods. Still 
other methods treat all the variables as 
continuous, with any categorical variables being 
handled as dummy variables. The second dimension 
concerns whether or not a randomization process is 
used in assigning imputed values. We term an 
imputation method as stochastic when the residual 
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term emi is randomly assigned and deterministic 
when it is set to zero. 

The paragraphs below briefly describe many of 
the widely used imputation procedures: 
(a) Deductive imputation. This imputation method 
depends on some redundancy in the data so that a 
missing response can be deduced from the auxiliary 
information, i.e. ymi = f(zi) exactly. For 
example, if a record should contain a series of 
amounts and their total but one of the amounts is 
missing, the missing value can be deduced by 
subtraction. The method can be extended to 
situations where the deduced value is highly 
likely to be the correct value or at least close 
to it; for instance, in a panel survey with a 
variable that remains almost constant over time, a 
missing response on one wave of the panel may be 
assigned the record's value for the item on the 
preceding or succeeding wave. 
(b) Mean imputation overall (MO). This method 
assigns the overall respondent mean, Yr, to all 
missing responses. It is the deterministic 
degenerate form of the linear function with no 

auxiliary variables, i.e. Ymi = bro = Yr- 
(c) Random imputation overall (RO). This method 
ass igns each nonrespondent the y-value of a 
respondent selected at random from the total 
respondent sample. The method is the stochastic 
degenerate form of the linear function with no 
auxiliary variables, Ymi = Yr + emi, with 
emi = Yrk- Yr, which reduces to Ymi = yrk. Given 
an epsem sample init ial!y, the subsample o f 
respondents to act as donors can be selected by 
any epsem sampling scheme (e. g. unrestri c t e d 
sampling, SRS, proportionate stratified sampling, 
or systematic sampling). 
(d) Mean imputation within classes (MC). This 
method divides the total sample into imputation 
classes according to values on the auxiliary 
variables. Within each class the respondent mean 
for the y-variable is assigned to all the 

nonrespondents in that class: Ymhi = Yrh for the 
i-th nonrespondent in class h (h = 1,2, . . . ,H). 
The classes may be defined as all the cells in the 
cross-tabulation of the (categorized) auxiliary 
variables, but this symmetry is not essential; 
instead, some auxiliary variables may be used for 
one part of the sample while others are used for 
another part, or groups of cells may be combined. 
If all the cells in the cross-tabulation are used, 
the linear function can be expressed as a model 
with the main effects and all levels of 

interaction for the auxiliary variables. In 
general, the model can be represented by 

Ymi = bro +Y~brjzji, where the zji are dummy 
variables, zji = I if the i-th nonrespondent is in 
class j, zji = 0 otherwise (j = 1,2,...,(H- I)). 
Since emi = 0, the method is a deterministic one. 
(e) Random imputation within classes (RC). This 
method corresponds to the random overall method 
except that it is applied within imputation 
classes. Each nonrespondent is assigned the y- 
value of a respondent randomly selected from the 
same imputation class. The method is the 
stochastic equivalent of the mean within class 
method, with Ymhi = Yrh + emhi and 
emhi = Yrhk - Yrh, reducing to Ymhi = Yrhk. It 
may alternatively be expressed as 

Ymji = bro + Y brjzji + emji, where emji is a 
respondent residual selected at random within 

imputation class j in which nonrespondent i is 
located. 

(f) Hot-deck imputation. The term hot-deck 
imputation has a variety of meanings, but refers 
here to the sequential type of procedure used by 
the Bureau of the Census with the labor force 

i tems in the Current Population Survey 
(CPS)(Brooks and Bailar, 1978). This is sometimes 
known as the traditional hot-deck procedure. The 
procedure begins with the specification of 
imputation classes, and for each class the 
assignment of a single value for the y-variable to 
provide a starting point for the process. These 
starting values may, for instance, be obtained by 
taking a respondent value for each class or a 
representative value such as the class mean from a 
previous round of the survey. The records of the 
current survey are then treated sequentially. If 
a record has a response for the y-variable, that 
value replaces the value previously stored for its 
imputation class. If the record has a missing 
response, it is assigned the value currently 
stored for its imputation class. A major 
attraction of this procedure is its computing 
economy, since all imputations are made from a 
single pass through the data file. 

The hot-deck method is similar to the random 
within class method in which donors are selected 
by unrestricted sampling (i.e. SRS with 
replacement). If the order of the records in the 
data file were random, the two methods would be 
equivalent, apart from the start-up process. The 
sequential hot-deck procedure generally benefits 
from the non-random order of the data file, since 

use of the preceding donor in the imputation class 
yields an additional degree of matching which is 
advantageous if the file order creates positive 
autocorrelation. This benefit is unlikely to be 
substantial, however, when the imputation classes 
are small and spread throughout the file - as is 
often the case. 

A disadvantage of the hot-deck method is that 
it may easily give rise to multiple use of donors, 
a feature which leads to a loss of precision for 
the survey estimators. This occurs when within a 
given imputation class a record with a missing 
response is followed by one or more records with 
missing responses; all these records are then 
assigned the value from the last respondent in the 
clas s. The random within class method with 
unrestricted sampling of donors shares this 
disadvantage. With the random within class 
method, however, the multiple use of donors may be 
minimized by sampling donors without replacement. 

It is impossible to develop a model-free 
theoretical evaluation for the hot-deck method 
because of its dependence on the order o°f the file 
and its lack of a probability mechanism. For this 
reason, it will not be examined in the subsequent 
sections; the results for the random within class 
method with unrestricted sampling should, however, 
provide a reasonable guide to its performance. 
Useful discussions of the hot-deck procedure are 
provided by Bailar, Bailey and Corby (1978), 

Bailar and Bailar (1978, 1979), Ford (1980), Oh 
and Scheuren (1980), Oh, Scheuren and Nisselson 
(1980) and I. Sande (1979a,b). 

(g) Flexible matching imputation. The term 
flexible matching imputation is used here for the 
modified hot-deck procedure that has been used 
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since 1976 for the CPS March Income Supplement. 
The procedure sorts respondents and nonrespondents 
in t o a large number of imputation classes, 
constructed from a detailed categorization of a 
sizeable set of auxiliary variables. 
Nonrespondents are then matched with respondents 
on a hierarchical basis, in the sense that if a 
nonrespondent cannot be matched with a respondent 
in the initial imputation class, classes are 
collapsed and the match is made at a lower level. 
Three levels are used with the March Income 
Supplement, the lowest level being such that a 
match can always be made. The procedure enables 
closer matches to be secured for many 
nonrespondents than does the traditional hot-deck 
procedure. It also avoids the multiple use of 
respondents in classes where the number of 
nonrespondents does not exceed the number of 
respondents. Further details on the 
implementation and evaluation of the procedure are 
given by Coder (1978) and Welniak and Coder 
(1980). 
(h) Predicted regression imputation (PR). This 
method uses respondent data to regress y on the 
auxiliary variables. Missing y-values are then 
imputed as the predicted values from the 
regression equation, Ymi = bro + Y brjzji. This is 
a deterministic method with emi = O. The 
auxiliary variables may be quant i ta t ive or 
qualitative, the latter being incorporated by 
means of dummy variables. If the y-variable is 
qualitative, log-linear or logistic models may be 
used. As in anyregression analysis, specific 
interaction terms may be included in the 
regression equation, and transformations of the 
variables may be useful. 

A special case of the regression model is the 
ratio model Ymi = brzi with a single auxiliary 
variable and an intercept of zero (Ford, Kleweno 
and Tortora, 1980). This model may be used in 
pane i surveys with z representing the same 
variable as y measured on the previous wave. 
(i) Random regression imputation (RR) . Th i s 
method is the stochastic version of the predicted 
regression method: the imputed values are the 
predicted values from the regression equation plus 
residual terms emi. Depending on the assumptions 
made, the residuals can be determined in various 
way s, including : 
(i) If the residuals are assumed to be 
homoscedastic and normally distributed, a residual 
can be chosen at random from a normal distribution 
with zero mean and variance equal to the residual 
variance from the regression. 
(ii) If the residuals are assumed to come from the 
same, unspecified distribution, they can be chosen 
al random from the respondents" residuals. 
(iii) As a protection against non-linearity and 
non-additivity in the regression model, the 
residuals may be taken from respondents with 
similar values on the auxiliary variables. If the 
donor respondent has the identical set of z values 
as the nonrespondent, the procedure reduces to 
a s s i g n i n g t h e r e s p ondent" s y-value to the 
nonrespondent. This point demonstrates the close 
relationship between this procedure and the random 
within class method. 

Applications of regression and categorical data 
models for imputation are described by Schieber 

(1978), Herzog and Lancaster (1980) and Herzog 
(1980). 
(j) Distance function matching. This method 
assigns the y-value of the nearest respondent to 
each nonrespondent, with "nearest" defined by a 
distance function of the auxiliary variables. The 
method is primarily concerned with quantitative 
variables; however, qualitative variables may be 
included either by using the distance function 
a p p r o ach within imputation classes formed by 
qualitative auxiliary variables or by 
incorporating these variables into the distance 

function. With a single auxiliary variable, the 
sample may be ordered by the variable, and the 
nearest respondent (donor) to each nonrespondent 
is taken where "nearest" may be defined as the 
minimum absolute difference be twe en the 
nonrespondent" s and donor's values in the 
auxiliary variable or in some transformation of 
the auxiliary variable. When several auxiliary 
variables are used, the issue of transformations 
becomes more critical; one approach is to 
transform all auxiliary variables to their ranks. 
Thus, one distance function proposed is given by 
D(i,k) = SuphwhlRhi- Rhkl, where Rhi and Rhk are 
the ranks of the nonrespondent and potential donor 
on variable h, and wh is a weight representing the 
importance of variable h in the distance function 
(I. Sande, 1979a). Another approach, based on the 
Mahalanobis distance, has been suggested by Vacek 
and Ashikaga (1980). The distance function can be 
constructed to reduce the multiple use of donors. 
For instance, distance may be defined as D(I + pd) 
where D is the basic distance, d is the number of 
times the donor has already been used and p is a 
penalty for each usage (Colledge et al., 1978). 

A variant of this method assigns the 
nonrespondent the average value of neighboring 
respondents, for instance the average value of the 
two adjacent respondents (Ford, 1976). As with 
other averaging procedures, this procedure suffers 
the disadvantage of distorting distributions (see 
Section 3.2). 

3. Properties of Various Imputation Methods 
This section reviews the effects of the six 

imputation methods listed in Table 1 on estimates 
of means, distributions, variances, covariances, 
and regression and correlation coefficients. The 
stochastic methods encompass a number of variants 
depending on how the emi are obtained. With the 
random regression method, we consider only the 
vers ion which selects the emi'S from the 
respondents" residuals by some form of epsem 
sampling. 

In the following we make several simplifying 
assumptions. First, we assume that respondents to 
the item always respond over conceptually repeated 
applications of the survey and nonrespondents 
never do. This assumption, which divides the 
population into strata of respondents and 
nonrespondents, is an obvious oversimplification 
because, for some units, chance plays a role in 
whether they respond or not. However, the 
tractability of the simplified model leads to 
informative results, and therefore it is adopted 
for this discussion. A more complicated model, a 
probability response model, is developed by 
Platek, Singh and Tremblay (1978), and Platek and 
Gray (1978, 1979). 
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Table i: Six Imputation Methods 

Use of 
auxiliary 
variables 

None 

Imputation 
classes 
L _ 

Regression 

Deterministic 
,, 

Mean overall (MO) 

Mean within 
classes (MC) 

Predicted 
regression (PR) 

Stochastic 

Random overall (RO) 

Random within 
classes (RC) 

Random 
regression (RR) 

Second, we often assume that the miss ing 
responses are missing at random in the total 
sample (which we denote by MAR). While this 
assumption is unrealistic, it does, nevertheless, 
lead to insights into the properties of the 
various methods• Santos (1981a,b) derived many of 
the results reported here and has also considered 
the more realistic assumption that the missing 
values are missing at random within specified 
subgroups of the population. Note that with the 
MAR assumption, the simple procedure of deleting 
all sample records with missing responses leads to 
unbiased estimators of the parameters considered 
here. 

Third, we assume that the sample is large, 
that it is selected by SRS, and that the finite 
population correction factor may be ignored. Many 
o f t h e r e s u I t s presented are large sample 
approximations. 

This review is concerned mainly with the biases 
of the standard estimators when some values have 
been imputed, since with large samples sizeable 
biases will dominate mean square errors. 
Imputation does, however, also affect the 
variances of estimators; this is illustrated below 
by considering the effects of the mean and random 
overall imputation methods on the precision of the 
sample mean. 

3. i Sample Mean 

With yrk and Ymi denoting actual and imputed 
responses respectively, the mean of a SRS of size 
n may be expressed as 

Y = (Y'Yrk + Y Ymi )/n = rYr + mY m 

where Yr and Ym are the means, and ~ = r/n and 
m = m/n are the proportions, of actual and imputed 
responses. Under the MAR model, comparison of the 
biases of y computed with the six imputation 
methods given in Table i are fairly uninformative 
since all the methods lead to at least 
approximately unbiased estimators. 

In general, the means based on the stochastic 
methods have the same biases as those based on 
their deterministic counterparts. This may be 
demonstrated by decomposing the expectation of y 
into two parts, E = EIE2, where E 1 denotes 
expectation over the initial sample and E 2 denotes 
the conditional expectation over the sampling of 
res iduals given the initial sample. Then, 
providing respondent residuals are sampled by an 
epsem sampling scheme, E2(emi ) = O. Thus 

E2(Ymis) = E2(Ymid + emi) = Ymid, where Ymis and 

Ymid are the imputed values for a stochastic and 
the corresponding deterministic method. It 
follows that the conditional expectation of the 
mean computed with a stochastic imputation method 
is equal to the mean under the corresponding 
deterministic method, and hence that the means 
computed with the two methods have the same bias. 

Thus,_ B(YMO) = B(YRO) , B(YMC) = B(YRC) and 
B(YpR) = B(YRR), where B(x) denotes the bias of x, 
and the subscripts refer to the six imputation 
methods listed in Table i. 

As s uming that on conceptually repeated 
applications of the survey some elements always 
provide responses on y when sampled while the 
remainder never do, the general bias of YMC and 
YRC can be expressed as 

B(YMc) = B(YRc) = Y~(Yrh- Ymh )/N = B 

where in imputation class h, Mh is the number of 
nonrespondents, Yrh and Ymh are the means for 
respondents and nonrespondents respectively, and N 
is the population size. The general bias of YMO 
and YRO is given by 

B(YMo) = B(YRo) = [YWh(?mh - ?r )(Rh - ~)/~] + B 

= A+B 

where Wh is the proportion of the population in 
class h, R h is the response rate in class h, Yr is 
the overall respondent mean, and R is the overall 
response rate. Thus, if A and B have the same 
sign, imputation class methods produce means with 
less absolute bias than the overall methods by an 
amount I AI • However, if A and B have different 
signs,_YMC and Y~C can have greater absolute bias 
than YMO and YRO; when A and B are of opposite 
signs, use of the imputation class methods 
produces a smaller absolute bias only when 
IAI > 21BI (Thomsen, 1973; Kalton, 1981). 

We will examine the effect of imputation on the 
variance of y only for the methods that do not use 
auxiliary variables. With the mean overall 
imputation method, Ymi = Yr, so that YMO reduces 
toyr~ With SRS, cond~ional on r 2 and ignoring 
th pc, V(YM O) - Sr/r where Sr is the element 
variance of the respondents. The variance of the 
mean under the random overall imputation method is 
given by 

V(YR O) = VIE 2(yRO ) + EIV 2(yRO ) 

= VI(YMo) + EIV2(YRo). 

The second term in this equation is termed the 
imputation variance; it represents the loss of 
precision in YRO from using the stochastic 
imputation method. A useful index of this loss of 
precision is I, the proportionate increase in 
variance arising from the imputation variance, 

I = EIV2(YRo)/VI(~MO). 
Kalton and Kish (1981)derive the value of I 

for several different epsem schemes for sampling 
donors. In the case of unrestricted sampling 
I m(l - m), which attains a maximum value of 25% 
at m = 50%. With donors selected by SRS, 
I m(l - 2m) for m < r, and this reaches a 
maximum value of 12.5% at m = 25%. The 
substantial reduction in the imputation variance 
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through using SRS rather than unrestricted 
sampling occurs because the SRS scheme avoids the 
multiple use of donors. The use of proportionate 
stratified sampling with respondents stratified by 
the y-variable, or systematic sampling with 
respondents ordered by the y-variable, can further 
substantially reduce the imputation variance. 

The imputation variance may also be reduced by 
taking a larger sample of donors, i.e. using 
multiple imputations. Instead of taking a sample 
of m donors, a sample of size cm is taken (where c 
is a positive integer), and each nonrespondent is 
given c imputed values. One technique for 
handling these multiple imputations is to divide 
each nonrespondent's record into c parts, with 
each part being assigned a weight of 1/c; then 
each part receives the y-value from one of the c 
donors sampled for that nonrespondent. With 
unrestricted sampling of donors, the use of c 
imputations per donor leads to a proportionate 
increase of variance of I " m(l.- m)/c. When the 
donors are sampled by SRS, I = m[l - m(l + c)]/c 
with cm < r. Even a small number of multiple 
imputations can reduce the imputation variance to 
a minor concern. For instance, with c = 2, the 
maximum value of I with unrestricted sampling is 
12.5% at m = 50%, and with SRS it is 4.2% at 
m = 16.7%. Other uses of multiple imputation are 
discussed in Section 4. 

3.2 Distribution and Variance 

If the survey analysis was concerned only with 
means, a deterministic imputation method would be 
preferred, because it avoids the introduction of 
the imputation variance. The main drawback to 
deterministic methods is that they distort the 
d i s t r ibution and hence attenuate the element 
variance of the variable for which imputations are 
made. Since distributions are freque n t ly 
presented in survey reports, this distortion is a 
serious concern. 

The mean overall imputation method creates a 
spike in the y-distribution since all the missing 
values are assigned the same value, Yr- Since 
Ymi = Yr = Y, the effect of the mean overall 
method on the element variance is seen from 

2 2+ 2 
E(sMO) = E{ Y.(Yrk-Y) ~(Ymi-Y) }/(n-I) 

E{E(Yrk- yr)2/(n- i)} = (r- I)S2/(n- I) 
r 

where the expectation is conditional on r and S 2 

is the respondent element variance. 2 If the 
missing data are MAR, the relbias of SMO as an 
estimator of the population variance $2 is thus 
approximately -M, where M is the expected 
nonresponse rate. The random overall method, on 
the other hand, retains the 2 resp. ~ndent 
d~stribution in expectation, and E(SRO) S~, with 
Sr = $2 if the missing data are MAR. 

The mean within classes method produces a 
series of spikes in the y-distribution at the 
means of the imputation classes, Yrh- The random 
within classes method retains the respondent 
distributions within classes in expectation, and 
adjusts the overall distribution for differential 
response rates across the classes. The sample 
element variance with the mean within classes 
method may be expressed as 

2 = {E( _ ~)2 + Y mh(- - y)2}/(n - I). 
sMC Yrk Yrh 

2 
If the missing data are MAR, the relbias of sMC as 
an estimator of $2 is approximately -M(I - D 2), 
where D 2 is the proportion of variance explained 
by^ the imputation classes. Under the MAR model 
SRCe is approximately unbiased for $2. 

The predicted regression method curtails the 
spread of the y-distribution. Under the MAR 
model, the relbias of spR as an estimator of $2 is 
-M(I -R2), where R2 is the proportion of variance 
explained by the regression. The random 
regression method adjusts the y-distribution for 
the mi s sing cases and retains the residual 
variability exhibited ~n the respondents" data. 
Under the MAR model, SRR is approximately unbiased 
for S 2. 

In summary, if the missing data are MAR, the 
stochastic imputation methods yield approximately 
unbiased estimates of distributions and element 
variances, whereas the deterministic methods 
distort distributions and attenuate variances. 

3.3 Covariance 
To describe the effects of the various 

imputation methods on element covariances, another 
variable x in addition to y needs to be specified. 
Initially we assume that x is known for all 
sampled elements. 

In general, the sample covariance with actual 
and imputed responses may be expressed as 

= {Y.(Xrk-X)(Yrk-Y)+Y(Xri-X)(Ymi-Y)}/(n-l). (i) Sxy 
For the stochastic imputation methods, the imputed 

values Ymis may be substituted for Ymi in (I). 
Then the conditional expectation of Sxy, the 
expectation over the stochastic imputation 
subsampling, is obtained by replacing Ymis by 
E2(Ymis) = ymid, the value for the corresponding 
deterministic method, in (i). This argument shows 
that the biases of Sxy under the stochastic and 
corresponding deterministic methods are the same, 

i.e. B(SxyMo) = B(SxyRo), B(SxyMc) = B(SxyRC) and 
B(sxypR) = B(SxyRR) • 

The effect of the mean overall method on the 
covariance corresponds to its effect on the 
variance. With Ymi = Yr = Y, Sxy in (i) reduces 
to 

s = (r- l)s /(n- i), (2) 
xyMO rxy 

where Srxy is the sample covariance between x and 
y for the respondents. The conditional 
expectation of SxyRo is also given by (2). If the 
missing y-values are MAR, the relbiases of SxyMo 
and sxyRo as estimators of the populat ion 
covariance Sxy are both approximately -M. 

From (I), the element covariance under the mean 
within class method becomes 

SxyMC= { l(Xrk-X) (Yrk-Y)+Ym h (Xrmh-X) (Ymh-Y) } / (n-i) 

where Xrm h is the mean x-value for the mh sampled 
elements in imputation class h with missing y- 

values. This formula also represents E2(SxyRc ), 
and suggests that these methods fail to capture 
the within imputation class covariance for the 
elements with imputed y-values. In the case of 
the MAR model, these covariance estimators have a 
relbias of approximately -M(Sxy. z/Sxy), where 
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Sxy.z = Y WhSxyh is the average within class 

covariance for classes formed by the auxiliary 
variable z and Wh is the proportion of the 

population in class h. 
The two regression methods (PR and RR) produce 

estimators Sxy with the same bias in estimating 

Sxy • Under the MAR model their approximate 
relbias can be expressed in the same form as that 

for the imputation class methods, that is 

-M(Sxy. z/Sxy) with Sxy.z denoting the partial 
covariance of x and y given z. This relbias may 
also be expressed as -M[I - (OxzPyz/Pxy)] , where 

Puv denotes the correlation between u and v. 
A disturbing feature of these results is that 

Sxy calculated with imputed values obtained from 

any of these imputation methods is potentially 

subject to substantial bias even under the MAR 
model. The estimates Sxy computed with the 

imputed values obtained from the imputation class 
and regression methods are unbiased only if the 
partial covariance Sxy.z is zero. In general, 

there is no reason to assume uncritically that 
Sxy.z is zero. Note, however, that if x = z, so 
that x is used as an auxiliary variable in the 
imputation scheme, Sxy.z is zero. This result 

suggests that if the covariance between x and y is 
to play an important role in the survey analysis, 

x should, if possible, be used as an auxiliary 
variable in imputing for missing y-values. 

We turn now to the case where x as well as y is 

subject to missing data. For simplicity we 
consider only the mean overall and random overall 
methods. By an extension of the approach used to 

derive (2), sxy in (i) reduces with the mean 
overall imputation method to 

s = (r" - l)s /(n- i), (3) 
xyMO r" xy 

where r" is the subset of elements providing both 

x and y values. The conditional expectation of 
SxyRO is also given by (3) if the missing x and y 
values are imputed independently. 

Suppose now that all sampled elements either 

provide both x and y values or provide neither 
value, and that the random overall method is used 

to impute for the missing values, with a 

nonrespondent's x and y values both coming from 

the same respondent. In this case, E2(SxyRo) , the 
expectation over the imputation subsampling, is 
approximately Srxy, so that under the MAR model, 

SxyRo is approximately unbiased for Sxy. When a 

record has several missing values, this result 
indicates that using the same donor for all the 
missing values retains the respondents" covariance 
structure for the variables involved (see Coder, 

1978, on the use of joint imputation from the same 
donor in the CPS March Income Supplement). This 

benefit also suggests that it might sometimes be 
worthwhile to delete an x or y value when the 
other is missing in order to employ joint 
imputations for the pair of values from the same 
donor. Where feasible, it is clearly preferable 
not to delete values in this way but rather to use 

x as an auxiliary variable in imputing for y, or 
vice versa. However, when this strategy is not 
practicable, the deletion and joint imputation 

procedure does serve to retain the respondent 
covariance structure and to ensure that the x and 
y values for a record are not inconsistent with 
one another. 

The effect of imputation on covariances has 
implications for multivariate analyses. In a 
simple regression of y on x, where x is not 

subject to missing data, attenuation in the 
estimated covariance through imputat ion a I s o 

applies to the regression coefficient; to guard 

against possible attenuation, x ought to be used 
as an auxiliary variable in the imputation scheme. 
Some simulation results for multiple regressions 

in which the dependent variable y included imputed 
values while information on the independent 

variables x was complete are provided by Santos 

(1981a). As a rough guide, his results indicate 
that regression coefficients of x variables used 
in the imputation scheme were not attenuated, but 

those of x variables not used were attenuated. 
Thus, imputation may distort the picture of the 
relative importance of the independent variables. 

The effect of imputation on the correlation 
coefficient between x and y is a combination of 
its effects on the covariance and the standard 

deviations of the two variables. To illustrate 
this point, consider the mean overall and random 

overall methods with two different patterns of 
missing data. When information on x is complete 
and only y includes imputed values, the sample 
correlations with the mean and random overall 

methods are rxyMo = [(r- l)/(n- l)]i/2rrxy and 

E2(rxyRO) = [(r- l)/(n- l)]rrxy, where rrxy is 
the respondent sample corre lat ion. The 

attenuation of the sample correlation for the 
random overall method is the same as that for the 

covarianc e, since this method retains the 

respondent standard deviation for y approximately 

in expectation. The attenuation for the mean 
overall method is smaller because of a 

cancellation between the attenuations of the 
covariance in the numerator of rxyMo and of the 
standard deviation of y in the denominator. 

Now suppose that x and y are either both 
missing or both available. In this case, the mean 

overall method reproduces the respondent 

correlation, rxyMo = rrxy, because of a complete 
cancellation between the attenuations of the 
covariance and the standard deviations of x and y. 

With the random overall imputation method, 

E2(rxyRo) = [(r- l)/(n- l)]rrxy if the pairs of 
missing x and y values are imputed independently, 

or E2(rxyRo) = rrxy if they are imputed jointly 
from the same donors. 

Finally, it should be noted that correlations 

may be overestimated with deterministic imPutation 
methods which employ auxiliary information even 

when the missing data are MAR. This point may be 

illustrated by the regression prediction 
imputation method when x = z is used as the 

auxiliary variable. In this case, the imputed 

values are all placed on the regression line, so 
that the respondent correlation is inflated. 

4. Standard Error Estimation 
There is a risk with imputation that analysts 

may compute sampling errors from the completed 

data set as if all the data had been collected 
from respondents, thus attributing greater 
precision to the survey estimate s than is 
warranted. Thus, the variance of the mean of a 
SRS might be estimated by the standard formula 

v(_y) ==S /n, whereas the actual variance is 
V(y) + I)/r, conditional on r and ignoring 
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the fpc, with I the proportionate increase in 
variance arising from the imputation variance (see 
Section 3. i ). Two components in the 
underestimation of v(y) for V(y) can be 
identified. In the first place, v(y) treats the 
sample as one of size n, whereas there are only r 
responses. For this reason, v(y) underestimates 
V(y) by a factorp of r/n. Secondly, s2 
underestimates S~(I + I). With a deterministic 
imputation scheme I = O, but s2 underestimates S~; 
with a stochasti~ scheme s2 is asymptotically 
unbiased for ST, but I > O. Thus, for instance, 
with the mean ove ral~ imput a t ion scheme, 
E(s 2) = [(r- l)/(n- I)]S~ and I = O, so that 
v(y) underestimates V(y) by a factor 
IT/n] [(r - l)/(n- I)]. With the random overall 
imputation scheme, with unrestricted samp~ng of a 
large sample of donors, E(s2) " S~ and 
I = m(l - m). Thus, v(y)underestimates V(y) by 
[r/n][l + m(l- ~]-I. (It should be noted that 
this underestimation of standard errors may not 
apply to the same extent with multi-stage 
des igns. ) 

One way to handle the general problem of 
sampling error estimation for statistics based on 
data sets with imputed values is by means of 
multiple imputations as advocated by Rubin (1978, 
1979). With this method, the construction of a 
complete data set by imputing for the missing 
responses is conducted several (say c) times 
independently, each time according to the same 
stochastic imputation procedure~ The sample 
estimates (zi; i = 1,2,...c) can then be computed 
for each of the c replicates, and their average 
z = %zi/c calculated. A variance estimator for z 
is then given by v + w, where v is the average 
estimated variance of the z i within the replicates 
and w = Y(zi- z)2/(c- I). In order to make this 
variance estimator unbiased for V(z), additional 
variability may be incorporated in w by adding a 
random variable to each imputed value, the 
variable having the same value for each imputed 
value in a replicate, but a different value for 
each replicate. 

A major problem with the use of multiple 
imputations is the additional computer analysis 
needed, which increases as the number of 
replicates, c, increases. For this reason, a 
small value of c may be preferred; Rubin (1978, 
1979) recommends c = 2. A serious limitation to a 
small value of c, however, is the low precision of 
the resulting variance estimator. Even with a 
small c, it is questionable whether the multiple 
imputation approach is feasible for rout ine 
analysis. It may be best reserved for special 
studies, such as that described by Herzog (1980) 
and Herzog and Lancaster (1980). 

In pass ing two further uses of multiple 
imputations deserve comment. First, as noted in 
Section 3. i, the use of multiple imputations 
reduces the imputation variance. Second, multiple 
imputat ions may be generated from d i f f e r e n t 
imputat ion procedures, making different 
assumptions about the nonrespondents. Comparisons 
of the survey estimates then indicate the 
sensitivity of the results to the imputation 
procedures employed. 

5. Issues of Practical Implementation 
In reviewing imputation procedures for item 

nonresponse, it should be recognized that the 
typical survey collects a substantial amount of 
data for each sampled element, often covering as 
many as a hundred variables o r mor e. 
Consequently, the task of forming a complete data 
set by imputing values for all the missing 
responses is sizeable, because all variables are 
likely to have some missing responses. It is 
generally not practicable to invest a substantial 
effort in developing a separate tailor-made 
imputation method for each variable; at best, this 
is possible for only a small selection of the most 
important survey variables. 

When developing an imputation procedure for a 
variable, y, all the other survey variables are 
available to act as auxiliary variables. The 
choice of auxiliary variables may be guided by 
analyses of the relationships between y and the 
other variables; with a regression imputation 
procedure, regression analyses of y on the other 
variables may be useful, while with an imputation 
class procedure a technique like SEARCH - a 
successor to the Automatic Interaction Detector 
(AID) technique - may be used to identify classes 
of the sample that are homogeneous in y (Sonquist, 
Baker and Morgan, 1974). 

The choice between an imputation class or 
regression imputation method is influenced in part 
by the nature of the auxiliary variables. 
Imputation class methods readi ly handle 
categorical auxiliary variables, but require 
quantitative variables to be categori z e d. 
Regression methods readily handle both 
quantitative and categorical variables (through 
dummy variables), but impose a linear, additive 
model (unless non-linear terms or interactions are 
specifically incorporated). By adopting a more 
restrictive model than the imputation class 
methods (which allow for all interactions), the 
r e g r e s s ion methods can incorporate a wider range 
of auxiliary variables. However, regre s s ion 
methods depend on the construction of a suitable 
model, and if a seriously misspecified model is 
used the methods may generate poor, even 
impossible, imputed values. It seems be s t, 
therefore, to reserve their use for those 
important survey variables for which careful model 
development is warranted. As noted earlier, one 
way to reduce the reliance on the model with a 
random regression method is to take a residual 
from a "close" respondent to add to the predicted 
value. This method is fairly similar to a random 
imputation class method. An attraction of the 
random imputation and hot-deck type imputation 
methods is that they are less model dependent than 
regression methods. Since they impute 
respondents" values to nonrespondent s, they 
cannot, for instance, generate impossible values. 

The fact that every variable collected in a 
survey is potentially subject to missing data 
seriously complicates the imputation task. One 
difficulty it creates is that auxiliary variables 
used in imputation may themselves sometimes be 
missing. With random and hot-deck type imputation 
methods, it also raises the issue that when two or 
more items are missing on a record it is 
preferable, ceteris paribus, to impute them from 
the same donor; otherwise, as noted above, the 
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covariance between the items will be attenuated 
and inconsistent values may be imputed. Joint 
imputations may be implemented by using the same 
imputation classes for all the items concerned and 
then using a single donor for the missing items of 
a given nonrespondent. This procedure may, 
however, operate against the optimum choice of 
imputation classes for a specific item; instead of 
maximizing the proportion of variance explained in 
one item using a technique such as SEARCH, a 
multivariate version with several dependent 
variables may be used (Gillo and Shelly, 1974). A 
compromise solution is often necessary, making 
joint imputations for a group of closely,related 
items, but treating different groups of items 
separately. One approach is a sequent ial 
procedure used by the Bureau of the Census (Coder, 
1978; Brooks and Bailar, 1978): first, fill in the 
"small holes" in basic items that are used in 
forming the initial imputation classes; second, 
impute for a group of closely-related items using 
one set of imputation classes; third, impute for 
another group of variables using a different set 
of imputation classes (which may be defined to 
include variables from the first group of 
variables); etc. 

A special case of the sequential approach can 
be applied in the commonly encountered situation 
of a quantitative variable that has a zero value 
for, or does not apply to, many sample elements 
(e.g., interest income for a sample of persons). 
For such variables, imputation may be conducted in 
two steps: first to impute whether the variable is 
zero or not; and then, if not zero, to impute the 
amount. Herzog (1980) uses this approach with a 
regression imputation for the amount of Social 
Security benef it received. Ford, Kleweno and 
Tortora (1980) call the approach a zero spike 
procedure and use it with a ratio estimator when a 
non-zero imputation is made at the first step. 

Another facet of the multivariate nature of 
survey data is that often many of the variables 
are highly interrelated. In the initial stages of 
processing survey data, numerous edit checks are 
commonly specified, and failures of certain 
responses to satisfy these checks leads to the 
deletion of some responses, with the consequent 
need for imputation. When many interrelated edit 
constraints are applied, the choice of which 
responses to delete when inconsistencies are found 
is a difficult one. A principle, such as 
minimizing the number of deletions, may be used 
(Greenberg, 1981; Fellegi and Holt, 1976). 

Editing is also closely connected to imputation 
through the need for the imputed values to satisfy 
edit constraints. When many constraints are 
employed, the range of imputed values to satisfy 
the constraints may be severely limited. In 
theory, the proper use of the variables in the 
constraints as auxiliary variables should ensure 
that the imputed values satisfy the constraints. 
In practice, however, the complexity of multiple 
constraints often makes this impossible. Records 
in which imputations have been made ought to be 

re-edited after imputation, unless the imputation 
procedure itself guarantees that the edit 
constraints will be satisfied. If some records 
then fail the edit constraints, deletions and 
further imputations will be required. I. Sande 
(1979, 1982) brings out the close relationship 

between editing and imputation. Automatic edits 
and imputation with categorical edits are 
discussed by Hill (1978), and G. San de (1979) 
describes a procedure for linear edits with 
continuous variables. 

Sometimes transformations can be helpful in 
ensuring that imputed values satisfy edit 
constraints. A simple example is the imputation 
of a household's earnings, y, using a random 
regression imputation method. An impossible 
negative earnings amount could be imputed from the 
regression of y on the auxiliary variables. This 
outcome would be avoided if log y were imputed. 
As a second example, consider a hot-deck 
imputation of length of first marriage for persons 
married more than once, with the dates of first 
and second marriages being known. A matching of 
nonrespondents and respondents on the exact 
lengths of the time between the first and second 
marriages would ensure that the nonrespondents 
received a length of first marriage that was less 
than the time between marriages; however, an 
approximate match, which would have to be used in 
practice, would not guarantee this property. A 
way to avoid the potential inconsistency with the 
approximate match is to impute not for length of 
first marriage but for length as a proportion of 
the interval between the two marriages. A 
transformation of this type is often useful with 
quantitative variables in the presence of 
inequality constraints (I. Sande, 1979, 1982). 

6. Concluding Remarks 
A major attraction of imputation is that it 

generates a complete data set that may be readily 
used for many different forms of analysis. As the 
preceding sections have shown, however, caution is 
needed in analyzing a data set that includes 
imputed values. In the case of univariate 
analyses, deterministic imputation methods serve 
well for estimating means and totals, but they 
distort the distributional properties of the 
variable; stochastic methods are less efficient 
for estimating means and totals but they preserve 
the variability in the respondent data. All 
methods are likely to attenuate the covariances 
between the variable subject to imputation and 
other variables, except for those other variables 
that are used as auxiliary variables in the 
imputation scheme. In consequence, when a data 
set contains imputed values, special care is 
needed in studying the interrelationships between 
variables, whether the interrelationships a r e 
examined in terms of cross-tabulations, regression 
analyses or other forms of multivariate analysis. 

Alternative ways of handling missing survey 
data include dropping cases with missing values on 
the relevant variables from the analysis, direct 
estimation of the population parameters from a 
modeling approach, and weighting adjustment s • 
Dropping cases with missing values is a widely 
used procedure, sometimes adopted on the grounds 
that it avoids assumptions required in procedures 
which attempt to compensate for missing data. It 
should, however, be recognized that even this 
procedure employs an implicit assumption about the 
similarity of respondents and nonrespondents; for 
instance, with the response and nonresponse strata 
model employed in Section 2, the respondent mean 
from a SRS is unbiased for the overall population 
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mean only under the assumption that the respondent 
and nonrespondent stratum population means are 
equal. Since the dropping cases procedure is based 
on such an assumption, there seem good grounds for 
using a compensation procedure that employs a more 
suitable assumption than the implicit assumption 
when the latter is unrealistic. This reasoning 
justifies the use of an appropriate imputation 
procedure to compensate for item nonresponse for 
univariate analyses; however, the potential 
damaging effects of imputation on multivariate 
analyses may often make the dropping cases 
procedure a preferable choice. 

The direct estimation of population parameters 
by a modeling approach that takes account of 
missing data has much to commend it. However, the 
labor and computing time to implement the approach 
preclude its use as a general purpose strategy for 
handling missing survey data in all the many 
analyses that are conducted with a survey data 
set. Rather, the approach seems best reserved for 
a small range of special analyses. In view of the 
dangers of imputation for multivariate analysis, 
there is a strong case for a greater use of the 
modeling approach. Little (1982) provides a 
useful review of this approach. 

Weighting adjustments are commonly used to 
compensate for total nonresponse rather than item 
nonresponse. For univariate analyses there is a 
close correspondence between weighting and 
imputation. For such analyses any imputation 
procedure that assigns a respondent's value to a 
nonrespondent is equivalent to a weighting 
procedure that adds the nonrespondent's weight to 
that of the respondent. The widely-used weighting 
class procedure that increases the weights of the 
rj respondents in class j by a factor of 
(rj + mj)/rj, where there are mj nonrespondents in 
class j, can be viewed as equivalent to a multiple 
imputation procedure that divides each 
nonrespondent record into rj parts, and assigns 
the rj responses one to each part. Thus, within 
each class this weighting procedure is equivalent 
to the special case of the multiple imputation 
procedure with SRS sampling of respondents, where 
the number of sampled donors is an exact multiple 
of the number of respondents; this special case 
gives rise to no imputation variance (Kalton and 
Kish, 1981). Moreover the procedure retains the 
d i s t r ibutional properties of the respondents" 
data. This combination of features makes the 
weighting class procedure more attractive for 
univariate analysis than the random imputation 
within classes procedure. The weighting class 
procedure can be applied by associating a weight 
variable to each survey item. If no response is 
obtained to an item, the weight variable for that 
item is set equal to zero; for responses to the 
item in class j, the weight is set equal to 
(rj + mj)/rj. (As described, the scheme assumes 
that all sampled elements have unit weights ; 
however, it can be readily adapted for unequal 
weights). The limitation of this schem~e is that 
in general it cannot be employed in multivariate 
analyses, since each item has a different weight. 
The only case where all the items retain the same 
weight is when they are all missing or present 
together - i.e. the case of total nonresponse. 
Weighting adjustments for total nonresponse retain 
the covariance structure of the respondents, and 

hence - unlike imputation procedures - they are 
not harmful to multivariate analyses. 

F ina lly, we should note that weighting 
adjustments and imputation are usually employed in 
combination, weighting adjustments to compensate 
for total nonresponse and imputation for item 
nonresponse. The use of weighting adjustments 
means that the survey data set to which imputation 
is applied is one with unequal weights; unequal 
weights may also arise because of unequal 
selection probabilities and post-stratification 
adjustments. The results presented in this paper 
relate to the use of imputation with self- 
weighting samples. In general little attention 
has been given to the issues that unequal weights 
raise for imputation, although recently some 
useful contributions have been made (Cox, 1980; 
Cox and Folsom, 1978, 1981). In this area, and 
indeed in many other areas, more research is 
needed on the use of imputation as a way of 
handling item nonresponses in surveys. 
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