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Abstract Statistical matching tackles the problem of drawing information on a pair
of random variables (Y,Z) which have not been observed jointly in one sample sur-
vey. In fact, Z and Y are available in two distinct and independent surveys whose sets
of observed units are non overlapping. The two surveys observe also some common
variables X . This problem has traditionally been analyzed when the two sample sur-
veys consists of independent and identically distributed observations from the same
model. On the contrary most surveys, especially those managed in National Sta-
tistical Institutes, consists of samples drawn from a finite population according to
complex survey designs. This paper compares some of the procedures described in
the literature and analyzes their effects on the analysis of uncertainty, i.e. of the lack
of joint information on the random variables of interest.
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1 What is statistical matching

Statistical matching techniques [3] combine information available in distinct data
sources referred to the same target population. The two datasets, A and B, are as-
sumed to contain data collected in two independent sample surveys and such that

• the two samples contain distinct units (the sets of units observed in A and B do
not overlap);
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• the two samples contain information on some variables X (common variables),
while other variables are observed distinctly in one of the two samples, say, Y in
A and Z in B.

In statistical matching, the key problem is the relationship among the variables Y
and Z, given that they are never jointly observed in the data sets at hand. Ana-
lysts have always questioned if it was possible to either create synthetic records
containing information on (X ,Y,Z), as in [11], or through inference on model pa-
rameters describing the joint behaviour of the variables, as correlation coefficients
[6, 14, 9, 10, 12], conditional probabilities [13, 2], and so on.

The model is not identifiable given the available data, unless some untestable
models are assumed, as conditional independence between Y and Z given X . Most
of the literature on this topic is based on the conditional independence assumption.
A more truthful study would limit inference on “how unidentifiable” is the model:
this problem leads to the analysis of “uncertainty”, as suggested by [12] and [3].
In this context, an inferential problem on (X ,Y,Z) does not end up with a punctual
estimate for the target quantities (function of the variable of interests), but, broadly
speaking, consists of an interval that encloses all the possible values coherent with
the observed information (e.g. an interval for a correlation coefficient of the vari-
ables “household expenditures” observed in a survey and “household consumption”
observed in a second survey). We remark that this interval is different from the infer-
ence based on confidence intervals, in the latter the uncertainty taken into account
is due to sampling variability, in this case the uncertainty is due to the lack of in-
formation that implies model unindentifiability [8]. The computation of an interval
instead of a single punctual value is inherently related to the absence of joint in-
formation on the variables observed distinctly in the two sample surveys. Papers
in this context provide algorithms to build those intervals both in case of Gaussian
distributions [9, 12, 7] and of multinomial distributions [2], however they refer to
independent and identically distributed (iid) samples. In National Statistical Insti-
tutes (NSIs), survey data to be integrated generally refer to samples selected from
the same finite population through a complex sampling design. There are not many
studies concerning this issue [14, 13], and they are not directly related to the analysis
of “uncertainty”.

This paper is devoted to the study of “uncertainty” in statistical matching in the
framework of complex sampling designs. Without losing in generality, this paper
deals only with categorical variables.

2 Statistical matching for samples drawn according to complex
survey designs

When samples are drawn according to complex survey designs [14] and [13] are
the two main references for statistical matching. A third approach given in [16],
although not explicitly designed for statistical matching, can be used also in this
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context. In order to assess the uncertainty of statistical matching, it is enough to
illustrate these approaches under the assumption of conditional independence of Y
and Z given X .

Before showing the various approaches it is worth introducing some notations.
Let U be the finite population of size N. Let us consider the random sample A
selected from U with the sampling design p(A) consisting of nA sample units and
the random sample B selected from U with the sampling design p(B) consisting of
nB sample units. Let dA,a = 1/πA,a be the direct weight associated to each sample
unit in A, and dB,b = 1/πB,b be the corresponding direct weight for the units in B.
The variables (X ,Y ) are observed in A while (X ,Z) are observed in B.

2.1 File concatenation

The original proposal of [14] consisted in modifying the sample weights of the two
surveys A and B in order to get a unique sample given by the union of A and B (A∪B)
with new survey weights representative of the population of interest. The basic idea
is that new sampling weights can be derived from the concatenated files by using the
simplifying assumption that the probability of including a unit in both the samples
is negligible. This is generally true when the two sample surveys are independent
and when the sampled fraction of the population in the two cases is negligible, as
in many social surveys. Under this assumption, the inclusion probability of a record
c ∈ A∪B is:

πc = πA,c +πB,c . (1)

These new weights can be used in order o estimate the parameters of interest in the
concatenated file A bigcupB.

Note however that for each unit in A∪B the inclusion probability of the records
in A under the survey design in B, as well as the inclusion probability of the records
in B under the survey design in A, must be computed. It is worth noting that design
variables of a survey are not necessarily available in other surveys and for this reason
the approach proposed by Rubin has been seldom applied.

If the probability of inclusion of a unit in both samples is not negligible (e.g. this
happens when survey designs admit take all strata) Equation 1 becomes :

πc = πA,c +πB,c−πA∩B,c . (2)

2.2 Approaches that use the surveys separately

This approach was described at first in [13]. This approach has a much wider appli-
cability, because it is not necessary to know the design variables of both surveys. As
a matter of fact, the two different samples are preserved and their statistical content
is harmonised by calibrating the two sets of survey weights. The result is the creation
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of two samples that are able to estimate consistently totals of the common informa-
tion. Calibration follows one (or both) of the following two criteria, depending on
the characteristics of the common variables

1. if a common variable is known on the whole population, calibration should re-
produce the known population frequencies;

2. if a common variable is not known on the whole population, an estimate is given
by a linear combination of the estimates computed in A and B respectively, and
calibration should reproduce this final estimate.

When dealing with the multivariate common information (X) it has to be decided
whether to preserve just the marginal distributions of each component of X or their
joint distribution. Constraining on the joint distribution poses some computational
problems.

Under the conditional independence assumption, estimation is performed by es-
timating the common variables X either in A or B, the conditional distribution of Y
given X in A and the conditional distribution of Z given X in B.

A similar approach is introduced in [16]. This approach is based on the pseudo
empirical likelihood but the derivation of the new sets of survey weights follows a
different procedure that forbids negative final weights. This approach is known as
Wu separate approach. Wu [16] suggests also an alternative approach, known as Wu
combined approach. This approach avoids that the distribution of X is estimated in
advance by simply introducing a constraint that the new sets of weights reproduce
the same X distribution both in A and B.

2.3 Empirical likelihood

The empirical likelihood in the context of statistical matching is described in detail
in [4]. Consider the log-likelihood function

l(p|A
⋃

B) =
N

∑
s=1

log(pX (xs))+
N

∑
s=1

log(pY |X (ys|xs))+
N

∑
s=1

log(pZ|X (zs|xs)). (3)

If the entire finite population was available, our objective would be to maximize (3)
with respect to p. In practice we have a sample and thus, as suggested by [1], since
the log-likelihood (3) can be understood as a sum of finite population totals, our goal
becomes to maximize the estimate l̂(p|A

⋃
B) (the pseudo empirical log-likelihood)

with respect to the vector of parameters p: these are the pseudo empirical likelihood
(MPEL) estimates.

The estimates that can be obtained through the approaches described in Section
2 can be justified also as MPELs. The differences concern how each component of
(3) is estimated.

File concatenation. - As suggested in Section 2.1, concatenate the samples A
and B, compute a unique set of weights dc = 1/πc, c ∈ A

⋃
B, as in Equation (2),
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and use those weights to make inference on the concatenated file by means of the
following estimate of (3):

l̂(p|A
⋃

B)= ∑
c∈A

⋃
B

dclog(pX (xs))+ ∑
a∈A

da log(pY |X (ys|xs))+ ∑
b∈B

db log(pZ|X (zs|xs))

Following Rubin’s suggestion, the survey weights dc should be modified so that
their sum is equal to N. Note that estimators of the conditional distributions of Y
given X and Z given X should use modified weights d∗a , a ∈ A, and d∗b , b ∈ B, which
are computed in order to take missing data into account.

Approaches that use the surveys separately. In this case, the estimate of equa-
tion (3) is:

l̂(p|A
⋃

B) =
nA

∑
a=1

dA,a log(pX (xa))+
nB

∑
b=1

dB,b log(pX (xb))

+
nA

∑
a=1

dA,a log(pY |X (ya|xa))+
nB

∑
b=1

dB,b log(pZ|X (zb|xb)). (4)

The goal is to maximize this pseudo empirical log-likelihood. Renssen, as sug-
gested in 2.2, obtains a unique estimate of the common variable X by combining
the estimates of the frequency distribution of X from A and B, and then calibrates
the original sample weights dA,a and dB,b to the obtained estimate p̂X (x). The new
weights are used to estimate the distributions of Y |X in A and Z|X in B. These esti-
mates can be considered as MPEL estimates on A and B respectively.

Wu separate approach differs from the Renssen’s one for the derivation of the
final sets of weights dA,a and dB,b.

Wu combined approach uses the constraint that the two estimates of the X distri-
bution from A and B respectively are the same. Details can be found in [16].

3 Uncertainty

As remarked in D’Orazio et al. (2006a), the maximum likelihood estimates may be
used to determine the impact of the absence of joint information on Y and Z on the
estimates of the joint (Y,Z) parameters. This can be described in terms of an interval
of estimates that are equally plausible for the available data sets. This interval can
be estimated by the likelihood ridge. This consideration immediately applies when
samples are drawn according to complex survey designs when a MPEL approach is
used.

More precisely, let the distributions satisfying the system of equations:

Θ =

∑k pXY Z(i, j,k) = p∗XY (i, j) i = 1, . . . , I, j = 1, . . . ,J
∑ j pXY Z(i, j,k) = p∗XZ(i,k) i = 1, . . . , I, k = 1, . . . ,K
pXY Z(i, j,k)≥ 0; ∑i jk pXY Z(i, j,k) = 1

(5)
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be the uncertainty on pXY Z(i, j,k) when the distributions pXY (i, j) = p∗XY (i, j) and
pXZ(i,k) = p∗XZ(i,k) are known.

An estimate of Θ can be obtained by all the MPEL estimates obtainable from A
and B according to any of the schema shown in the previous section

Θ̂ =

∑k pXY Z(i, j,k) = p̂XY (i, j) i = 1, . . . , I, j = 1, . . . ,J
∑ j pXY Z(i, j,k) = p̂XZ(i,k) i = 1, . . . , I, k = 1, . . . ,K
pXY Z(i, j,k)≥ 0; ∑i jk pXY Z(i, j,k) = 1

(6)

For each single parameter, the pseudo empirical likelihood ridge can be described
by the use of the Fréchet class, where the components are the corresponding MPEL
estimates of pX (i), pY |X ( j|i) and pZ|X (k|i).

For the bivariate distribution of (Y,Z) it is:

∑
i

p̂X (i)max{0; p̂Y |X ( j|i)+ p̂Z|X (k|i)−1}≤ pY Z( jk)≤∑
i

p̂X (i)max{ p̂Y |X ( j|i); p̂Z|X (k|i)}.

4 Simulation results

The performances of the estimators of pX (x), pY |X (y|x) and pZ|X (z|x) under the dif-
ferent schema are evaluated using a simulation study. The finite population used
in this study consists of an artificial population U of N = 5000 individuals with
age greater than 15 years and being occupied in a dependent position. The fol-
lowing variables are considered: Geographical Area (grouped respectively in 3 or
5 categories); Gender, X1, (1=’M’, 2=’F’); Classes of Age, X2, (3 classes: ’16–
22’, ’23–44’, ’≥ 45’); Education Level, Y , (4 categories: 1=’No title or elemen-
tary school’, 2=’compulsory school’, 3=’Secondary school’, 4=’university degree
or higher’); and Professional Status, Z, (3 categories: 1=’worker’, 2=’employee’,
3=’manager’). In order to reproduce the statistical matching framework and then use
the approaches presented in the previous sections to estimate pX (x), pY |X (y|x) and
pZ|X (z|x), in each simulation run two random samples A and B are selected from U .
The samples are selected using a stratified random sampling with proportional allo-
cation; Geographical Area is used as the stratification variable. Three strata (’North’,
’Center’ and ’South and Islands’) are considered when selecting the sample A, while
the strata are five (’North West’, ’North East’, ’Center’, ’South’ and ’Islands’) when
selecting B. As far as the sampling fractions are concerned, three combinations are
considered:

(a) fA = 0.10 (nA = 500) and fB = 0.06 (nB = 300);
(b) fA = fB = 0.10 (nA = nB = 500);
(c) fA = 0.06 (nA = 300) and fB = 0.10 (nB = 500).

In sample A the variable Z is removed, as Y in file B. The whole process is repeated
T = 10000 times for each combination of the sampling fractions.
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Tables 1, 2 and 3 report the averages, over the whole set of simulations, of the
absolute distance (total variation distance) among the estimated and the true popu-
lation relative frequencies (pc = Nc/N) computed using

d̄(p̂, p) =
1

10000

10000

∑
t=1

[
1
2

C

∑
c=1
|p̂t,c− pc|

]
(7)

where p̂t,c is the estimate of pc = Nc/N computed on the t-th run, t = 1, . . . ,10000.

Table 1 Average of absolute distance (total variation distance x 100) among estimated and true
(population) relative frequencies in case (a).

Approach pX (x) pXY (x,y) pY |X (y|x) pXZ(x,z) pZ|X (z|x)
File concatenation 2.617663 6.130204 5.494019 6.667832 5.494019
Renssen 2.617715 6.130005 5.493756 6.667069 5.493756
Wu separate 2.617715 6.130005 5.493756 6.667069 5.493756
Wu combined 2.795445 6.219056 5.493756 6.852094 5.493756

Table 2 Average of absolute distance (total variation distance x 100) among estimated and true
(population) relative frequencies in case (b).

Approach pX (x) pXY (x,y) pY |X (y|x) pXZ(x,z) pZ|X (z|x)
File concatenation 2.621003 7.746804 7.264135 5.382213 7.264135
Renssen 2.620999 7.747073 7.264329 5.382442 7.264329
Wu separate 2.620999 7.747073 7.264329 5.382442 7.264329
Wu combined 3.037953 7.894812 7.264329 5.487439 7.264329

Table 3 Average of absolute distance (total variation distance x 100) among estimated and true
(population) relative frequencies in case (c).

Approach pX (x) pXY (x,y) pY |X (y|x) pXZ(x,z) pZ|X (z|x)
File concatenation 2.621003 7.746804 7.264135 5.382213 7.264135
Renssen 2.620999 7.747073 7.264329 5.382442 7.264329
Wu separate 2.620999 7.747073 7.264329 5.382442 7.264329
Wu combined 3.037953 7.894812 7.264329 5.487439 7.264329

The proposed estimation schema provide quite close results. In general, Renssen
approach and Wu separate provide the same results. As expected, when estimating
pX (x) file concatenation is slightly better than the other ones, but the differences
with Renssen approach and Wu separate are really negligible. In this case Wu com-
bined approach gives always the worst results. As far as the joint or the conditional
distributions are concerned, there are not manifest patterns in the results; results un-
der file concatenation are slightly better in situations (b) and (c); on the contrary
Renssen approach and Wu separate perform slightly better in case (a). In all the
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cases, the distance between true and estimated proportions tends to increase when
estimation is carried out in the smaller sample.

Tables 4, 5 and 6 show summary results related to the estimation of uncertainty
bounds for pXY (x,y) starting from the estimates obtained for pX (x), pY |X (y|x) and
pZ|X (z|x) at the end of each simulation under the different estimation schema. In
particular, the values in the tables refer to the average width of the intervals built
using uncertainty bounds in the simulations:

R(low)
c =

1
10000

10000

∑
t=1

(
p̂(up)

t,c − p(low)
t,c

)
, c = 1, . . . ,C (8)

Table 4 Average width of the uncertainty intervals for the cells in table of Y vs. Z in case (a).

Edu Prof pop. prop. File conc. Renssen Wu sep. Wu comb
1 1 0.0484 0.050842 0.050809 0.050809 0.050812
2 1 0.2806 0.320464 0.320439 0.320439 0.320445
3 1 0.1536 0.383846 0.383815 0.383815 0.383827
4 1 0.0074 0.133076 0.133091 0.133091 0.133090
1 2 0.0024 0.050839 0.050806 0.050806 0.050809
2 2 0.0536 0.304700 0.304697 0.304697 0.304707
3 2 0.2810 0.372366 0.372359 0.372359 0.372375
4 2 0.0872 0.133096 0.133110 0.133110 0.133110
1 3 0 0.043179 0.043140 0.043140 0.043140
2 3 0.0060 0.085776 0.085704 0.085704 0.085707
3 3 0.0412 0.085780 0.085709 0.085709 0.085711
4 3 0.0386 0.073677 0.073653 0.073653 0.073652

Table 5 Average width of the uncertainty intervals for the cells in table of Y vs. Z in case (b).

Edu Prof pop. prop. File conc. Renssen Wu sep. Wu comb
1 1 0.0484 0.050798 0.050833 0.050833 0.050840
2 1 0.2806 0.322623 0.322637 0.322637 0.322638
3 1 0.1536 0.387250 0.387273 0.387273 0.387272
1 1 0.0074 0.133083 0.133074 0.133074 0.133076
2 2 0.0024 0.050795 0.050829 0.050829 0.050837
3 2 0.0536 0.306699 0.306690 0.306690 0.306692
1 2 0.2810 0.376183 0.376180 0.376180 0.376186
2 2 0.0872 0.133087 0.133078 0.133078 0.133080
3 3 0 0.044193 0.044227 0.044227 0.044230
1 3 0.0060 0.085666 0.085707 0.085707 0.085702
2 3 0.0412 0.085666 0.085707 0.085707 0.085702
3 3 0.0386 0.074583 0.074595 0.074595 0.074591

The average width of the cell proportions computed by considering the estimates
of the Fréchet bounds remains essentially the same under the various schema. Again,
file concatenation tends to perform slightly better in cases (b) and (c). Slightly better
results are obtained under Renssen approach or Wu separate in case (a).
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Table 6 Average width of the uncertainty intervals for the cells in table of Y vs. Z in case (c).

Edu Prof pop. prop. File conc. Renssen Wu sep. Wu comb
1 1 0.0484 0.050607 0.050637 0.050637 0.050626
2 1 0.2806 0.320618 0.320633 0.320633 0.320683
3 1 0.1536 0.383861 0.383870 0.383870 0.383917
1 1 0.0074 0.132868 0.132848 0.132848 0.132845
2 2 0.0024 0.050603 0.050633 0.050633 0.050622
3 2 0.0536 0.304739 0.304741 0.304741 0.304784
1 2 0.2810 0.372025 0.372028 0.372028 0.372069
2 2 0.0872 0.132882 0.132861 0.132861 0.132858
3 3 0 0.042914 0.042940 0.042940 0.042939
1 3 0.0060 0.085592 0.085615 0.085615 0.085611
2 3 0.0412 0.085598 0.085621 0.085621 0.085617
3 3 0.0386 0.073646 0.073650 0.073650 0.073648

To conclude, the results of this simulation experiment highlight that there is not
an approach that outperforms the other ones. File concatenation seems to provide
slightly better results than Renssen approach and Wu separate. The one that tends
to perform slightly worst than the other ones is Wu combined.

5 Conclusions

This paper provides a unified view of some approaches to apply statistical match-
ing when dealing with data sources arising from complex survey sampling from
the same finite population. This is permitted by considering the pseudo empirical
likelihood approach to finite population sampling.

The various schema proposed provide essentially the same results in terms of
estimation of the target distributions and of the uncertainty bounds. Renssen and
Wu separate approaches are really similar and even if they use a different method
to compute the final weights, not surprisingly [16] they provide the same results.
Both the approaches are based on a subjective decision concerning the estimation
of the distribution pX (x) as a linear combination of the estimates obtained from A
and B separately. Wu separate approach, in any case seems more flexible, because it
does not allow for negative survey weights as it is possible when linear calibration
is considered. The decision concerning the reference distribution for pX (x) can be
avoided by considering Wu combined approach but, in this case, results obtained
are slightly worst than the other ones.

In general the approaches suggested by Wu appear to be more flexible if com-
pared to standard calibration approach. Anyway, their application requires much
care because in presence of a stratified sampling design (not with proportional allo-
cation) the theory is more complex and higher computational effort is required.

Rubin file concatenation provides quite good results, sometimes slightly better
than the ones under the other approaches. It is the best as far as estimation of pX (x)
is concerned, due to the fact that this estimate is carried out on A

⋃
B. Moreover,
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in this step there is not the problem of harmonizing the estimates of pX (x) com-
ing from A and B. Unfortunately, Rubin’s approach is based on the computation of
the concatenated weights, this may not be possible in some situations. Moreover,
once computed the concatenated weights, a method to estimate joint or conditional
distributions (i.e. pXY (x,y) or pY |X (y|x)) in presence of missing values should be
chosen.
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