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A balanced sampling approach for multi-way stratification 
designs for small area estimation 

Piero Demetrio Falorsi and Paolo Righi 1 

Abstract 

The present work illustrates a sampling strategy useful for obtaining planned sample size for domains belonging to different 

partitions of the population and in order to guarantee the sampling errors of domain estimates be lower than given 

thresholds. The sampling strategy that covers the multivariate multi-domain case is useful when the overall sample size is 

bounded and consequently the standard solution of using a stratified sample with the strata given by cross-classification of 

variables defining the different partitions is not feasible since the number of strata is larger than the overall sample size. The 

proposed sampling strategy is based on the use of balanced sampling selection technique and on a GREG-type estimation. 

The main advantages of the solution is the computational feasibility which allows one to easily implement an overall small 

area strategy considering jointly the sampling design and the estimator and improving the efficiency of the direct domain 

estimators. An empirical simulation on real population data and different domain estimators shows the empirical properties 

of the examined sample strategy. 
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1. Introduction 
 
The small area problem is usually considered to be 

treated via estimation. However, if the domain indicator 

variables are available for each unit in the population there 

are opportunities to be exploited at the survey design stage. 

This condition is usually met in the business survey context 

where the domain indicator variables are available in the 

business register. As noted by Singh, Gambino and Mantel 

(1994), there is a need to develop an overall strategy that 

deals with small area problems, involving both planning 

sample design and estimation aspects. In this framework, it 

is crucial to control the sample size for each domain of 

interest, so that the domain is treated as a planned domain, at 

design stage, for which it is possible to produce direct 

estimates with a prefixed level of precision. In general, with 

a design-based approach to the inference, the presence of 

sample units in each domain allows one to compute domain 

estimates although not always reliably. Furthermore, in the 

model-based or model-assisted approach, the presence of 

sample units in each estimation domain allows one to use 

models with specific small area effects, giving more accu-

rate estimates of the parameters of interest at small area 

level (Lehtonen, Särndal and Veijanen 2003). Marker 

(1999, 2001) deals with the problems of sampling design 

issues in small area context suggesting sample strategies, 

based on stratification and over-sampling, increasing the 

number of small areas for which accurate direct estimation 

is possible. These strategies are feasible in case of nested 

domains, but they may be unfeasible when the aim of the 

survey is to produce estimates for two or more partitions of 

the population. A standard solution to obtain planned sam-

ple sizes for the domains of two or more partitions is to use 

a stratified sample in which strata are identified by cross-

classification of variables defining the different partitions. In 

the following, this design will be denoted as cross-

classification design. In many practical situations, however 

the cross-classification design is unsuitable since it needs 

the selection of at least a number of sampling units as large 

as the product of the number of categories of the 

stratification variables. Cochran well illustrates (1977, page 

124) this problem giving a clear example in which the cross-

classification design is unfeasible. 

The above background is typical of the business survey 

context. The European Council Regulation on Structural 

Business Statistics establishes that the parameters of interest 

refer to estimation domains defined by three different 

partition subsets of the population of enterprises. For 

instance, as we may note by table 1.1, in Italy the total 

number of estimation domains is 1,821; while the number of 

non-empty strata of the cross-classification design is larger 

than 37,000. 

In order to overcome some problems of cross-

classification designs, an easy strategy is to drop one or more 

stratifying variables or to group some of the categories. 

Nevertheless, some planned domains become unplanned and 

some of them can have small or null sample size.  

Many methods have been proposed in the literature to 

keep under control the sample size in all the categories of the 

stratifying variables without using cross-classification 

design. These methods are generally referred to as multi-way 

stratification techniques, and have been developed under two 
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main approaches: (i) Latin Squares or Latin Lattices schemes 

(Jessen 1970); (ii) controlled rounding problems via linear 

programming (Lu and Sitter 2002). Both approaches have 

some drawbacks which have limited the use of multi-way 

stratification techniques as a standard solution for planning 

the survey sampling designs in real survey contexts. Indeed, 

as described in Falorsi, Orsini and Righi (2006), it is not 

possible to implement the Latin Lattices schemes in many 

real survey contexts; as for example if there are no 

population units in one or more cross-classification strata. 

The main weakness of the linear programming approach is 

the computational complexity. The sampling strategy 

considered in this paper does not suffer from the disad-

vantages of the above mentioned methods and allows one the 

control of the sample sizes for domains of interest, which are 

defined by different partitions of the reference population. 

Furthermore it guarantees that the sampling errors of domain 

estimates are lower than the given thresholds. 

The proposed sampling strategy is based on the use of 

both a balanced sampling selection technique (Deville and 

Tillé 2004) and a GREG-type estimation (Lehtonen et al. 

2003). As shown in the study on empirical data herein 

illustrated and in Falorsi and Righi (2008), the main 

advantages of this solution is the computational feasibility 

and the efficiency, that is the sampling errors for multi-

domain-multivariate case are reasonably close to those 

defined by the optimal univariate solutions. This allows one 

to fairly implement an overall small-area strategy con-

sidering jointly the sampling design and the estimator and 

improving the efficiency of the direct domain estimators.  

In some survey context, the proposed sampling strategy 

might define a too large overall sample size for assuring the 

prefixed bound of the direct domain estimates sampling 

errors. This may happen due to a too large number of 

domains of a given population partition. If the overall sample 

size is bounded by budget constraints, then the proposed 

sampling strategy with direct estimators may be not feasible. 

Therefore, it could be necessary to adopt an indirect small-

area estimator in order to control the mean square errors of 

partition domain estimates. However, the proposed approach 

may be easily extended to a strategy using the direct 

estimator and the indirect small area estimators for the 

partitions requiring a too large overall sample size for 

bounding the sampling errors.  

The paper is organised as follows. Section 2 states the 

problem, introduces the essential notation and describes the 

overall sampling strategy. Section 3 shows the algorithms for 

finding the inclusion probabilities and the corresponding 

planned domain sample sizes. Sections 4 and 5 illustrate two 

extensions of the sampling strategy. In section 4 the case in 

which the variance criterion is represented by the anticipated 

variance is studied. An extension to the case of a simple 

small area indirect estimator is presented in section 5. The 

main results of an empirical study on a real population of 

Italian enterprises are shown in section 6. Some brief 

conclusions are finally underlined in section 7. 

 
2. The sampling strategy 

 
2.1 Parameters of interest  
In order to define formally the problem, let us denote 

with U  a population of N  elements and with b  a specific 

partition of ( 1, ..., )U b B=  in which thb  partition defines 

bM  different non overlapping domains, bdU ( 1, ...,d =  

),bM  of size bdN  being 1
bM

d bdN N=∑ =  and, finally let 

1
B
b bM Q=∑ =  be the overall number of domains.  

Let ,r ky  and bd kδ  denote respectively the value of the 
thr ( 1, ..., )r R=  variable of interest in the thk  population 

unit and the domain membership indicator, being 1bd kδ =  

if bdk U∈  and 0,bd kδ =  otherwise. Let us suppose that 

the bd kδ  values are known for each unit in the population. 

The parameters of interest are the M Q R= ×  domains 

totals 

, ,

(  = 1, ..., ; = 1, ..., ; = 1, ...,  ).

bd

bd r r k bd k r k
k U k U

b

t y y

r R b B d M

∈ ∈

= δ =∑ ∑
 

(2.1.1)

 

The expression (2.1.1) defines a multivariate-multi-

domain problem since there are R  variables of interest 

(multivariate aspect) and 1Q >  domains (multi-domain 

aspect). 

  
Table 1.1 

Number of domains of the Italian Structural Business Statistics Survey by partition 
 

Partitions Number of domains 

Economic activity class  (4-digits of the NACE rev.1 classification)  465 

Economic activity group (3-digits of the NACE rev.1 classification) by Size class1  395 

Economic activity division (2-digits of the NACE rev.1 classification) by Region1 
 

961 

Total number of estimation domains 1,821 
1 Size classes are defined in terms of number of persons employed. 
2 Regions are 21 including autonomous provinces. 
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2.2 A concise description of the sampling strategy  
Let us suppose that, in order to estimate the bd rt  

parameters, a sample s  of fixed size n  is selected from 

population ,U  with inclusion probabilities ( ).k k Uπ ∈  Let 

bd bds s U= ∩  be the sample of bdn  units belonging to the 

bdU  domain (with 1 ),bM
d bdn n=∑ =  being  

,
bd bd

bd k k
k U k U

n
∈ ∈

= λ = π∑ ∑  (2.2.1) 

with 1kλ =  if k s∈  and 0kλ =  otherwise. 

The sample is selected by a multi-way stratification 

technique developed under the balanced sampling frame-

work guaranteeing that the selected sample respects the 

following balancing equations 

,
ˆ
htt t=z z  (2.2.2) 

where ,
ˆ

k Uht k k kt a∈∑= λz z  denote the Horvitz-Thompson 

estimates of ,k U kt ∈∑=z z  being kz  a value vector of 

auxiliary variables known for each population unit at the 

design stage and 1/ .k ka = π  A suitable specification of the 

kz  vectors can assure that the realized sample sizes, ,bdn  

are equal to fixed quantities known in advance, as described 

in section 2.3. 

The estimates of ,bd rt  denoted with , greg
ˆ ,bd rt  are obtained 

with the modified GREG estimator (Rao 2003, page 20), 

given by: 

, greg ,
ˆ

bd r bd k r k

k s

t w y
∈

= ∑  (2.2.3) 

where 

1

,
ˆ( ) ( / ) /

bd k k bd k

bd bd ht k k k k k k kk s

w a

t t a c a c
−

∈

= δ

′ ′+ −   ∑x x x x x

 

denote the sampling weights, kx  indicates a value vector of 

the auxiliary variables, kc  is a known constant, being 

bdk Ubd kt ∈∑=x x  and ,
ˆ .

bdk sbd ht k kt a∈∑=x x  The estimator 

(2.2.3), may be derived under the following working super 

population model 

, ,r k k r r ky ′= +εx β  (2.2.4) 

where rβ  is an unknown vector of fixed regression para-

meters and ,r kε  is the random residual. The model expecta-

tion, ,mE  and model variances, ,mV  are respectively given 

by ( ) 0;m r kE ε = 2
,( ) ;m r k k rV cε = σ , ,( , ) 0m r k r iE ε ε =  if 

.k i≠  

The approximated sampling variance of the modified 

GREG estimator under balanced sampling is: 

2

, greg , ,
1ˆ ˆ( | ) 1 ,p bd r ht bd r k
kk U

NV t t t
N Q

∈

 = = − η − π 
∑z z  (2.2.5) 

being 

, ,

,
,

for
,

for

r k k bd bd

bd r k
k bd bd

k U

k U

ε

ε

′ε − ∈
η =  ′− ∈

z

z

z B

z B
 (2.2.6) 

where  

1

, ,(1/ 1) (1/ 1),bd k k k k r k bd k kk U
k U

−
ε ∈

∈

′= π − ε δ π −  ∑ ∑zB z z z  

being 
bd

U  the subset of U  complementary to .bdU  A proof 

of (2.2.5) is given in section 2.5.  

The inclusion probabilities, ,kπ  and the domain sample 

sizes, ,bdn  are determined with a procedure which attempts 

to minimize the overall sample size, ,n  guaranteeing that 

the sampling variances are lower than prefixed level of pre-

cision thresholds, , greg ,
ˆ ˆ: ( | )bd r p bd r ht bd rV V t t t V= ≤z z ( 1, ...,b=  

; 1, ..., ; 1, ..., ).bB d M r R= =  The technical details are 

described in section 3. 

Let us note that two different sets of covariates have been 

introduced in order to underline that the set of covariates 

available at the design stage ( z  variables) could be different 

from the set available at the estimation stage (x variables) 

even if in many practical situations they could be the same. 

As for example the covariates at estimation stage could be 

updated with respect to those available at the design stage. 

In our context (see section 2.3) the kz  vectors are 

characterized as specified by the expression (2.3.2) being 

defined only by the domain membership indicator variables 

and by the inclusion probabilities, while the kx  vectors 

could contain the values of some other variables more 

explicative of the phenomena of interest. For instance, in the 

business survey context the x  variables could include, 

among others, the number of employees or the turnover.  
2.3 The balanced sampling for marginal 

stratification  
Multi-way stratification designs can be treated in the 

context of the balanced sampling. 

The definition of a balanced sample depends on the 

assumed inferential framework. In the model based 

approach, a sample is defined as balanced on a set of 

auxiliary variables if there is the equality between the 

sample and the known population means of the auxiliary 

variables (Valliant, Dorfman and Royall 2000). Following 

the design based (or model assisted approach) considered in 

this paper, a sample is balanced when the Horvitz-

Thompson estimates of the auxiliary variables totals are 

equal to their known population totals (Deville and Tillé 

2004). 

For defining the balanced sampling in the design or 

model assisted approach, let us introduce the general 

definition of sampling design as a probability distribution 

( )p ⋅  on the set S  of all the subset s  of the population U  
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such that ( ) 1,s p s∈∑ =S  where ( )p s  is the probability of 

the sample s to be drawn. Each set s may be represented by 

the outcome 1( , ..., , ..., )k N
′ = λ λ λλ  of a vector of N  

random variables. Let 1( , ..., , ..., )k N
′ = π π ππ  be the vector 

of inclusion probabilities, where ( ) ( ) ,spE p s∈∑= = Sπ λ λ  

being ( )pE ⋅  the expected value over repeated sampling. Let 

1( , ..., , ..., )k k hk Qkz z z′ =z  be a vector of Q  auxiliary vari-

ables available for each population unit. The sampling 

design ( )p s  with inclusion probabilities π  is said to be 

balanced with respect to the Q  auxiliary variables if and 

only if it satisfies the balancing equations given by (2.2.2) 

for all s S∈  such that ( ) 0.p s >  

Let us suppose that a vector of inclusion probabilities ,π  

consistent with the marginal sampling distributions bdn  

( 1, ..., ; 1, ..., ),bb B d M= =  is available, that is  

( 1, ..., ; 1, ..., ).
bd

bd k b
k U

n b B d M
∈

= π = =∑  (2.3.1) 

Multi-way stratification design represents a special case 

of balanced design where for unit k  the auxiliary variable 

vector is given by 

1

11

(0, ..., , ..., 0, ..., 0, ..., , ..., 0)

( , ..., , ..., ).
B

b b B

k k k

Q

k k bd k BM k

= =

′ = π π

= π δ δ δ

z
������� �������

���������������

 (2.3.2)

 

The expression (2.3.2) defines the kz  as vectors of 

( )Q B−  zeros and with B  entries equal to kπ  in the 

places indicating the domains which the unit k  belongs to. 

When defining the kz  vector as (2.3.2), if condition 

(2.3.1) holds, the selection of sample satisfying the system 

of balancing equations (2.2.2), ( ) / ,k U k sk k k k∈ ∈∑ ∑λ π =z z  

guarantees that the bdn  values are non random quantities. 

The left hand-side of the balancing equation (2.2.2) is 

( ) / ,
bdk U k Uk bd k k k k bdn∈ ∈∑ ∑π δ λ π = λ =  while the right 

hand-side is .
bdk U k Uk bd k k bdn∈ ∈∑ ∑π δ = π =  

Deville and Tillé (2004) proposed the cube method that 

allows one the selection of balanced (or approximately 

balanced) samples for a large set of auxiliary variables and 

with respect to different vectors of inclusion probabilities. In 

particular, Deville and Tillé (2000) show that with 

specification (2.3.2) of the kz  vectors, the balancing 

equations (2.2.2) can be exactly satisfied. The cube method 

is implemented by an enhanced algorithm for large data sets 

(Chauvet and Tillé 2006) available in a free software code 

that may be downloaded in the website http://www.insee.fr/ 

fr/nom_df_met/outils_stat/cube/accueil_cube.htm .  
 
2.4 The modified direct GREG estimator   
Following Lehtonen et al. (2003), the estimator (2.2.3), 

may be expressed under the general form  

, greg , , ,
ˆ ( )

bd bd

bd r r k k r k r k
k U k s

t y a y y
∈ ∈

= + −∑ ∑ɶ ɶ  (2.4.1) 

where ,r kyɶ  denotes the prediction of ,r ky  under the 

assumed super population model. The predictions ,{ ;r kyɶ  

}k U∈  differ from one model specification to another, 

depending on the functional form and from the choice of the 

auxiliary variables. The estimator (2.2.3) is derived under 

the working super-population model (2.2.4). The predictions 

,r kyɶ  are then obtained by 

,
ˆ ,r k k ry ′= x βɶ  (2.4.2) 

being  

( ) 1

,
ˆ / / .r k k k k k r k k k

k s k s

a c y a c
−

∈ ∈

′= ∑ ∑β x x x  (2.4.3) 

Let us observe that the linear model (2.2.4) allows one to 

define the estimator only knowing the domain totals of the 

auxiliary information and the kx  values for the sampling 

units. However, knowing the kx  values for every ,k U∈  it 

is possible to build an estimators with more efficient 

predictions ,r kyɶ  obtained by generalized linear models 

(Lehtonen and Veijanen 1998) or non parametric regression 

techniques (Montanari and Ranalli 2003). 

As noted by Rao (2003, page 20) the estimator (2.2.3) is 

approximately design unbiased as the overall sample size 

increases, even if the domain sample size bdn  is small. 

Moreover, the sum of the , greg
ˆ

bd rt  estimates over all the 

domains of a partitions is benchmarked to the usual GREG 

estimate of the total, 1 , greg ,
ˆ [1bM

k sd bd r r k kt y a∈=∑ ∑= +  
1( ) ( / ) / ].k U k s k sk k k k k k k k ka a c c−

∈ ∈ ∈∑ ∑ ∑′ ′−x x x x x  
 
2.5 Sampling variances  
In order to derive the expression of the variance (2.2.5), 

consider the results given by Deville and Tillé (2005). They 

have proposed approximating the variance of the Horvitz-

Thompson estimator , ,
ˆ

k sr ht r k kt y a∈∑=  of the total rt =  

, ,k U r ky∈∑  by supposing that the balanced sampling can be 

viewed as a conditional Poisson sampling and assuming 

that, at least for large sample sizes, the inclusion proba-

bilities kπ  well approximate the inclusion probabilities of 

the Poisson design. Assuming that, through Poisson sam-

pling, the vector , ,
ˆ ˆ( , )r ht htt t′ ′z  has approximately a multi-

normal distribution, the authors suggest a good approxi-

mation of the sampling variance given by  

( )
( )

, , , , ,

, , ,

, ,

2

, ,

ˆ ˆ ˆ ˆ( | ) ( ( ) )

ˆ ˆ( )

( )

1 1 ( )

p r ht ht p r ht ht y

p r ht ht y

p k r k k y
k s

r k k y
kk U

V t t t V t t t

V t t

V a y

N y
N Q

∈

∈

′= = + −

′= −

′= −

′≅ − −
− π

∑

∑

z z z z z

z z

z

z

B

B

z B

z B

 

(2.5.1)
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where 1
, ,[ (1/ 1)] (1/ 1).k U k Uy k k k k r k ky−

∈ ∈∑ ∑′= π − π −zB z z z  

The expression (2.5.1) has been validated by a set of 

simulations. 

Let us consider, now, the linear approximation, *
, greg
ˆ ,bd rt  

of the GREG estimator, the derivation of which may be 

obtained according to Särndal, Swensson and Wretman 

(1992, pages 450-451) 

*

, greg , greg ,

,

ˆ ˆ

.

bd bd

bd

bd r bd r k r k r k
k U k s

k r k r k bd k
k U k s

t t a

a

∈ ∈

∈ ∈

′≅ = + ε

′= + ε δ

∑ ∑

∑ ∑

x β

x β

 

(2.5.2)

 

On the basis of expressions (2.5.1) and (2.5.2), it is 

possible to derive the following result 

( )
( )
( )
( )

*

, greg , , greg ,

, ,

, , ,

, ,

,

2

,

ˆ ˆ ˆ ˆ( | ) ( | )

ˆ|

ˆ( )

(

1 1 ,

p bd r ht p bd r ht

p k r k bd k ht
k s

p k r k bd k ht bd
k s

p k r k bd k k bd
k s

p k bd r k

k s

bd r k
kk U

V t t t V t t t

V a t t

V a t t

V a

V a

N
N Q

∈

ε
∈

ε
∈

∈

∈

= ≅ =

= ε δ =

′= ε δ + −

′= ε δ −

= η

 ≅ − η − π 

∑

∑

∑

∑

∑

z z z z

z z

z z z

z

B

z B
 

where 2
,bd r kη  is defined in (2.2.6). 

The approximated sampling variance of , greg
ˆ

bd rt  depends 

on the residuals of the whole set of units, because of 

balanced selection. Therefore, the units not belonging to 

bdU  have an influence on the sampling variance of the 

estimator.  

Let us examine now the univariate unidomain case and 

assume that the survey has an unique target parameter, .bd rt  

Furthermore, let us suppose that the selected sample 

respects the balancing equations, ,
ˆ ,htt t=z z  being fixed the 

overall sample size n. 

Following the arguments proposed by Särndal et al. 

(1992; Result 12.2.1, page 452), it is trivial to prove that, in 

this sampling context, each unit k could be selected with 

( )Q R×  different optimal inclusion probabilities, ,bd r kπɺɺ  

( 1, ..., ; 1, ..., ; 1, ..., )bb B d M r R= = =  

, , , ,bd r k bd r k bd r i

i U

n
∈

π = | η | | η |∑ɺɺ  

which allow one to attain the ( )Q R×  different lower 

bounds, *
| ,bd r nV  of the approximated variances: 

( )

*

, greg , |

2 2

, ,

ˆ ˆ( | )

1 .

p bd r ht bd r n

bd r k bd r k
k U k U

V t t t V

N
N Q n

∈ ∈

= ≥ =

 | η | − η
−   

∑ ∑

z z

 

Let us finally underline that in Tillé and Favre (2005) is 

given a criterion for obtaining a prediction ,
ˆ

bd r kη  of the 

,bd r kη  values, that may be used in repeated sampling 

contexts.  

 
3. Sampling algorithms for the determination  

        of the domain sample sizes 
 
The inclusion probabilities kπ  and the derived domain 

sample sizes, ,
bdk Ubd kn ∈∑= π  are obtained with a two steps 

procedure: (i) in the first step, denoted as optimization, the 

preliminary inclusion probabilities, ,k′π  are determined 

solving a minimum constrained problem; (ii) in the second 

step, denoted as calibration, the inclusion probabilities, ,kπ  

are obtained as a slight modification of the ;k′π  the cali-

bration problem is implemented for assuring that the domain 

sample sizes bdn  are integers. 

As illustrated in the following, the kπ  values may be 

expressed as implicit functions of the unknown residuals 
2
, .bd r kη  But, in real survey context, the determination of the 

inclusion probabilities kπ  may be done using the predict-

tions 2
,

ˆ
bd r kη  instead of 2

, .bd r kη  This is a general problem 

concerning the planning the sampling designs, because the 

variances are generally unknown quantities that may be 

suitably estimated. In repeated survey contexts the effect of 

using the estimates 2
,

ˆ
bd r kη  as a replacement for 2

,bd r kη  may 

be tested by computing the sampling variances after the data 

collection. The empirical results may then be used for 

introducing proper adjustments in planning the next survey 

design. However, as illustrated in the empirical analysis and 

in Falorsi and Righi (2008), the proposed strategy seems to 

be efficient and sufficiently robust with respect to small 

departures of ideal conditions.   

The sections 3.1 and 3.2 respectively describe the two 

steps of the algorithm for the determination of the domain 

sample sizes. A simplified allocation rule, which seems to 

be worthwhile in many real survey contexts, is described in 

section 3.3.  
 
3.1 First step: Optimization    
The inclusion probabilities k

′π  can be defined as solution 

of the following non linear programming problem with N  

unknowns, ,k′π  and ( )N Q R+ ×  constraints 
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( )

2

,

Min

1 1

( 1, ..., ; 1, ..., ; 1, ..., )

0 1 ( 1, ..., ).

k
k U

bd r k bd r
kk U

b

k

N V
N Q

b B d M r R

k N

∈

∈

′π



   − η ≤ ′ − π 


= = =



′< π ≤ =

∑

∑  (3.1.1) 

A numerical solution to (3.1.1) may be derived 

considering the algorithms developed for the multivariate 

allocation in stratified surveys. Such algorithms allow one to 

find the unknown values 0 ( 1, 2, ...)hv h> =  which 

represent the solution of the following non linear problem 

Min ( )h h∑ ν  under the constraints ,h rh h rA A∑ ν ≤  where 

rhA  and ( 1, 2, ...)rA r =  are known positive quantities. 

Bethel (1989) invokes the Kuhn-Tucker theorem to show 

that there exists a solution to the above problem. He 

describes a simple algorithm and discusses its convergence 

properties. Chromy (1987) develops an algorithm, suitable 

for automated spreadsheets but without an explicit proof that 

always converges. A slight modification of the Chromy’s 

algorithm  –  able to solve the problem (3.1.1) guaranteeing 

the inequalities 0 1 ( 1, ..., )k k N′< π ≤ =  are respected  –

is described herein in the following. After the Initialization, 

the algorithm finds the k
′π  values by iterating the two actions 

of Calculus and Check. As far as the convergence issue is 

concerned, it is worthwhile to note that the Chromy’s 

algorithm have been mostly used for stratified sampling 

design, and indeed, the documentation refers to stratified 

samples. In the applied sampling literature, there is a lot of 

empirical proofs of the successful use of the algorithm in this 

sampling context. Let us note that the modification of the 

Chromy’s algorithm, herein proposed, treats the sampling 

units as strata and the resulting allocation, being fractional, 

defines the inclusion probabilities. Also in this case there is 

no formal proof that the proposed modified algorithm 

converges. Nevertheless, in all the different empirical 

experiments developed by the authors the algorithm has 

always converged and no critical conditions have been 

encountered.   
Initialization: at initial iteration ( 0),τ =  set 1k

τγ =  

( 1, ..., ).k N=  

Calculus: the generic iteration ( 1, 2, ...)τ =  consists of a 

sequence of steps denoted with (0, 1, 2, ...).u =   
• At initial step ( 0),u =  set , 1u

bd r

τ φ =  and calculate 

2

0 , .bd r bd r k k

k U

NV
N Q

τ τ

∈

= η γ
− ∑  

• At subsequent steps ( 1, 2, ...),u =  calculate the values 

of the following equations 

,

1/ 2

, 2

,

1 1 1

(1 ) .
b

u

k

MB R
u

k k bd r bd r k

b d r

N
N Q

τ

τ τ τ

= = =

π =

 
− γ + γ φ η − 

∑∑∑
 
(3.1.2)

 

, 2

,,
1 ,

u

bd r bd r k ku
k U k

NV
N Q

τ τ
τ

∈

= η γ
− π∑  

and (3.1.3) 
, ,

0 .
u u

bd r bd r bd rV V Vτ τ τ′ = +  

• If the following two conditions: 

,u
bd r bd rV Vτ ′ ≤  and , ,( ) 0,u u

bd r bd r bd rV Vτ τ ′φ − =  (3.1.4) 

 are respected (for all 1, ..., ; 1, ..., ;bb B d M r= = =  
1, ..., )R  then the action of Calculus stops and the inclu-

sion probabilities k
τπ  are those calculated in equation 

(3.1.2). Otherwise, the updated quantities , 1u
bd r

τ + φ  are 

computed 

, 1 , , , 2[ /( )]u u u u
bd r bd r bd r bd r bd rV V Vτ + τ τ τ τ′φ = φ −  (3.1.5) 

 and the equations (3.1.2) and (3.1.3) are calculated at 

1,u +  over and over again with , 1u
bd r

τ + φ  replacing 
,u
bd r
τ φ  until conditions (3.1.4) are respected. 

 

Check: if the condition 1k
τπ ≤  is true for all ,k  then the 

algorithm stops and the k
′π  values are set equal to k

′π =  
.k

τπ  Otherwise the k
τγ  values are updated as 1 1k

τ+ γ =  if 

1τ
kπ ≤  and 1 0k

τ+ γ =  if 1.τ
kπ >  The calculus is iterated 

at 1τ +  with 1
k

τ+ γ  replacing .k
τγ  A SAS macro that 

allows one to solve the problem (3.1.1) has been developed 

by the authors of this paper and may be released on demand. 
 
3.2 Second step: Calibration  
The quantities bdn  are defined, first, by rounding the 

results of the Q  sums, ( 1, ..., ; 1, ..., ).
bdk U k bb B d M∈∑ ′π = =  

Sometimes a further data manipulation could be necessary 

in order to assure the condition 1
bM

d bdn n=∑ =  for each .b  

The probabilities kπ  are then obtained as solution of 

calibration problem  

Min ( ; )

,

( 1, , ; 1, , 1),

bd

k k
k U

k k bd
k U k U

b

G

n n

b = … B  d = … M

∈

∈ ∈

  ′π π   


 π = π =



−

∑

∑ ∑
 (3.2.1) 

where, ( ; )k kG ′π π  is a distance function between kπ  and 

.k′π  Note that (3.2.1) may be solved by the well known 

Iterative Proportional Fitting algorithm (Bishop, Fienberg 

and Holland 1975) or the Generalized Iterative Propor-

tional Fitting algorithm (GIPF; Dykstra and Wollan 1987) 
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procedures. The logarithmic distance function ( ; )k kG ′π π =  
ln( / )k k k

′π π π − ( )k k
′π + π  avoids to define the kπ  proba-

bilities lower than 0, while GIPF prevents to obtain kπ  

values larger than 1. 
 
3.3 A simplified allocation rule  
In many real survey contexts in which the overall sample 

size n  is fixed and there is not enough information to obtain 

good predictions 2
,

ˆ
bd r kη  of the 2

,bd r kη  values, the following 

procedure may be implemented. Firstly the marginal sample 

sizes bdn  are determined by a quite simple rule  

( / ) (1 ) / ,bd b bd b bn n N N n M= α + − α  (3.3.1) 

being (0 1)b bα ≤ α ≤  a fixed constant which have to be 

properly defined. The (3.3.1) turns out to be a compromise 

between the allocation proportional to population size 

( 1)bα =  and the allocation uniform for each domain of a 

given partition ( 0).bα =  

The probabilities kπ  are then obtained as solution of the 

calibration problem (3.2.1) where the marginal sample sizes 

are computed as above indicated and the initial probabilities 

k
′π  are set uniformly equal to / .k n N′π =  The resulting 

inclusion probabilities are no more optimal, in the sense 

above described and do not guarantee that the sampling 

variances are lower than prefixed level of precision 

thresholds. However they are computed with a reasonable 

procedure, which may be fairly implemented and thus 

representing an interesting point of reference with respect to 

any real survey context. 

 
4. The anticipated variance  

A frequently used criterion for planning the sampling 

strategies is that of controlling the anticipated variance, 

which may be defined as: 

2
, greg , , greg ,
ˆ ˆ ˆ ˆAV( | ) ( | ) .bd r ht m p bd r bd r htt t t E E t t t t= = − =z z z z  (4.1) 

The following result may be derived under the 

assumptions of the model (2.2.4) and using the results given 

in section (2.5): 

, greg ,

*

, greg ,

2

,

2

,

, ,

2

,

ˆ ˆAV( | )

ˆ ˆ( | )

1 1

1 1 ( )

12 1

1 1

bd

bd

bd r ht

m p bd r ht

m r k
kk U

k bd
kk U

r k k bd
kk U

a

bd r k
kk U

t t t

E V t t t

NE
N Q

N
N Q

N
N Q

N
N Q

∈

ε
∈

ε
∈

∈

=

≅ =

  = − ε  − π 
  ′− − π 

  ′− − ε  − π  
 = − η − π 

∑

∑

∑

∑

z z

z z

z

z

z B

z B

 

(4.2)

 

being 

2 2 2 2

( )2

, 2 2

(1 ) if

otherwise

bd

bd

r k kk r kj j bd
j k Ua

bd r k

r kj k
j U

c g g c k U

g c

≠ ∈

∈

σ − + σ ∈


η = 
σ



∑

∑
, 

where: 1 1 1
1( , ..., , ..., ) ( ) ,k kj kN k k U U U U Ug g g − − −′ ′ ′ ′= =g z Z Ω Z Z Ω  

{ }
1

col ,
N

U k k=
′=Z z { }1

1
diag 1/ 1 .

N

U k k

−
== π −Ω  The expression 

(4.2) has been derived using the following two results  

2

,

2 1 1 1 1 1 1

2 2 2

, ,

1 1 1

, ,1 1 , ,

2
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m k bd

r k U U U U U bd r U U U U U k

r k bd r k r kj k
j U

m r k k bd

k U U U U U m

r k N r bd r kbd k r N bd N

r kk k bd k

E

V g c

E

E

g c

ε

− − − − − −

∈

ε

− − −

′

′ ′ ′ ′= σ

′= σ =σ

′ε

′ ′ ′=

′ε ε δ ε δ ε δ

= σ δ

∑

z

z

z B

z Z Ω Z Z Ω VΩ Z Z Ω Z z

g g

z B

z Z Ω Z Z Ω

I

 

where 1diag{ } ,N

bd r k bd k kc == δV  and 1diag{1} .N

N k==I   

The result (4.2) shows that it is possible to define a 

sampling strategy which aims at controlling the anticipated 

variances. Indeed, if the quantities 2
,

a
bd r kη  (or their proper 

predictions 2
,

ˆ )a
bd r kη  are used as a replacement for the 

residuals 2
, ,bd r kη  the problem (3.1.1) defines a sampling 

design which allows one to guarantee the following condi-

tions , greg ,
ˆ ˆAV( | )bd r ht bd rt t t V= ≤z z ( 1, ..., ; 1, ...,b B d= =  

; 1, ..., ).bM r R=  

An interesting result is the following. In the special case 

of a single partition, if the inclusion probabilities, ,kπ  and 

the heteroschedastic factors, ,kc  are quite constant in each 

domain, then the selection of a balanced sample decreases 

the anticipated variance. This result is demonstrated in 

Falorsi and Righi (2008).   

 
5. Brief extension to the case of a simple small 

        area indirect estimator  
If a given population partition defines a too large number 

of domains, it could happen that the budget constraints 

oblige to define a too large prefixed sampling errors of the 

direct estimators of the domains of the partition; in this 

situation, it could be necessary to adopt an indirect small-

area estimator, in order to control the mean square errors of 

partition domain estimates. Herein in the following we will 

show as the sampling strategy, described in sections 2 and 3, 

may be extended to the case of a simple small area indirect 

estimator. Let us consider the enough general case in which 
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the vector kx  of the auxiliary covariates has an intercept, 

such as .k sbd bd kN w∈∑=  

Let bɺɺ  denote the partition for which it is necessary to 

adopt a small area indirect estimator and let us consider the 

model (7.1.1) described in Rao (2005, page 116). In the 

herein studied context, the model for direct estimator, 

, greg , greg
ˆ ˆ / ,r rbd bd bd
t t N=ɺɺ ɺɺ ɺɺ  of the bdɺɺ domain may be defined as 

, greg
ˆ

( 1, ..., ; 1, ..., )

r r r rbd bd bd bd bd

b

t h v u

d M r R

′= + +

= =

a φɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ  (5.1)
 

where 
bd
aɺɺ  is a 1p ×  vector of area level covariates, rφ  is 

an unknown 1p ×  vector of regression coefficients, 
bd
hɺɺ  is 

a known quantity related to the thbdɺɺ  domain, rbd
vɺɺ ∼  

2iid(0, )rb νσɺɺ  independent of the sampling error rbd
uɺɺ ∼  ap-

proximately 2ind(0, ),rtbd
σɺɺ  being 2

, greg ,
ˆ ˆ( |rt p r htbd bd

V t tσ = =zɺɺ ɺɺ  
2) / .
bd

t Nz ɺɺ  For known 
2

rb νσɺɺ  and 2

rtbd
σɺɺ  values, the BLUP 

estimator of rbd
tɺɺ  is  

, blup , greg
ˆˆ ˆ( (1 ) )r r r r rbd bd bd bd bd bd

t N t ′= γ + − γ a φɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.2) 

being  

2 2 2 2 2/( )r r rt rbd b bd bd b bd
h hν νγ = σ σ + σɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.3) 

and 

1

2 2 2

1

2 2 2

,greg
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ˆ ( )

ˆ ( )

b

b

M

rt rbd bd bd b bd
d

M

r rt rbl bl bd b bd
l

h

t h

−

ν
=

ν
=

 
′= σ + σ 

 

 
σ + σ 

 

∑

∑

φ a a

a

ɺɺ

ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.4)

 

The MSE of the BLUP estimator  is  

2 2 2

, blup

1

2 2 2

1

ˆMSE( ) (1 )

( ) .
b

r r rt rbd bd bd bd bd

M

rt rbd bd bd bd b bd bd
d

t N

h

−

ν
=


= γ σ + − γ



 
′ ′ σ + σ     

∑a a a a
ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

 

(5.5)

 

Looking at expressions (5.3) and (5.5), it is possible to 

note that for a given values of the variance 2 ,rb νσɺɺ  it is 

possible to control the , blup
ˆMSE( )rbd
tɺɺ  in planning the 

sampling design, by defining a proper value of the variance 
2 .rtbd

σɺɺ  The following iterative procedure finds the k
′π  

inclusion probabilities which guarantee the minimum sam-

ple size and assure the respects of the following constraints: 

, greg ,
ˆ ˆ( | )p bd r ht bd rV t t t V= ≤z z  (for ;b b d≠ =ɺɺ 1, ..., ;bM  

1, ..., )r R=  and , blup
ˆMSE( ) (r rbd bd
t V d≤ =ɺɺ ɺɺ 1, ..., ;

b
M ɺɺ  

1,..., ).r R=  
 
Initialization: at initial iteration ( 0)j =  find the j

k
′π  

inclusion probabilities, solution of the problem (3.1.1), 

using the constraints , greg ,
ˆ ˆ( | )p r ht bd rbd

V t t t V= ≤z zɺɺ  (for 

1, ..., ;b B= 1, ..., ; 1, ..., ).bd M r R= =  
 
Iteration: the generic iteration ( 1, 2, ...)j =  is articulated as 

follows.  
• Calculate 2 2 1[ / ( ( ))] [(1/ )j j

k Urt kbdbd
N N N Q −

∈∑σ = − π −ɺɺɺɺ  
2

,1] r kbd
ηɺɺ ( 1, ..., ; 1, ..., ).

b
d M r R= =ɺɺ  

• Calculate j

rbd
γɺɺ  and , blup

ˆMSE( )j
rbd
tɺɺ ( 1, ..., ;

b
d M= ɺɺ  

r = 1, ..., )R  respectively by means of equation (5.3) 

and (5.5) by using the sampling variances 2j

rtbd
σɺɺ  instead 

of 2 .rtbd
σɺɺ  

• Calculate 2 2
, blup
ˆeff MSE( ) /( ).j j j

r r rtbd bdbd bd
t N= σɺɺ ɺɺɺɺ ɺɺ  

• Find the j

k
′π  inclusion probabilities, solution of the 

problem (3.1.1), using the 2 2

, , eff (j j

r k r k rbd bd bd
dη = η =ɺɺ ɺɺ ɺɺ  

1, ..., ; 1, ..., ; 1, ..., )
b

M r R k N= =ɺɺ  as replacement 

for the 2
,r kbd

ηɺɺ  values.  
Check: if the following condition is satisfied, for a small 

quantity 1, | ,j j
k U k kv v−
∈∑ | π − π ≤  then the algorithm 

stops and the inclusion probabilities k
′π  are those calculated 

at iteration .j  Otherwise, the iteration is calculated over and 

over again until the above condition is respected. 

 
6. Empirical analysis  

In order to verify the empirical properties of the proposed 

sampling strategy, two experiments have been implemented. 

Both experiments have showed good performances of the 

proposed strategy. The first experiment, on artificial data, is 

described in Falorsi and Righi (2008); the whole sampling 

strategy proposed in section 2 is implemented including the 

sampling allocation described in sections 3.1 and 3.2. The 

second experiment, based on a simulation on real enterprise 

data, is described herein in the following.  

The analysis has been carried out on the 1999 population 

of the enterprises from 1 to 99 employees belonging to the 

Computer and related economic activities (2-digits of the 

NACE rev.1 classification. The data base used for the 

simulation study has N = 10,392 enterprises. The value 

added and labour cost are the variables of interest chosen in 

the simulation. The variable values are available for each 

unit in the population by an administrative data source. We 

consider two partitions: (DOM1) geographical region with 

20 marginal domains; (DOM2) Economic activity group (3-

digits of the NACE rev.1 classification with 6 different 

groups) by Size class (defined in terms of number of persons 

employed: 1 = 1 4;−  2 = 5 9;−  3 = 10 19;−  4 = 20 99)−  

with 24 marginal domains. Therefore, the overall number of 

marginal domains is 44, while the number of the cross-

classification strata is 480 but only 360 strata have one or 

more population units.  
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In this study n  is set equal to to 360. Five sampling 

designs have been considered, as reported in table 6.1. The 

first two benchmarking designs are two simple one-way 

stratification designs with simple random sampling without 

replacement in each stratum. The first design herein referred 

as STDOM1 is stratified by partition 1 and the second one, 

STDOM2, is stratified by partition 2. The marginal sample 

sizes for STDOM1 have been defined by (3.3.1). The 

parameter 1α  and the related marginal sample sizes 1dn  

( 1, ..., 20)d =  guarantee the percent Coefficient of 

Variation (CV) of the Horvitz-Thompson estimates of totals 

of the auxiliary variable number of employers be lower than 

than 34.5% for all domain of the partition 1. Analougsly, the 

parameter value 2α  has been defined by means of (3.3.1), 

assuring that, with the STDOM2 sample design, the percent 

CV of the Horvitz-Thompson estimates of totals of the 

auxiliary variable are lower than 8.7% for all the domains of 

the partition 2. In the following we refer to the domains with 

the planned sample size greater than the sample size 

deriving from an allocation rule with 1 ( 1, 2)b bα = =  as 

small domains. These domains need to be oversampled to 

bound the sampling errors (Marker 2001). 

We note that the above allocation rules are straight-

forward to implement in any real survey contexts. Two 

balanced sample designs are examined respecting the 

marginal sample sizes defined by STDOM1 for the first 

partition and by STDOM2 for the second one: the BAL 

design consider the balancing equations (2.2.2) with the 

specification (2.3.2) of the kz  vector; the BALPOP samples 

satisfy (or approximately satisfy) the following balancing 

equations k s k bd k k bdn∈∑ π δ π =  and k s bd k k∈∑ δ π =  

bdN ( 1, ..., ; 1, ..., ).bb B d M= =  The probabilities kπ  of 

both designs have been obtained with the simplified proce-

dure described in section 3.3. Furthermore, the comparison 

has been completed considering a coordinated design 

(referred as CPAR) selecting a single sample for each 

marginal population with Pareto Sampling (Särndal and 

Lundström 2005) and assuring the maximum overlap of the 

two samples. The marginal sample sizes, respectively 

defined by the STDOM1 and STDOM2 designs, are 

satisfied only as expectation over repeated sampling in the 

CPAR design; the inclusion probabilities are computed with 

the iterative procedure described in Falorsi et al. (2006). 

Five hundred Monte Carlo samples have been selected for 

each sampling design.  

For each sample, the estimates of the domain totals have 

been computed by the Horvitz-Thompson (HT) estimator, 

modified GREG (greg) estimator and synthetic (syn) esti-

mator, expressed as ,syn ,
ˆ .

bdk Ubd r r kt y∈∑= ɶ  As far as the esti-

mators using auxiliary information are concerned, two 

simple homoschedastic linear models have been imple-

mented: the model (6.1) uses 10 auxiliary variables, six of 

them are the economic activity group membership indica-

tors, and the remaining four are the size class membership 

indicators; the model (6.2) uses the 44 domain membership 

indicator variables. The linear model (6.1) is expressed by 

( )m k h jE y = β + β  for ,h jk U U∈ ∩  (6.1) 

where hU  is the population of enterprises of th (h h =  
1, ..., 6)  economic activity group and jU  is the population 

of enterprises of th ( 1, ..., 4)j j =  size class of the number 

of employers and hβ  and jβ  are the fixed effects of the thh  

economic activity group and of the thj  size class. 

The linear model (6.2) is 

1 2( )m k d dE y = β + β  for 1 2 ,d dk U U∈ ∩  (6.2) 

where 1dβ  and 2dβ  are the separate domain-specific effects.  

 
Table 6.1 
Sampling design used in the simulation study 
 

Sampling Design Abbreviation 

Stratified by Partition 1 with SRSWOR* in 

each stratum 

   STDOM1 

Stratified by Partition 2 with SRSWOR* in 

each stratum 

   STDOM2 

Balanced sampling on the marginal sample 

sizes and on population sizes  

   BALPOP 

Balanced sampling on the marginal sample 

sizes  

   BAL 

Coordinated Pareto sampling     CPAR 

*SRSWOR: Simple Random Sampling Without Replacement 

 
We point out that the main aim of the experiment is to 

compare different sampling designs using the same 

estimator. In this context, the choice of the best model does 

not represent a central issue; hence, we have considered two 

quite general feasible models that can be implemented in all 

situations of planned domains. The model (6.1) is somewhat 

more reliable, since the estimates of the regression 

parameters are based on large sample sizes; while in model 

(6.2) it is possible to evaluate the effect of planning the 

domain sample sizes, although the estimates of each 

regression parameter are based on small sample sizes. Using 

the model (6.2) the syn and the greg estimators give 

identical results. In the following each sampling strategy is 

indicated in short by the couple (dis, est), where dis 

indicates one of the 5 sample designs referred in table 6.1 

and est assumes the categories HT, syn, and greg above 

indicated. 

In the following the analysis is based on the set of small 

domains. Two quality measures have been computed: the 

average Absolute mean Relative Bias (ARB)  and the 

average Relative Mean Square Error (RMSE)  expressed 

by 
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500
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1 1
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bd r bd r bd r
bd F i

t t t
F ∈ =

=

 − × ∑ ∑
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1
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F

i

bd r bd r bd r
bd F i

t t t
F ∈ =

=

 
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 
∑ ∑

 

denoting with: F  a specific subset of the marginal 

domains; card( )F  the cardinality of ,est
ˆ; (dis)i

bd rF t  the thi  

Monte Carlo sample estimate ( 1, ..., 500)i =  of the total 

bd rt  in the strategy (dis, est). In particular, F  represents 

alternatively the subset of small domains of DOM1, DOM2 

or the overall set of small domains (of both DOM1 and 

DOM2). 

The Monte Carlo simulation study highlights that the 

multi-way stratification techniques proposed in this paper 

are able to take bias and variability under control with 

respect to two benchmark strategies (STDOM1 and 

STDOM2) collapsing one of the two stratification variables. 

The main results of the experiment referred to the small 

domains set are shown in table 6.2. The table is organised in 

four blocks: the first one illustrates the quality measures of 

the HT estimator; the second and third block are dedicated 

respectively to the syn and greg estimators based on 10 

auxiliary variables (model (6.1)); the forth block presents 

the results of syn or greg estimators based on the 44 domain 

membership indicator variables (model (6.2)). We restrict 

the comments only on the value added variable, but similar 

consideration could be expressed for the labour cost 

variable. In general, the comments are referred to the overall 

set of small domains.  

Examining firstly the HT estimator, we observe the 

following.  
• The two benchmark designs (STDOM1 and STDOM2) 

have an RMSE  value for the unplanned domains equal 

to 148.28% and 107.49% respectively. These values 

cause the large RMSE  values computed for the overall 

set of small domains and respectively equal to 102.74% 

and 55.23%. 

• The STDOM2 shows better results than those attained 

by STDOM1. This finding is explained by the fact that 

the STDOM2 stratification criterion is correlated with 

the variables of interest and takes under control a larger 

number of small domains than the STDOM1 

stratification. 

• As far as the overall set of small domains, the BALPOP 

is the more efficient design, both in terms of ARB  

(1.06%) and RMSE  (32.58%), even if BAL is only 

slightly worse.  

• The strategy adopting the coordinated sampling shows 

worse values with respect to balanced sampling but it 

performs better in terms of RMSE  than benchmark 

strategies.  

Considering the synthetic estimator based on 10 auxiliary 

variables, some issues may be pointed out. 

• All designs are characterized by a large bias. The 

STDOM1 has an ARB  equal to 13.99% (although it 

has an unacceptable RMSE  that is equal to 65.16%). 

The rest of the designs have the ARB  values higher 

than 18%. This evidence gives a warning against the 

use of synthetic estimator.  

• The STDOM2 design has the lowest RMSE  (26.16%), 

because of a strong reduction of the DOM1 variance. 

However, the ARB  value (20.34%) is the largest than 

all designs. 

• The behaviour of balanced and coordinated designs in 

terms of  bias and variance are more or less equal. The 

BAL has the lowest ARB  (18.33%) and RMSE  

(31.61%) values. 

The experimental results of the greg estimator suggest 

some considerations. 

• All the designs show strong improvements of the 

quality measures. In general, the ARB  measure has a 

remarkable reduction with respect to the same indicator 

computed on the synthetic estimator. Only the 

STDOM1 still presents a high ARB  value (7.40%). 

• In the STDOM2, the reduction of the bias is more than 

compensated from the increase of the variability. This 

produces an RMSE  equal to 34.05%. 

• Both the balanced and the coordinated designs have 

good performances, though the balanced designs are 

slightly better being the RMSE  roughly equal to the 

23%.   
Finally in the fourth block we note that the syn or greg 

estimator based on 44 auxiliary variables show analogous 

results to those of the greg estimator based on 10 auxiliary 

variables. The balanced designs are the best with slight 

preference for the BALPOP sampling.  

As general findings, the balanced designs seem to 

guarantee a good strategy to take under control bias and 

variance of the overall set of the small domains.  

The conclusion is that for all blocks, BALPOP generally 

shows the best overall performance with respect to bias and 

accuracy. The strategy based on the BALPOP sample 

design coupled with the greg estimator with the ten auxiliary 

variables (block 3) is a safe choice for both value added and 

labour cost. The BAL design performs well too. Moreover, 

the results show that the synthetic estimator of block 2 must 

be considered carefully because the bias can be unex-

pectedly large and the squared bias would be the dominating 

part of the RMSE. 
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Table 6.2 
Average Absolute Relative Bias (ARB)  and Relative Mean Square Error (RMSE)  of small domain sampling strategies 

 

Value Added Labour Cost 

DOM1 DOM2 Overall DOM1 DOM2 Overall 
Sampling 

Design 
ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  

  Horvitz-Thompson estimator (block 1) 

STDOM1 1.79 43.19 8.18 148.28 5.41 102.74 1.72 42.82 6.86 155.87 4.63 106.88 

STDOM2 3.42 107.49 0.47 15.26 1.75 55.23 3.32 105.66 0.46 12.66 1.70 52.96 

BALPOP 0.77 24.86 1.29 38.49 1.06 32.58 0.74 23.60 1.20 34.26 1.00 29.64 

BAL 0.84 25.43 1.45 40.61 1.19 34.03 0.79 24.22 1.57 35.80 1.23 30.78 

CPAR 1.35 32.52 2.18 53.85 2.18 44.60 1.44 31.68 2.62 51.44 2.11 42.88 

 Synthetic estimator with 10 auxiliary variables (block 2) 

STDOM1 14.22 18.88 13.81 100.55 13.99 65.16 12.29 18.40 9.25 95.03 10.57 61.83 

STDOM2 24.82 33.96 14.48 15.96 20.34 26.16 13.13 14.79 12.46 23.11 12.75 19.51 

BALPOP 13.68 17.51 24.98 43.98 20.09 32.51 11.89 15.60 12.35 33.08 12.15 25.50 

BAL 14.92 18.46 21.82 41.66 18.83 31.61 13.37 16.91 10.41 32.64 11.69 25.82 

CPAR 13.68 17.83 23.45 44.63 19.22 33.02 11.82 16.13 11.69 34.93 11.75 26.78 

 Modified GREG estimator with 10 auxiliary variables (block 3) 

STDOM1 2.35 30.13 11.26 119.95 7.40 81.03 1.86 29.28 11.79 119.23 7.49 80.25 

STDOM2 3.98 58.62 0.95 15.26 2.26 34.05 2.90 52.66 0.93 12.66 1.78 29.99 

BALPOP 1.11 19.41 2.20 25.80 1.73 23.03 1.01 16.42 1.99 21.73 1.57 19.43 

BAL 1.63 19.41 1.76 26.11 1.70 23.21 1.21 16.72 2.08 21.96 1.70 19.69 

CPAR 1.04 21.27 1.63 29.30 1.37 25.82 1.03 18.27 1.11 24.60 1.08 21.86 

 Synthetic or Modified GREG estimator with 44 auxiliary variables (block 4) 

STDOM1 3.39 31.30 27.48 63.22 17.04 49.39 2.76 30.80 28.67 63.05 17.44 49.08 

STDOM2 17.24 102.24 1.37 20.65 8.25 56.00 23.00 102.64 1.42 19.10 10.77 55.30 

BALPOP 1.07 20.71 1.97 26.98 1.58 24.26 1.08 17.62 1.93 24.07 1.56 21.27 

BAL 1.47 20.36 2.13 28.46 1.84 24.95 1.41 17.66 2.02 25.10 1.75 21.88 

CPAR 1.79 23.38 2.22 32.39 2.03 28.48 1.65 20.73 2.08 30.39 1.90 26.21 

 

 

7. Conclusions  

 
This work illustrates an efficient sampling strategy useful 

for obtaining planned sample size for domains belonging to 

different partitions of the population and in order to 

guarantee that sampling errors of domain estimates are 

lower than given thresholds. The sampling strategy, that 

covers the multivariate-multi-domain case, is useful when 

the overall sample size is bounded. In these instances the 

standard solution, using a stratified sample with the strata 

given by the cross-classification of variables defining the 

different partitions, is not feasible since the number of strata 

is larger than the overall sample size.  

The sampling strategy which is proposed is based on the 

use of the balanced sampling selection technique and on a 

GREG-type estimator. The proposal may be easily extended 

to a strategy employing the use of both direct and indirect 

small area estimators. 

The easy feasibility is one of the main advantages of the 

proposed solution since it is implemented by algorithms that 

are either based on free software tools or suitable for 

automated spreadsheets. But some other interesting aspects 

seem to appear. 

The empirical analysis of real enterprise data shows good 

performances of the proposed strategy, which seems to be 

robust even when departing from ideal conditions (i.e., the 

estimates appear to be of high quality even when the 

inclusion probabilities of the sample differ from the optimal 

ones). These results encourage additional work to give a 

systematic account of conditions under which the proposed 

method will have good performance. 

Furthermore, the proposed strategy does seems to work 

well for large datasets, in terms of computer time, and 

therefore it seems to be suitable for large scale surveys. 

Finally, the approach represents an original overall small 

area sampling strategy, which jointly considers the sampling 

design and the estimator. The paper deeply analyzes the 

design issues, but more research is needed to study more 

carefully the estimation issues. In particular, future research 

should be focused on the improvement of the model-based 
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or model-assisted estimators due to the presence of sample 

units in each estimation domain, allowing the use of models 

with specific small area effects and giving more accurate 

estimates of the parameters of interest at small area level. 

These aspects seem to be an appealing strength to be 

investigated. 
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