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Generalized framework for defining the optimal inclusion 
probabilities of one-stage sampling designs for multivariate 

and multi-domain surveys 

Piero Demetrio Falorsi and Paolo Righi1 

Abstract 

This paper introduces a general framework for deriving the optimal inclusion probabilities for a variety of 
survey contexts in which disseminating survey estimates of pre-established accuracy for a multiplicity of both 
variables and domains of interest is required. The framework can define either standard stratified or incomplete 
stratified sampling designs. The optimal inclusion probabilities are obtained by minimizing costs through an 
algorithm that guarantees the bounding of sampling errors at the domains level, assuming that the domain 
membership variables are available in the sampling frame. The target variables are unknown, but can be 
predicted with suitable super-population models. The algorithm takes properly into account this model 
uncertainty. Some experiments based on real data show the empirical properties of the algorithm. 

 
Key Words: Optimal Allocation; Multi-way stratification; Domain estimates; Balanced Sampling. 

 
 

1  Introduction 
 

Surveys conducted in the context official statistics commonly produce a large number of estimates 
relating to both different parameters of interest and highly detailed estimation domains. When the domain 
indicator variables are available for each sampling unit in the sampling frame, the survey sampling 
designer could attempt to select a sample in which the size for each domain is fixed. Thus, direct estimates 
can be obtained for each domain and sampling errors at the domain level would be controlled. We hereby 
present a unified and general framework for defining the optimal inclusion probabilities for uni-stage 
sampling designs when the domain membership variables are known at the design stage. This case may be 
the most recurrent scenario in establishment surveys and other survey contexts, such as agricultural 
surveys or social surveys if the domains are geographical (e.g., type of municipality, region, province, 
etc.). The growing development of data integration among administrative registers and survey frames may 
also increase the applicability of the approach presented herein in social surveys too. The proposal may be 
useful for planning an optimal second phase survey if, during the first phase, the domain membership 
variables have been collected.  

The problem of defining optimal sampling designs has been addressed in some recent papers. Gonzalez 
and Eltinge (2010) present an interesting overview of the approaches for defining optimal sampling 
strategies. The optimization problem is usually dealt with in stratified sampling designs with a fixed 
sample size in each stratum. The optimal allocation in stratified samplings for a univariate population is 
well-known in sampling literature (Cochran 1977). In multivariate cases, where more than one 
characteristic is to be measured on each sampled unit, the optimal allocation for individual characteristics 
is of little practical use unless the various characteristics under study are highly correlated. This is because 
an allocation which is optimal for one characteristic is generally far from being optimal for others. The 
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multidimensionality of the problem leads to definition of a compromise allocation method (Khan, Mati 
and Ahsan 2010) with a loss of precision compared to the individual optimal allocations. Several authors 
have discussed various criteria for obtaining a feasible compromise allocation - see e.g., Kokan and Khan 
(1967), Chromy (1987), Bethel (1989), Falorsi and Righi (2008), Falorsi, Orsini and Righi (2006) and 
Choudhry, Rao and Hidiroglou (2012). 

Recently, some papers have focused on finding optimal inclusion probabilities in balanced sampling 
(Tillé and Favre 2005; Chauvet, Bonnéry and Deville 2011), a general class of sampling designs that 
includes stratified sampling designs as special cases. In particular, Chauvet et al. (2011) propose the 
adoption of the fixed point algorithm for defining the optimal inclusion probabilities. Nevertheless, the 
above mentioned papers do not address the case in which the balancing variables depend on the inclusion 
probabilities and present only a partial solution to the problem related to the fact that the sampling 
variance is an implicit function of the inclusion probabilities. Choudhry et al. (2012) propose an optimal 
allocation algorithm for domain estimates in stratified sampling (if the estimation domains do not cut 
across the strata). Their algorithm represents a special case of the approach proposed herein. The 
methodological setting illustrated here is a substantial improvement with respect to the earlier version of 
the methodology described in Falorsi and Righi (2008) which only accounted for the case in which the 
values of the variables of interest were known and the measure of accuracy was expressed by the design 
variance; furthermore, the previous version did not consider the fact that the design variance, bounded in 
the optimization problem, is an implicit function of the inclusion probabilities. This paper studies the more 
realistic case in which the variables of interest are not known and must be estimated. Moreover, it 
explicitly deals with the problem that the anticipated variances are implicit functions of the inclusion 
probabilities. The new optimization algorithm can be easily performed because it is based on a general 
decomposition of the measure of accuracy. A general sampling design which includes most of the one-
stage sampling designs adopted in actual surveys is proposed, e.g., Simple Random Sampling Without 
Replacement (SRSWOR), Stratified SRSWOR, Stratified PPS, Designs with incomplete stratification, etc. 
The framework is based on a joint use of balanced sampling designs (Deville and Tillé 2004) which, 
depending upon the different definitions of the balancing equations, represents a wide-ranging sampling 
design and superpopulation models for predicting the unknown values of the variables of interest. The 
paper is structured as follows. Section 2 introduces definitions and notations. Section 3 and Section 4 
illustrate the sampling design and the Anticipated Variance. The algorithm for defining the optimal 
inclusion probabilities is described in Section 5. In Section 6, some experiments based on real business 
data show the empirical properties of the algorithm. The conclusions are given in Section 7.  

 
2  Definitions and notation 
 

In this section, we introduce the concepts of estimation domain and planned domain which play a key 
role in the framework presented herein.  

Let U  be the reference population of N  elements and let  1, ,dU d D   be an estimation 

domain, i.e., a generic sub-population of U  with dN  elements, for which separate estimates must be 

calculated. Let rky  denote the value of the thr   1, ,r R   variable of interest attached to the thk  

population unit and let dk  denote the domain membership indicator for unit k  defined as 
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1 if 

.
0 otherwise

d
dk

k U  


 (2.1) 

We assume that the dk  values are available in the sampling frame and more than one value dk  

 1, ,d D   can be 1 for each unit ;k  therefore, the estimation domains can overlap. 

The parameters of interest are the D R  domain totals 

    1, , ; 1, , .dr rk dkk U
t y r R d D


       (2.2) 

Let  p   be a single-stage without replacement sampling design and  1 , , , ,k N
   π    be the 

N-vector of inclusion probabilities. Let s  be the sample selected with probability   .p s  Denote by hU  

 1, ,h H   the subpopulation of size 
h

h hkk U
N


   where 1 if hk hk U    and 0hk 

otherwise. 

We focus on fixed size sampling designs which are those satisfying 

 ,kk s
 δ n  (2.3) 

where  1 , , , ,k k hk Hk
   δ    and  1 , , , ,h Hn n n n    is the vector of integer numbers 

defining the sample sizes fixed at the design stage. Since the sample size ,hn  corresponding to ,hU  does 

not vary among sample selections, the subpopulation hU  will be referred to as a planned domain in the 

sequel. A necessary but not sufficient condition for ensuring that (2.3) is satisfied is that the vector π  is 

such that 

 .k kk U
  δ n  (2.4) 

In our setting, the planned domains can overlap; therefore, the unit k  may have more than one value 
1hk   (for 1, , ).h H   Let us suppose that the hk  values are known, and available in the sampling 

frame, for all population units. We suppose furthermore that the N H  matrix  1 , , , ,k N
δ δ δ   is 

non-singular.  

The planned domains and their relationship with the estimation domains play a central role in our 
generalized framework. We assume that the estimation domains may be defined as an aggregation of 
complete planned domains, which ensure that the expected sample size in the thd  estimation domain ,dU  

say ,dn  can be obtained as a simple aggregation of the expected sample sizes of the planned domains that 

are included within it. Finally, let  ˆ
drt  be the Horvitz-Thompson (HT) estimator of  drt  with 

  

1
ˆ .dr rk dkk s

k

t y


 
  (2.5) 

An example from business surveys. Suppose that the survey estimates must be calculated separately 
considering three domain types: region (with 20 modalities), economic activity (2 modalities: goods and 
services) and enterprise size (3 modalities: small, medium and large enterprises). That is, there are 
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20 2 3 25D      possible overlapping estimation domains. The planned domains can be defined 

with different options. 
 

Option 1. The single planned domain hU  is identified by a specific intersection of the categories of the 

estimation domains. In this case 20 2 3 120H      planned domains are defined. They 

represent a specific partition of .U  The planned domains do not overlap and 1.hkh
δ   

Option 2. The planned domains hU  coincide with the estimation domains. Therefore, 25H D   and 

the k
δ  are defined as vectors with three 1’s, so that 3.hkh

δ   Recall that the planned 

domains overlap.  

Option 3. The planned domains hU  are defined as (i) region by economic activity and (ii) economic 

activity by enterprise size; then, (20 2) (2 3) 46H       with 2.hkh
δ   

 

Other intermediate relationships among estimation and planned domains are possible.  

It is emphasised that the planned domains represent the basis for defining broad classes of sampling 
designs. For instance, stratified sampling designs require that the planned domains do not overlap, 
as 1hkh

δ   and each hU  is referred to as a stratum. Therefore, Option 1 in the example above leads us 

to define a stratified sampling design. Furthermore, the strata defined as in Option 1 are the basis of the 
so-called “multi-way stratified sampling design” (Winkler 2001). 

If 1,hkh
   the sample sizes of the planned domains identified in Option 1 (strata) are not strictly 

controlled. Nevertheless, the sample sizes are still controlled at an aggregated level. In Option 2 of the 
example above, the sample sizes are controlled only for the estimation domains; while in Option 3, the 
sample sizes are controlled for the subsets of two different partitions, defined by (i) the region by 
economic activity and (ii) the economic activity by enterprise size. On the basis of the Winkler’s 
definition, we denote the designs using these types of planned domains as Incomplete multi-way 
Stratified Sampling (ISS) designs. 

 
3  Sampling 
 

Let kz  be a vector of auxiliary variables available for all .k U  A sampling design  p s  is said to 

be balanced on the auxiliary variables if and only if it satisfies the following balancing equations 

 k
kk s k U

k
 


 
z

z  (3.1) 

for each sample s  such that   0p s >  (Deville and Tillé 2004). Depending on the auxiliary variables and 

the inclusion probabilities, equation (3.1) can be exactly or approximately satisfied in each possible 
sample; therefore, a balanced sampling design does not always exist. By specifying 

 ,k k k z δ  (3.2) 

equations (3.1) become  
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 .k k kk s k U 
  δ δ  (3.3) 

In this case, the balancing equations state that the sample size achieved in each subpopulation hU  is 

equal to the expected size. In different contexts, Ernst (1989) and Deville and Tillé (2004; page 905 
Section 7.3), have proved that, (i) with the specification (3.2) and (ii) if the vector of the expected sample 
sizes, given by ,k kk U

 n δ  includes only integer numbers, then a balanced sampling design always 

exists. Specification (3.2) defines sampling designs that guarantee equation (2.4), upon which we wish to 
focus on. Deville and Tillé (2004, pages 895 and 905), Deville and Tillé (2005, page 577) and Tillé (2006, 
page 168) have shown that several customary sampling designs may be considered as special cases of 
balanced sampling, by properly defining the vectors π  and kδ  of equation (3.2). These issues are 

illustrated in Remark 4.2 and in Section 6. Balanced samples may be drawn by means of the Cube method 
(Deville and Tillé 2004). This strongly facilitates the sample selection of incomplete stratified sampling 
designs that overcome the computational drawbacks of methods based on linear programming algorithms 
(Lu and Sitter 2002). The Cube method satisfies (3.1) exactly when (3.2) holds and n  is a vector of 
integers. In the cases of SRSWOR and SSRSWOR, the standard sample selection methods can be used, as 
well as the Cube method. Deville and Tillé (2005) propose as approximation of the variance for the HT 
estimator, in the balanced sampling 

            
2 2ˆ 1 1p dr dr k dr kk U

E t t N N H


         (3.4) 

where pE  denotes the sampling expectation and  

  
    1 1 1dr k rk dk k k j j j rk dkj U

y y


        δ A π δ  (3.5) 

with 

    1 .j j j jj U
   A π δ δ  (3.6) 

Recently, the simulation results in Breidt and Chauvet (2011) confirm that equation (3.4) represents a 
good approximation of the sampling variance when the balanced equations are satisfied exactly. Variance 
estimation is studied in Deville and Tillé (2005). 

 
4  Anticipated variance 
 

Prior to sampling, the rky  values are not known and the variance expressed in formula (3.4) cannot be 

used for planning the sampling precision at the design phase. In practice, it is necessary to either obtain 
some proxy values or predict the rky  values based on superpopulation models that exploit auxiliary 

information. The increasing availability of auxiliary information (deriving by integration of administrative 
registers and survey frames) facilitates the use of predictions. Under a model-based inference, the rky  

values are assumed to be the realization of a superpopulation model .M  The model we study has the 

following form: 
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     2 2

;
  ,

0  ;  ;  , 0  
rk r k r rk

M rk M rk rk M rk rl

y f u

E u k E u E u u k l

 


      

x β
 (4.1) 

where kx  is a vector of predictors (available in the sampling frame), rβ  is a vector of regression 

coefficients and  ;r k rf x β  is a known function, rku  is the error term and  
ME   denotes the expectation 

under the model. The parameters rβ  and the variances 2
rk  are assumed to be known, although in practice 

they are usually estimated. The model (4.1) is variable-specific and different models for different variables 
may be used and this does not create additional difficulty. As a measure of uncertainty, we consider the 
Anticipated Variance (AV) (Isaki and Fuller 1982): 

        2ˆ ˆAV .dr M p dr drt E E t t   (4.2) 

A general expression for the AV  under linear models was derived by Nedyalkova and Tillé (2008). 
Their formulation is obtained by considering a linear function  

rf   and a unique set of auxiliary 

variables, ,kx  used for both the prediction of the y  values and for balancing the sample. In our context, 

we have introduced kx

 

and ,k k k z δ  highlighting that the auxiliary variables can be different for 

prediction and balancing. The variables kx  must be as predictive of rky  as possible, while the variables 

kz  play an instrumental role in controlling the sample sizes for sub-populations.  

In the context considered here, inserting the approximate variance (3.4) in the equation (4.2), we obtain 
the approximate expression of the AV :  

           2ˆAAV 1 1 ,dr k M dr kk U
t N N H E


      (4.3) 

where the terms  
2
dr k  in (3.4) are replaced by   2 .M dr kE   By defining 

  ; ,rk r k ry f x β  (4.4) 

the equation (4.3) may be reformulated as  

            
2 2 2 2

3

1
ˆAAV AAV ,dr rk rk dk rk rk dk drk U k U

k

t N N H y y
 

            
    (4.5) 

where the third variance component of   ˆAAV drt  is 

 
   

 
 

 
  

   
 

 
  

3AAV 1 2

1 2

dr k rk dk k dr kk U dr k

k dr k k dr kk U

a y a

b c





     

    





π π

π π


 (4.6) 

and  
  ,dr ka π  

 
dr kb π  and  

 
dr kc π  are real numbers defined respectively in equations (A1.4), (A1.7) 

and (A1.8) of Appendix A1. 
 

Remark 4.1. Expression (4.5) is a cumbersome formula but, for all practical purposes, calculations may 
be simplified by considering a slight upward approximation by setting  

 
 

  0dr k dr kb c π π  in (4.6). 

The proof is given in Appendix A3. An upward approximation is a safe choice in this setting, since it 
averts from the risk of defining an insufficient sample size for the expected accuracy. 
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Remark 4.2. The SSRSWOR design is obtained if the planned domains define a unique partition of 
population (Option 1 of the example in Section 2) and the model (4.1) is specified so that the predicted 
values are: rk rhy Y  with 2 2

rk rh    (for ).hk U  The AAV  becomes 

        2

1
ˆAAV 1 ,

d

D

dr rh h h hd h H
t N N H N N n

 
      (4.7) 

where dH  is the set of planned domains included in dU  (see Appendix A4). Note that the expression 

(4.7) agrees with the Result 2 of Nedyalkova and Tillé (2008), but for the term   .N N H  If 
      1 1 1h hN N H N N    the expression (4.7) would approximate the variance of the HT 

estimate in the SSRSWOR design. The above approximation is proved true when the number of domains 
H  remains small compared to the overall population size ,N  and when the domain sizes hN  are large.  

 
5  Determination of the optimal inclusion probabilities 
 

The vector of - values is determined by solving the following optimization problem: 

 

 

      

 

Min

ˆAAV 1, , ; 1, , ,

0 1 1, ,

k kk U

dr dr

k

c

t V d D r R

k N


 

   

    


 



 (5.1) 

where kc  is the cost for collecting information from unit k  and  drV  is a fixed variance threshold 

corresponding to  ˆ .drt  System (5.1) minimizes the expected cost ensuring that the anticipated variances 

are bounded and that the inclusion probabilities lie between 0 and 1. If all the kc  values are constants 

equal to 1, then the problem (5.1) minimizes the sample size. We note that in problem (5.1) the variances 
2
rk  in   ˆAAV drt  are treated as known; in practice they must be estimated. In Section 6, an empirical 

evaluation is conducted in order to study the sensitivity of the overall sample size with different estimated 
values of 2 .rk  

To solve (5.1), we rearrange the inequality constraints to obtain  

 
 

     

2 2
2 2

3AAV .rk rk dk
dr rk rk dk drk U k U

k

y N H
V y

N 

   
     

 


  (5.2) 

By fixing the values of  3AAV dr  appropriately, the optimization problem becomes a classical Linear 

Convex Separate Problem (LCSP; Boyd and Vanderberg 2004). Figure 5.1 depicts the flow chart of the 
algorithm (A prototype software implementing the algorithm is available at http://www.istat.it/it/ 
strumenti/metodi-e-software/software.), which is organized into two nested loops: the Outer Loop (OL) 
and the Inner Loop (IL). The two loops are updated according to a fixed point algorithm scheme. The 
convergence under some approximations is shown in Appendix A2.  



222 Falorsi and Righi: Generalized framework for defining the optimal inclusion probabilities 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Algorithm flowchart 

 
 
Initialization. At iteration 0   of the OL, set     0 0 ; 1, ,kπ k N    π   with 0 1.    A 

reasonable choice is 0.5.   At iteration 0   of the Inner Loop, set    0 . π π  Fix the N  
vector, ,ε  of small positive values. 

 

Outer loop 
 

 Fixing the values for the Inner Loop. In accordance with expressions (A1.4), (A1.7) and 
(A1.8) given in Appendix A1, the following real scalar values are computed 

  
         1

1 ,dr k k j rj dj jj U
a y π

  


  π δ A π δ   (5.3) 

  
         1 2 1 ,dr k k k rk dk kb

      π δ A π δ  (5.4) 

  
             21 12 2 1 .dr k k k j j rj dj j kj U

c
    


        π δ A π δ δ A π δ  (5.5) 

 Launch of the Inner Loop. The Inner Loop is executed until convergence. 

 Updating or exiting. If the vector  1 π  is such that    1 ,  π π ε  then the Outer Loop is 

iterated by updating the vector   π  with  1 . π  If    1 ,  π π ε  then the Outer Loop 

closes and   π  represents the optimal values solution to the problem of the system (5.1). 

Initialization: 
   0 00

k k
       

Close: 

Optimal 
 π π  

Exit IL: 
   1 π π

Outer loop: Fixed point 
 

 
  

 
  

 
  , ,dr dr dra b c   π π π π  

Inner Loop: Fixed point 
     

 3, AV dr
  π π  

LCSP 
Problem    15.7  π  

Exit OL: 
   1 π π  

YES 

NO 

NO 

  
 

       
   1  π π  

 
 
 

    
   1  π π       

 

       
   1 1  π π  

YES 
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Inner Loop 
 

 Fixing the values for the LCSP. The following values are computed: 

 

 
 

  
 

    
 

   
    

    
 

   
3AAV 1 2

1 2 .

dr k rk dk k dr kk U dr k

k dr k k dr kk U

a y a

b c

    


   


     

    



π π

π π


 (5.6) 

in accordance with expression (A1.7) in Appendix A1. 

 
 Solving the LCSP. Considering the 

 
 3AAVa
dr

  values as fixed, the  1 π  is obtained by 

solving, by a standard algorithm for a classical LCSP, the following optimization problem: 

 

  

 
       

 

   

1

2 2
2 2

31

1

Min

AAV .

0 1 1, ,

k kk U

rk rk dk
dr rk rk dk drk U k U

k

k

c

y N H
V y

N

k N





 









          

    



 






 (5.7) 

 Updating or exiting. If the vector  1 π  is such that    1 , π π ε>  then the Inner Loop 

is iterated by updating the vector   π  with  1 . π  If    1  π π ε  then the Inner Loop 

closes and the updated vector  1 π  for the Outer Loop is given by  1 . π  
 
Remark 5.1. The problem of the system (5.7) can be solved by the algorithm proposed in Falorsi and 
Righi (2008, Section 3.1) which represents a slight modification of Chromy’s algorithm (1987), originally 
developed for multivariate optimal allocation in SSRSWOR designs and implemented in standard 
software tools (see for example the Mauss-R software available at: http://www3.istat.it/strumenti/ 
metodi/software/campione/mauss_r/). Alternatively, the LCSP can be dealt with by the SAS procedure 
NLP as suggested by Choudhry et al. (2012). 
 

Remark 5.2. The algorithm distinguishes the  

k
   (updated in the Outer loop) from the  

k
   (updated 

in the Inner loop). The innovation of the proposed algorithm lies precisely in this peculiarity. If this 
distinction between the inclusion probabilities is not made, i.e., 

    , π π  we have observed in several 

experiments that the iterate solutions of the LCSP for each Outer Loop do not converge to a stationary 
point.  
 

Remark 5.3. After the optimization phase, in which the π  vector is defined as solution to problem of 

system (5.1), a calibration phase is performed (Falorsi and Righi 2008) to obtain calibrated inclusion 
probabilities, cal ,k  which modifies the optimal π  vector marginally in order to satisfy 

cal ,k kk U
  δ n  where n  is a vector of integer numbers. The use of the Generalized Iterative 

Proportional Fitting algorithm (Dykstra and Wollan 1987) ensures that all resulting calibrated inclusion 
probabilities are in the  0,1  interval. 
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6  Empirical evaluations 
 

Several simulations were carried out on real and simulated data sets to investigate the empirical 
properties of the proposed sampling strategy. Here, we show the results obtained for a single real data 
exercise, referred to the 1999 population of enterprises having a number of employed persons between 1 
and 99, and belonging to Computer and related economic activities (2-digits of the Statistical 
classification of economic activities in the European Community rev.1, abbreviated as NACE). Three 
experiments were performed. Experiment (a) checked whether the allocation obtained by the proposed 
algorithm converged towards the solution of the standard Chromy’s algorithm for the SSRSWOR design. 
Experiment (b) compared the sample sizes of the standard SSRSWOR design with the Incomplete 
Stratified Sampling (ISS) design, in which the cross-classified strata were unplanned subpopulations; this 
experiment studied the risk of statistical burden due to repeated selection on different survey occasions. 
Finally, Experiment (c) measured the discrepancies between the expected Coefficients of Variation (CV) 
computed by the algorithm and the empirical CV obtained by a Monte Carlo simulation.  

The kc  values were, in all three experiments, uniformly set equal to 1. The Anticipated Variance 

according to the approximation proposed in Remark 4.1 was also calculated. 

The population chosen for the experiments had a size of 10,392N   enterprises. The domains of 

interest identify two partitions of the target population: the geographical region, with 20 marginal 
domains (DOM1), and the economic activity group (3-digits of the NACE with 6 different groups) by size 
class (defined in terms of number of employed persons: 1 1 4; 2 5 9; 3 10 19;       

4 20 99 ,   with 24 marginal domains (DOM2). The overall number of marginal domains was 44, 

while the number of cross-classified or multi-way strata with a not-zero population size was 360. The 
modal value of the population size distribution is 1, and 29.17% of the cross-classified strata have at most 
2 units. This type of strata represents a critical issue in the context of standard stratified approaches. 
Indeed, for calculating unbiased variance estimates, these strata must be take-all strata (so that they do not 
contribute to the variance of the estimates), although the allocation rule would require fewer units and, in 
general, a non-integer number of sample units. The variables of interest were the labour cost and the value 
added, which are available for each population unit from an administrative data source. Typically both 
variables have highly skewed distributions.  

The target estimates for all the empirical studies are the 88 totals at the domain level (2 variables by 44 
marginal domains). In each experiment, the inclusion probabilities were determined by fixing the 

    20.1dr drV t  in (5.1), which is equivalent to fixing the maximum accepted level of the percent CV of 

the domain level estimates at 10%.  
 

Empirical study (a). The first experiment took into account the partition DOM1. These domains 
represented both planned domains and estimation domains. Since the planned domains defined a partition 
of the population of interest, they could also be considered as strata in the standard sampling designs. The 
predictive working model was given by  

 

 

     2 2

 1, , 20

,

0,   ;   , 0  

rk d rk d

M rk M rk rd d M rk rl

y u k U d

E u E u k U E u u k l

     


        


 (6.1) 
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where d  is a fixed effect and the superpopulation variances 2
rd  were estimated by means of the residual 

variance of the predictive model in each region. The algorithm proposed in Section 5 was performed using 
three different initial values of the inclusion probabilities ,  equal to 0.01, 0.50 and 0.99 respectively. 

The initial inclusion probability values had no impact on the final solution, although it was achieved with 
a different number of iterations. We note that the overall number of inner loops was 17 for 0.01.   The 
convergence was achieved with 13 inner loops for 0.50;   14 inner loops were needed for 0.99.   

However, after the ninth iteration, the three sampling sizes were quite similar (Figure 6.1). In the 
experiment, the overall sample sizes were 3,105 for the benchmark Chromy allocation and 3,110 for the 
method proposed here. However, the differences between the two sampling sizes at the domain level were 
fractional numbers that were always lower than 1, and with the absolute largest relative difference lower 
than 0.3%. This highlights that the proposed algorithm actually defines the same domain sampling sizes of 
those calculated by the benchmark allocation. With regards to convergence, the initial inclusion 
probability values have no impact on the final solution, although this is achieved with a different number 
of iterations. 

 
 

 

 

 

 

 

 

 

 
 
Figure 6.1 Convergence of the algorithm with different initial inclusion probabilities in the empirical study (a) 

 
Similar results were obtained if the domains of interests were identified by the partition DOM2.  

 

Empirical study (b). Let 
1dU  be a specific region  1 1, , 20d    of DOM1, and let 

2dU  (with 

2 1, , 24d    be a specific economic activity group by the enterprise size class of the partition DOM2. 

Two prediction models, 1M  and 2 ,M  were used. Referring to the notation of the ANOVA models, 1M  is 

the saturated model given by  
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 (6.2) 

in which 
1d  and 

2d  are the main effects, related to the domains 
1dU  and 

2dU  respectively and with 

 
1 2d d  as the interaction effect. The model variances  1 2

2
r d d  were estimated by means of the ordinary 
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least square method, by computing the variances of the residual terms at the 
1 2d dU U  level. Model 2M  

is identical to model 1M  without the interaction factor. Table 6.1 shows the goodness of fit of the two 

models.  
 
Table 6.1 
Goodness of fit of the models used for the prediction 
 

Model Goodness of fit 2%R  
Labour cost Value added 

Model 1M  (Expression 6.2) 68.1 64.1 
Model 2M  (Expression 6.2 without interactions) 65.1 61.0 

 

Three different allocations were considered for the SSRSWOR in the case of model 1 :M  (i) no 

stratum sample size constraint is given; (ii) at least 1 sample unit per stratum is required (to obtain 
unbiased point estimates); (iii) at least 2 sample units per stratum are required (to achieve unbiased 
variance estimates) for all strata having a population size of 2 or more enterprises. The first two 
allocations were rather theoretical since in all the business surveys conducted by the Italian National 
Statistical Institute, the selection of at least two units per stratum is required. The results of the experiment 
are shown in Table 6.2 below. Only the results for the case in which the initial inclusion probabilities were 
equal to 0.50   are investigated herein; identical sample sizes were obtained with the other initial 

values of the inclusion probabilities, with a slightly slower convergence process. The three SSRSWOR 
designs have 716.6, 944 and 1,042 sample units respectively. The Incomplete stratified Sampling (ISS) 
design with model 1M  led to 936 units; while model 2M  led to 991 units. The better result obtained by 

model 1M  with respect to model 2M  was due to the fact that model 1M  had a better fit. Finally, the ISS 

designs helped tackling the statistical burden of respondent enterprises. Indeed, assuming that the 
inclusion probabilities remain fixed for the different survey occasions, their distributions may be used to 
assess the statistical burden in repeated surveys. Table 6.2 shows that the number of enterprises drawn 
with certainty in each survey occasion was 175 for the third SSRSWOR designs, while 30 and 40 
enterprises were selected with certainty in the first and second ISS designs, respectively. Analysing the 
sizes (in terms of employed persons) of the enterprises included in the sample with certainty, the third 
SSRSWOR design had an average size equal to 20.6. In some cases, enterprises with 2 employed persons 
were included in the sample with certainty. Conversely, we observe that in the first and second ISS 
designs, the enterprises with minimum size had 17 and 16 employed persons respectively, and an average 
size larger than 40 units. 
 
Table 6.2 
Sample sizes and distribution of the enterprises included in the sample with certainty, for different sampling 
designs 
 

Sampling design Sample size 

Enterprises selected with certainty 

Number 
Number of employed 

Average Minimum 

Standard Stratified with 1M  model No stratum sample size constraint 716.6 10 47.0 23.0 

At least 1 sample unit per stratum 944.0 119 24.0 2.0 

At least 2 sample units per stratum 1,042.0 175 20.6 2.0 

Incomplete Stratified Sampling with 1M  model 936.0 30 50.1 17.0 

Incomplete Stratified Sampling with 2M  model without interactions 991.0 40 42.9 16.0 
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Finally, to assess the solution’s sensitivity, the experiment was repeated artificially and the prediction 
values of rky  and 2

rk  in the optimization problem (5.1) were changed. In particular, we increased the 

prediction values of 2
rk  by 20% and 120% respectively, and decreased by 20% the rky  values predicted 

by model 1.M  As expected, the sample sizes increased, but the SSRSWOR design with at least 1 sample 

unit per stratum and the first ISS design roughly defined the same sample sizes (Table 6.3).  

 
Table 6.3 
Sample sizes with modified expected values of the predictions of model (4.1) 
 

Sampling design 
Sample size  

2
rk  increased by 20% 2

rk  increased by 120% rky  decreased by 20%

SSRSWOR with 1M  

model  

No stratum sample size constraint 821.0 1,269.0 993.8

At least 1 sample unit per stratum 1,035.0 1,472.0 1,206.0

At least 2 sample units per stratum 1,125.0 1,536.0 1,283.0

ISS design with 1M  model 1,039.7 1,460.9 1,207.5

 
Empirical study (c). The heteroschedastic linear prediction model 3M  was used:  

 
2 2 2

,
( ) 0 , ( ) ; ( , ) 0

rk r r k rk

M rk M rk rk r k M rk rl

y x u

E u E u x k U E k l

    


           
 (6.3) 

where kx  is the number of employed persons in the thk  enterprise, and r  and r  are the regression 

parameters. Note that the number of employed persons is available in the sampling frame in Italy. 

Two different model variance estimates were carried out:  

(a)    
 

22 1 A F  
k X xk

rk X x rk r r kk U
N y x


 

     and (b) 2 2 ,rk r kx     in which 2
r   

    21 2 A F  ,rk r r k kk U
N y x x


    where  X xU   is the population of enterprises, of size

  ,X xN   for which the variable X  assumes the value ;x  A r  and Fr  are the weighted least square 

estimates for the complete enumerated population of r  and r  respectively. The sum of the estimated 

model variances obtained with method (a) is smaller than that obtained with method (b). This was 
reflected in the computed sample sizes. The first allocation defined an overall sample size of 927 units, 
while the sample size of the second allocation was 951. Successively, 1,000 samples were drawn for both 
allocations and the ratios         ˆ ˆ ˆRCV ECV SCVdr dr drt t t  were calculated, with   ˆECV drt   

     ˆ ˆAAV 100dr drt t  as the expected CV (%) and 

              

2

1 1 1
ˆ ˆ ˆ ˆSCV 100 1 1 1

I I Ii i i
dr dr dr dri i i

t I t I t I t
  

       

as the simulated (or empirical) CV, obtained as a result of the simulation, having denoted with  ˆ i
drt  the HT 

estimate in the thi  iteration and 1,000.I   For the sake of brevity, only the the main results of allocation 

(b) are shown in Figure 6.2, for DOM1 and DOM2 respectively, and both variables of interest. Examining 
the figure on the left, we emphasize that the simulation generally produces a simulated CV that is smaller 
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than expected, with an RCV ratio larger than 1 for both variables. One exception occurs, for the value 
added in one domain of DOM1. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 RCVs by population size for labour cost and value added 

 
RCV lower than 1 may be explained by the increase of the domain sample sizes, due to the calibration 

step. We note that in general, these discrepancies are observed in domains with a small population size; 
thus, the calibration step may have a non-negligible impact. The figure on the right shows more articulated 
and conflicting empirical evidence. First, we note that the RCV are often larger or very close to 1. 
Nevertheless, in three domains, the value added variable has simulated CV’s equal to 11.5%, 12.0% and 
12.3%. In these rare cases, and in some others (labour cost in two domains), the discrepancies are coherent 
with the findings of Deville and Tillé (2005) on the empirical properties of variance approximation for 
balanced sampling.  

 
7  Conclusions 
 

The paper proposes a new approach for defining the optimal inclusion probabilities in various survey 
contexts, which are characterized by the need to disseminate survey estimates of prefixed accuracy, for a 
multiplicity of both variables and domains of interest. 

This paper’s main contribution is the practical computation of these probabilities by means of a new 
algorithm, which is suitable for a general multi-way sampling design in which the standard stratified 
sampling represents a special case. The proposed approach, the algorithm and the final computation are 
domain- and variable-driven.  

In our framework, the domain membership indicator variables are assumed to be known, while the 
variables of interest are not known. The procedure is, then, applied on the predicted values of the 
characteristics of interest via a superpopulation model, and the algorithm enables taking into account 

 

                                                                  ECV/SCV for labour cost 
                                                                        

                                                                  ECV/SCV for value added 
 

DOM1                                                                                           DOM2  

2 
 

1.8 
 

1.6 
 

1.4 
 

1.2 
 

1 
 

0.8 
 

0.6 
 

0.4 
 
 

0.2 
 

0 

21 34 47 10
3

11
0

11
4

15
8

17
9

20
3

24
6

28
0

37
1

37
2

44
5

69
3

89
8

91
2

1,
06

4
1,

23
9

2,
90

3 11 13 14 21 21 29 30 46 57 61 88 98 13
8

20
4

24
6

28
3

49
8

52
1

60
4

64
3

87
4

1,
00

6
1,

91
6

2,
97

0

3.5

3

2.5

2

1.5

1

0.5

0

                                 Population size                                                                                        Population size 



Survey Methodology, June 2015 229 
 

 
Statistics Canada, Catalogue No. 12-001-X 

model uncertainty; this reflects the non-knowledge of the values of variables of interest. Using the 
Anticipated Variance as the measure of the estimators’ precision, this approach overcomes the limits of 
the standard algorithms for the sample allocation, in which the variables of interest driving the solution are 
assumed to be known.  

The proposed algorithm exploits standard procedure, but does present some computational innovations 
which may be useful for dealing with the complexity deriving from the fact that the Anticipated Variances 
are implicit functions of the inclusion probabilities. The algorithm was tested on simulated and real survey 
data, to evaluate its performance and properties. The results of a small set of experiments are presented 
here. They confirm an improvement, in terms of efficiency, of the sampling strategy. A natural 
generalization of the case examined here may be developed by considering, as known during the design 
planning stage, the indicators of the domains and other quantitative independent variables. We note that 
the Anticipated Variance considering only the domain indicators is larger than the Anticipated Variance of 
this more general case. Thus, our solution represents an upper (and somehow robust) boundary solution in 
the design phase. Furthermore, the algorithmic solution can be easily adapted to this more general 
situation.  
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Appendix A1 
 
AV of the HT estimator 
 

Let us consider the residual  dr k  as expressed by equation (3.5), and replace the term rky  with 

,rk rky u  thus obtaining  

           1 1 1 .dr k rk rk dk k k j j rj rj dj jj U
y u y u


          δ A π δ   (A1.1) 

The weighted least predictions of rk dky   and ,rk dku   with predictors k k δ  and weights 1 1,k   are 

    
ˆ

dr k k dr ky a   (A1.2) 

and 

  
    1 1 1 ,ˆ dr k k k j j rj dj jj U

u u


     δ A π δ  (A1.3) 

with 

  
      1 1 1 .dr k k j j rj dk jj U

a y


    π δ A π δ   (A1.4) 
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Using the formulae (A1.2) and (A1.3), the expression (A1.1) may be reformulated as 

        ˆ .ˆdr k rk rk dk dr k dr ky u y u        Therefore, the model expectation of  
2
dr k  is 

          2 22 ˆ Mean zero terms,ˆM dr k rk dk dr k M rk dk dr kE y y E u u          (A1.5) 

because   0.M rkE u   Furthermore, 

          2 22 2 , ,ˆ ˆ ˆM rk dk dr k rk dk M dr k M rk dk dr kE u u E u E u u         (A1.6) 

where     
 ˆM rk dk dr k k dr kE u u b   π  and     

 2 2 ,ˆM dr k k dr kE u c  π  with  

  
      1 2 1dr k k k rk dk kb     π δ A π δ  (A1.7) 

and 

  
         1 2 12 1 .dr k k j j rj dj j kj U

c  


       π δ A π δ δ A π δ  (A1.8) 

Expression (4.5) is easily derived by plugging expressions from (A1.2) to (A1.8) into equation (4.3).  

 
Appendix A2 
 
Convergence of the algorithm 
 

The optimization problem (5.1) is solved by two nested fixed point iterations. Given an unknown 
vector x  of dimension ,q  the fixed point iteration chooses an initial guess  0 .x  Then, it computes 

subsequent iterates by     1 , x g x  with 1, 2, ,    with  g  being a system of q  updating 

equations. The multivariate function g  has a fixed point in a domain qQ    if g  maps Q  in .Q  Let 
 J g x  be the Jacobian matrix of first partial derivate of g  evaluated at ,x  if there exists a constant 1 

such that, in some natural matrix norm,   , ,J Q  g x x  g  has a unique fixed point ,Q x  and the 

fixed point iteration is guaranteed to converge to x  for any initial guess chosen in .Q  As regards the 

proposed algorithm, the convergence of the IL and OL is obtained when the terms 
 

 3AAV dr
  converge 

to the fixed point. This means that the vectors   π  and   π  do not change in the OL and IL iterations. 

The demonstration below considers the method proposed by Chromy (1987) to solve the LCSP of system 
(5.7), and makes use of some reasonable assumptions: (1)   0;ˆ dr ku   (2)    1;N N H   

(3) ˆ ;rk rky y   (4)      

k k
       with 

 0 1;    (5) .kc c  Assumption (1) corresponds to 

the upward approximation of the Anticipated Variance, given in Remark 4.1, and implies that 

 
  

 
   0.dr k dr kb c  π π  Assumption (3) implies that  

    2 .dr k rk dk rk dk ka y y    π    

Assumption (4) states that the structure of the inclusion probabilities remains roughly constant in the 
different IL iterations. The assumption becomes reasonable considering that the updating equation A2.2 
below (of a given inclusion probability) is essentially determined by the variance threshold that requires 
the largest sample size. It is plausible to hypothesize that this threshold remains more or less the same in 
the subsequent IL iterations of a given OL. 
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Proof of convergence of the Inner Loop. By reformulating expression (4.6) in accordance with the 
assumptions from (1) to (4),  

 
 

       

2 2
1

3 1 1 1 2

1
AAV 1 2 .rk dk rk dk

dr k U
k

y y
  

              


 
 (A2.1) 

Considering in problem (5.7) that the 
 

 3AAVa
dr

  values are fixed, each value of the vector  1 π  is 

obtained as a solution of the LCSP with the Chromy algorithm. Denote with *v  the iteration of the 
Chromy algorithm into which it converges, where    * 1 * .v v  π π  Then, the IL updates the generic 

probability in accordance with the expression 
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 (A2.2) 

where the right-hand term represents the updating formula of the Chromy algorithm, and  dr  stands 

for 11
,

D R
rd    and  

 
* 1v

dr
    is the generalized Lagrange multiplier, where  
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 (A2.3) 

and 

     2 2 .dr dr rk rk dkk U
V V y


       

The Kuhn-Tucker theory states that 
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* 1 0v
dr

     iff 
 

   
 

  *
3AV 1.v

dr dr drV V    Chromy asserts that 
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*v

dr
    for 1, , ; 1, ,r R d D    are larger than zero, and that in most cases, only one value 

is strictly positive. Denoting with 
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3 3
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is obtained by plugging expression (A2.2) into (A2.1). If the convergence is obtained, then in the last 
iteration, 

   1
3 3 . AAV AAV  The function of equation (A2.4) is continuous and differentiable. 

Moreover, it maps onto the interval of the possible values of  3AAV .dr  Then, the IL converges if the 

following condition is fulfilled:  

  3 1.J g AAV  (A2.5) 

The Jacobian matrix is positive semi-defined, and a well-known result states that 

   2trace trace .J J J g g g  By considering the Frobenius norm  trace ,
F

J J J g g g  it is 

 trace .
F

J Jg g  Thus we can take into account the trace of the Jacobian matrix to verify condition 

(A2.5). Let    
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Therefore, the  trace J g  should be less than 1.  

 

Proof of convergence of the Outer Loop. Let 
 1 π  be the fixed point solution of the IL; then, the OL 

updates the vector 
  π  with 

   1 1 . π π  Under conditions (1), (2) and (3),  
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Plugging expression (A2.2) into formula (A2.6) when the IL converges, the system of D R  updating 
equations of 

 1
3

 AAV  is given by 
    1

3 3 , AAV j AAV  where the generic equation of j  is 
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Denoting with 
   0

3 3 , AAV AAV  the system j may be expressed in a recursive form 

              1 1 0
3 3 3 3..... ,     AAV j g AAV j g g g AAV f AAV  

with       .....  f j g g g  as the system of D R  updating equations of 
 1

3 , AAV  with respect to 

the previous values of the OL, 
 

3 . AAV  To demonstrate the convergence of OL, it is necessary to 

demonstrate that the Jacobian norm  3J f AAV  is lower than 1. Using standard results of matrix algebra,  

          1 0
3 3 3 3 ,J J J J     f j g gAAV AAV AAV AAV  

in which the generic norm  J g  is lesser than 1 (see the IL proof of convergence). Let  dr
j  be the  dr  
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Therefore, we have 
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The following inequality holds 
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Consequently, the norm 
  3 1,J  j AAV  and therefore the OL converges. 
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Appendix A3 
 
Proof that the approximation of Remark 4.1 is upward 
 

Since  ˆ dr ku  is the weighted least square prediction of ,rk dku   by using a different value of the   ,ˆ dr ku  

such as   0,ˆ dr ku   we obtain  

          2 21 1 1 1 0 ,ˆk M rk dk dr k k M rk dkk U k U
E u u E u

 
           

where   2 20 .M rk dk rk dkE u       Replacing the terms    2ˆM rk dk dr kE u u   with 2
rk dk   in 

expression (A1.5), the AAV (4.3) is inflated. The approximation   0ˆ dr ku   implies that 

 
 

 
  0.dr k dr kb c π π  Finally, we emphasize that in most cases, the upward is slight, since the  ˆ dr ku  

are obtained by the kz  variables that generally have a very low predictive power for the rk dku   values 

(see Section 4). In these situations    1 0.ˆ dr k rk dkk U
u N u


    So    0ˆM rk dk dr kE u u   and 

   2 0.ˆM dr kE u   

 
Appendix A4 
 
Proof of expression (4.7) 
 

In this case, each kδ  vector has 1H   zero elements and 1 element equal to 1 (corresponding to the 

planned population to which the unit k  belongs). Given the input values, the optimization procedure 

k h    for .hk U  Under the above assumption,    1A π  is a diagonal matrix with the thhh  element 

given by       11 2 1 1 .hh h h hN
    A π  Considering ,rk rhy Y  expressions (A1.2) and (A1.3) can 

be reformulated as, respectively,  

  
    1ˆ 1 1 .dr k h k h h h rh rhy N Y Y     δ A π  (A4.1) 

  
      1 11 1 ,ˆ

h
dr k h k h h rj h h rjj U j U

u u N u 

 
       δ A π  (A4.2) 

but 0
h

rjj U
u


  as the sum of the residual of a regression model. 

Using the formulae (A4.1) and (A4.2), expression (4.5) is given by 

       

    

2

2

1

1
ˆAAV 1

1 ,

h

d

dr M rk dkh k U
h

D

rh h h hd h H

t N N H E u

N N H N N n



 

      

   

 

 
 

since h h hn N   and expression (4.7) may be obtained.  
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