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 J. R. Statist. Soc. A (1980),

 143, Part 3, pp. 321-337

 Seasonal Adjustment by Signal Extraction

 By J. P. BURMAN

 Bank of England

 SUMMARY

 If an ARIMA model has been fitted to a time series, the model spectrum can be partitioned
 into trend, seasonal and irregular components. The corresponding linear filters are used
 for signal extraction to provide a theoretically based method of seasonal adjustment. The
 flexibility, stability and residual seasonality obtained by this method and two others are
 compared empirically.

 Keywords: SEASONAL ADJUSTMENT; ARIMA MODEL; SPECTRUM; SIGNAL EXTRACTION; PARTIAL

 FRACTIONS; HARMONIC FUNCTION; AUTOCOVARIANCE GENERATING FUNCTION; LINEAR

 FILTER; FORECAST; BACKCAST; TREND; IRREGULAR; TRANSIENT; EXTREME VALUES;

 ANNUAL REVISIONS; RESIDUAL SEASONALITY

 1. INTRODUCTION

 SEASONAL adjustment as a large-scale practical technique was introduced by the US Bureau of
 the Census in 1957. Their method developed over the next 8 years until the publication of the
 X. 11 version in 1965. Various other methods appeared in the next 10 years-see Bongard (1960),
 Burman (1965), Mesnage (1968), Nullau et al. (1969), Stephenson and Farr (1972), den Haan
 (1974) and Durbin and Murphy (1975). Stephenson and Farr is a regression method, Durbin
 and Murphy partly of this type; but all the others are moving average methods, in which an
 attempt is made to decompose the series into trend, seasonal and irregular components. This is
 done by a sequence of linear filters.

 Why are there so many competing methods? It is because, although the decomposition is
 intuitively appealing, none of the methods can be shown to have optimal properties-except,
 perhaps, for the trend removal filter used in Burman (1965); otherwise they are all ad hoc
 techniques. Indeed, these properties depend on the purpose for which seasonal adjustments
 have been performed. The most common is to provide an estimate of the current trend so that
 judgemental short-term forecasts can be made. Alternatively, it may be applied to a large
 number of series which enter an economic model, as it has been found impracticable to use
 unadjusted data with seasonal dummies in all but the smallest models: this is often called the
 historical mode of seasonal adjustment.

 It seems that, in the time domain, the decomposition is incapable of precise definition.
 However, in the frequency domain, the trend and seasonal components of a series can be more
 clearly defined. The seasonal component comprises the peaks in its spectrum at the basic
 seasonal frequency and the multiples of this, and the trend is represented by a broad peak at low
 frequencies. Seasonal adjustment is the operation of removing the seasonal peaks while leaving
 the rest of the spectrum undisturbed (though this is not entirely feasible see below). Non-
 parametric estimation of spectra goes back over 20 years-for example, Blackman and Tukey
 (1958), but this does not provide an easy way of designing a linear filter to suit each series.

 The next development was the theory of optimal filters for estimating an unobservable
 component of a time series (signal extraction). This was very lucidly explained in the book on
 prediction by Whittle (1963), which is now unfortunately out of print. Another link in the chain
 was the development of methods of estimating ARIMA models for time series by Box and Jenkins
 (1970). This provided, inter alia, a way of parametrizing the spectrum of a series, so that signal
 extraction filters could be derived from it. Box and Jenkins' prime purpose was to fit the models
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 322 BURMAN - Seasonal Adjustment by Signal Extraction [Part 3,

 for forecasting, so it is intuitively attractive that they should be used for seasonal adjustment in
 its forecasting mode. The recent paper by Plosser (1979) shows that X.1 1 is not particularly
 helpful for this purpose. However, Statistics Canada have developed a composite method, X. 11-
 ARIMA (Dagum, 1975, 1978), using ARIMA models to fore,ast and backcast one year, before
 applying X. 11; this seems to perform better than X. 11 for all except very noisy series.

 The first application of signal extraction to seasonal adjustment was in an unpublished
 doctoral thesis by Cleveland (1972). An ARIMA model, for which the well-known X.11 method is
 optimal, was given in Cleveland and Tiao (1976); and another example using the standard
 (0, 1, 1) (0, 1, 1)12 ARIMA seasonal model appeared in Box, Hillmer and Tiao (1979). The present
 paper shows how a general ARIMA model (with one commensense restriction on the parameters)
 can be used to generate an infinite linear filter which extracts the seasonal component from a
 series and its forecast and backcast values.

 2. PARTITIONING THE SPECTRUM OF ARIMA SERIES

 Suppose an infinite time series is believed to consist of two or more independent
 unobservable components, whose generating processes are known. Then there exist optimal
 linear filters to separate them, and signal extraction is the estimation and use of these filters.

 Let us take an ARIMA seasonal model:

 zt =f(B) = a O(B) (B)at, (1)

 where B is the lag operator, s the periodicity and at white noise; the numerator need not be
 separable into seasonal and non-seasonal operators. The denominator can be rearranged into
 components having no common factor: /m(B) for the trend component and /,(B) for the
 seasonal. Obviously +(B), which contains the differencing factors (1- B) and the non-seasonal
 auto-regressive part, will belong to fm(B), but so will part of F(Bs). For a monthly series, the
 seasonal differencing factorizes as

 (1- Bl')D = (1 -B)' (I +B + B2'.. +B1 l)D.
 The first factor belongs to qlm(B), having a root at unity; and the second to s(B), its roots

 being the 12th roots of unity. These form conjugate complex pairs which generate peaks in the
 spectrum of the series at i/6, 2ir/6,..., 5X/6, plus a real root (-1) producing a peak at i.

 The other roots of @D(z) = 0 are outside the unit circle. If 1D(z- )= 0 has a real positive root
 (DI < 1, the factorizing is

 1-(DI B 12 = (1-,uiB) (1 +,uB +12 B 2'. +p`l B11

 where , is the real positive 12th root of (1l.
 The first factor contributes to the peak in the spectrum at the ongin and belongs to Vm(B); the

 second contains 11 roots contributing to the seasonal peaks, as before, and belongs to ,(B). But,
 if I, is complex, say, for example, that

 (ol)1/12 = -eia

 is the root nearest to unity. Since normally the coefficients in O(z 1) = 0 are real, there will be a
 conjugate (1, which has a 12th root ,u e -. Taking the two sets of 12th roots together, they form
 12 pairs displaced by an angle a each side of the 12th roots of unity. The result is a series of pairs
 of spectral peaks on each side of the seasonal frequencies, like the Zeeman effect in physical
 spectra. If (i1 is negative, the extreme case, the peaks occur midway between the seasonal
 frequencies (which correspond to the odd order harmonics of a 2-year cycle). Thus the
 distinction between trend and seasonal can be made only for those auto-regressive seasonal
 models in which (D(z 1) = 0 has a real positive roots.

 The spectrum of zt is derived from the transfer function between zt and a,:
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 gjocj) fZ(e @) f(e '() ca

 f (e'- ) O(e -i@) 2

 ~.(e ) im(e - h@) Is(eL) V',,(e - h@) a (2)

 The conventional division of a time series into trend, seasonal and irregular components
 may now be made more precise. The trend and seasonal cover the permanent characteristics of
 the series, responsible for the spectral peaks at the origin and at seasonal frequencies
 respectively. The irregular component covers the transient characteristics, i.e. it should be white
 noise or a low order MA process.

 Let

 Zt = mt + st + rt,

 where

 Mt = trend = fm(B) bt; st = seasonal = f,(B) ct; rt = irregular = fr(B) dt

 and bt, ct and dt are independent white noises. So far the components have not been precisely
 defined. To do so, consider their spectra. The spectrum of the trend is

 g.(a)) =fm(eico)fm(e -)b (3)

 and g(co)) and g,(wo) are similarly defined. Then the independence of bt, ct and dt means that

 g.(w) = gm(oi) + g"(w) + g,(w). (4)

 In ARIMA models, a 2 is usually defined so that the coefficient of B? in f(B) is 1. For the
 component functions, it is more convenient to define Ub = C = d= which determines the
 coefficient of B? in each case. Since (2) and (3) are symmetric in ca, the model and its components
 must be rational functions hz(x), hm(x), etc. of x = cos c). Thus (4) becomes

 hz(x) = hm(X) + hs(x) + hr(X). (5)

 In Burman (1976), the author suggested that one should proceed as follows:
 Let

 U(x) = O(eL) O(e-); VJ,,(x) = IIJm(eLw') tm(e s); VJ(x) = @8(e"i) /(e- h)

 Then the polynomial quotient of hz(x) can be identified with the transient component rp and the

 remainder partitioned into partial fractions identified with mt and st:

 hx)= U(x) - ()+ R(x)
 Vm(x) K)= Q( V-(x) V,(x)'

 where Q(x) is the quotient, assuming hz(x) is either top heavy or balanced in degree, and R(x) the
 remainder. Since Vm(x) and VJ(x) have no common factors, we can find functions A(x), Pu(x) by the
 usual method of calculating an H.C.F. such that

 il(x VM(x) + ,llX) VS(x) =_ 1,

 so

 j(x) A(x) 1
 VM(x) VS(x) Vm(x) Vs(x)

 Multiply through by R(x) and find quotients and remainders Rm(x) and Rs(x) of the left-hand
 side. The quotients must cancel, since this is an identity. Thus:

 Rm(x) RS(x) h + ~~~+(6)
 Jx) Qx) +V,,(x) TS(x)
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 324 BURMAN - Seasonal Adjustment by Signal Extraction [Part 3,

 -hr(x) + hm(x) + hs(x) (say).

 The first term is MA (q* -p*), where q* is the degree of the numerator of the model and p* is the
 degree of the denominator. The second and third terms are of the right character for the spectra
 of trend and seasonal components, but they may not be positive for all values of cW.

 3. MINIMUM SIGNAL EXTRACTION

 However, this partition is not unique because constants can be added to the second and
 third components without altering the character of the spectra. Box et al. pointed out that only
 the minimum amount of variance should be removed from the series in seasonal adjustment. So,
 if g(co)) has a minimum es, we replace it by the non-negative g *(w)) = gs(co)) - , and add the same
 amount to the transient. Similarly, to obtain the smoothest trend, we replace g(cO)) by
 g*(o) = gm(w) - Bm; and g,(c)) is replaced by g *(w)) = g,(c)) + es + gm. For bottom-heavy models it
 turns out that es can be slightly negative, but gm is a much larger positive, so the partition still
 produces valid spectra.

 Both Cleveland and Box et al. assume that the irregular component is white noise, but for
 top-heavy models (q* > p*) our partition will give a moving average irregular. In fact Cleveland
 discusses a top-heavy ARIMA model for which the X. 1 1 seasonal adjustment method is optimal:

 1+0 26B+0 3B2-0-32B3 1 +0 26B12
 zt = (1-B)2 bt 1+B... +B1 ct+ dt

 It would be possible (though difficult) to rearrange our partition of a model with q* -p* = 1,so
 as to absorb the first degree term in hr(X) into the other two components. But the restriction on
 the irregular component to be white noise seems to be unnecessary. On the other hand, it should
 be only a low order moving average process: some of the models fitted to monthly series in
 Dagum (1978) would give an irregular component of order 10 or 11, which could have peaks or
 troughs in its spectrum at seasonal frequencies. However, later work at Statistics Canada
 (Lothian and Morry, 1979) indicates that the seasonal operator (0, 1, 1)s is adequate for all these
 series and so the irregular is of low order.

 Whittle (1963) showed that the best (minimum mean square error) linear estimator of a
 component mt given Zt is

 A~ fm(B)fm(F) U 2
 Mt et(B) zt (since ob = oa)

 Let g *(w)) h *(x) _ HS(B, F) where x - I(eiw + e-i@) is replaced by i(B + F). Then the minimum
 signal extraction filter for the seasonal component is

 h*(x) Hs(B, F) Vi#(B) i(F) m(B) m(F)

 hJ(x) I(B) I(F) 0(B) 0(F)

 Hs(B, F) /im(B) *m(F) = C(B, F) (say), (7)
 0(B) 0(F) 0(B) 0(F)

 where Cs(B, F) is a symmetric polynomial in B and F of degree p*. Similarly, the minimum trend
 removal filter is

 h*(x) C(B, F) - ~~~(say) (8)
 h.(x) 0(B) 0(F)

 where Cm(B, F) is also symmetric and of degree p*. Whittle's original formulation of signal
 extraction applies to a doubly infinite series and filter. Cleveland (1972) proved that the expected
 values of the signal series can be obtained by extending the orginal series with forecasts and
 backcasts. A referee has pointed out that this is a case of the general formula:
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 E(X I Z) = E[E(X I Z, X ) Z] where Z is a finite series, Y the unobserved future and past values of
 the series and X the signal component. In practice, the parameters of seasonal models can be
 close to the boundary of invertibility, which causes very slow convergence of the filter, so that
 more than 1000 forecasts and backcasts could be needed for reasonable accuracy.

 However, this difficulty can be completely avoided by a most ingenious suggestion made to
 the author by Dr G. Tunnicliffe Wilson. First, the two-sided filters (7) and (8) are each
 partitioned into two one-sided filters:

 C(B, F) G(B) G(F)

 0(B) 0(F) 0(B) 0(F)'

 where G( ) is a polynomial of degree r = max (p*, q*). This identity gives rise to (r + 1) equations

 which determine the (r + 1) coefficients of G( ). The details are in the Appendix.
 Secondly, we apply the forward and backward filters to Z, which is now assumed to be

 extended by forecasts and backcasts.
 Let

 xlt = 0(F) Zt =f1(F)z, (say),

 where f1 is an infinite series. Forecast zt:

 (D*(B)zt = (B)at (t =N+ 1,...,N+q*+r),

 where @*(B) = 4(B) D(BS) and N is the number of observations. Construct an intermediate
 series:

 wt= G(F)zt (1 -t-N+q*)

 Now

 @D*(B) x1t = D*(B)f1(F)Zt = f1(F) @*(B)zt

 =0 for t,N+q*+1.

 Thus we have (p*+q*) equations to find xlt (t = N+q*-p*+ 1,...N+2q*):

 0(F)xlt = wt(t = N+q*-p* + 1, ..., N + q*), (10)

 V*(B) xlt = O(t = N +q* + 1.,N +2q*). J

 The remaining x1t can be found recursively from the relation in the first part of (10), working
 backwards to t = 1. The mirror image of these steps is applied to the backcast of Zt to give x2V.
 Finally, the filtered component is the sum of x1t and x2,. The whole process is applied with Gi( )
 for the trend and G( ) for the seasonal component. Details of the method and the matrix of
 equations (10) are in the Appendix.

 The application of the seasonal filter to the original series, together with its forecast and
 backcast values, constitutes the Minimum Seasonal Extraction method. It will be called
 hereafter MSX (as MSE is already in use).

 It is important at this stage to examine the reason for the paradox cited by Grether and
 Nerlove (1970)-that a seasonally adjusted series always has dips in its spectrum at seasonal
 frequencies. Tukey has pointed out that this is analogous to the fact that the fitted residuals in a
 linear regression are not an independent white noise series. Let gm(w)) + g(cO)) = gy(w)), the
 spectrum of the adjusted series. The symmetric filter for extracting the seasonal component has
 a transfer function which is just the square of the filter:

 { ( } 2
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 326 BURMAN - Seasonal Adjustment by Signal Extraction [Part 3,

 So the estimated spectrum of this component is

 gs {g .((w) _= _ _ _ _g__ _

 Tge(sj) {gs(o) + qy(w)}2
 The estimated spectrum of the adjusted series is

 g() = {gs(o) + gY(0) 2 9* )_

 s0 As0) + A (_)) < gZ(w).{
 There is a "deficiency" in both spectra where gs(aw) gy(a) 0 O, that is, near the seasonal peaks.

 Not only are there seasonal dips in the estimated spectrum of the adjusted series, but the peaks
 in the estimated spectrum of the seasonal component are lower than they should theoretically
 be. It is suggested that this deficiency should be called "the silent spectrum", since it does not
 relate to either time series component, but only to the cross-spectrum.

 4. THE PROGRAM

 A Fortran program has been written for MSX; this is in two parts. Part 1 estimates an ARIMA
 model by maximum likelihood, that is, without backcasting, using the very efficient method
 described by Osborn (1977). (The method is only full ML for a pure IMA model.) The parameter
 values and a sufficient number of forecasts and backcasts are passed over to Part 2. This
 partitions the model spectrum, generates the trend and seasonal filters, and applies them to the
 series together with its forecasts and backcasts. The forward estimates of the parameters are
 used for the backcasts, since the backcast ML estimates have been found to be almost identical to
 the forecast estimates.

 The program can handle any ARIMA model up to the third order for the non-seasonal
 parameters, second order for the MA seasonal and first order for the AR seasonal. It would be easy
 to remove these restrictions on Q and P, but so far no need has been found. The effective number
 of observations of changes in the seasonal pattern is small, so that number of seasonal
 parameters that can be identified must also be small.

 Many of the operations to obtain the partition of the spectrum gz(a)) have been described in
 terms of polynomial functions of x = cos c). But, in writing the computer program, it was
 realized that a more convenient representation is in terms of harmonic functions, i.e. linear in
 cos a), cos 2w), cos 3w), etc. There is a (1, 1) correspondence between the two representations, and
 multiplication and division of functions is only slightly harder in the harmonic forms.

 The seasonal filter has a transfer function with a local minimum at zero and others close to

 2ir(j - j)/s (j = 2,..., s). For the model (0, 1, 1) (0, 1, 1)s the minimum minimorum is at
 either 0 or i(s - 1)/s (see Burman, 1976); but this is not true generally. The trend filter usually has
 a simple minimum at i, but a complex model has been constructed which has a second
 minimum near ir/2.

 All widely used methods of seasonal adjustment have a procedure for modifying extreme

 values. For MSX, we make preliminary estimates m, and St and set PS = Z- t- . If the RMS of rt is
 Cro multiples a, fi of the latter are chosen to determine a modified series:

 Zt= zt-MODt.

 A term is classed as a partial extreme if rt> Ur and a full extreme if rt> fr.
 For an i-solated extreme the program takes

 MODt = itPjwo, (11)
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 where

 it = (|IAtH|-a<r)/{(fX) Tr} for or <1 tI <1&r

 =1 for rt |>fr

 and

 wo = 1-2gmo -2gso

 The scaling factor w0 is needed because a fraction 2gmo of Zt enters the trend estimate, and a
 fraction 2gs0 enters the seasonal estimate; where gmo is the coefficient of Bo in Gm(B)/O(B) and gs0
 similarly in Gs(B)/O(B)-see equation (9). Thus when rt is extreme, rt understates the extent of
 this, unless corrected by w0.

 Extremes quite often occur in pairs of opposite sign, especially in series of flows. If these
 represent displacement effects, it seems natural to adjust them together. Thus, if extremes occur
 at (t -1) and t, a natural choice would be:

 MOD' =- (rt.- t 1), (12)
 MOD' = rt- _rt-1).S

 Continuity between isolated and paired extremes (of opposite sign) can be obtained by only
 applying (12), when it = =t - 1 1. For intermediate cases one could take an average of (1 1) and
 (12):

 MODt*_ = (1 -it) M?Dt - 1-it- 1 it -(Atr A 1),

 MODt* = (1 -it - 1) M?Dtl+ it - 1 it -(t1 t )

 Let

 CG (centre of gravity) = r - + rt)

 Then

 MOD*1 = (1-Xt)MOD,1+X,-1 rt(t- 1-CG),

 MODt* =(-it -1)M?I)t+~, it - 1t(-CG).
 An alternative, which generalizes more easily to cover triplets, has been embodied in the
 program:

 CG = (At- 1 rt- 1 + it rt)/(t - 1 + Xt),

 MOD*1 = (1-it)MOD-1 +it1( - -CG), (13)

 MODt* = (1-At- 1) MODt r+ (t-CG).
 There is no obvious reason for the occurrence of pairs of alternating extremes in a series of levels,
 but they appear nevertheless. More likely a priori would be a triplet of alternating extremes, in
 which the side terms are "shadows" caused by a genuine extreme in the middle. Since such
 triplets have not yet been met with in practice, no provision has been made for them in the
 program. Estimates for pairs of the same sign influence each other and are therefore obtained by
 solving two simultaneous equations, which are an extension of(1 1). At present a and ,B are taken
 as 2-0 and 2 5.

 After modification of extremes, the same ARIMA model is refitted to z' and revised trend and
 seasonal components estimated by MSX. The latter are subtracted from the original series to
 give revised residuals, following the convention that extremes should not be modified in a
 seasonally adjusted series.

 The treatment of bias in multiplicative models also needs a mention. For an additive model,
 the seasonal filter (7) contains a factor fm(B) which renders the series stationary, so the expected
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 328 BURMAN - Seasonal Adjustment by Signal Extraction [Part 3,

 values of the z, and the seasonally adjusted series Yt are equal, apart from seasonal means. Hence
 the annual arithmetic means (AAM) of the two series have equal expectations. The same

 argument, applied to the residual filter generating r, shows that the AAM of Yt and the trend m,
 have equal expectations. These statements, applied to the logarithms of the series in the
 multiplicative case, show that the annual geometric means (AGM) of the untransformed series
 have equal expectations. An AM is greater than a GM by an amount which increases with the

 variance of the terms contributing to the mean. The variance of z; is greatest and of m, least, so

 AAM(zt) > AAM(yt) > AAM(mt).

 The implied "bias" in Yt relative to zt can be handled in various ways. In the Bank of England
 program the AAMs of the seasonal component are scaled separately in calendar years. To avoid
 the possibility ofjumps between calendar years, especially in the trend, it seems better to apply a
 single bias correction over the whole series. MSX calculates the overall mean of the seasonal
 factors and the factors representing the irregular component: call these b1 and b2. Then Yt is
 scaled up by b1 and mt by b1 b2. In practice, b1 rarely exceeds unity by more than 1 per cent and
 h2 is much smaller.

 5. SOME EXAMPLES

 Mr Kenny, of the CSO, kindly supplied the author with seven monthly seasonal series:
 1. Average earnings (1963-76).
 2. Retail sales (1961-76).
 3. Commercial vehicles production (1958-76).
 4. Unemployment in GB (excluding school leavers under 18) (1958-76).
 5. Domestic furniture deliveries (1963-76).
 6. Passenger cars production (1958-76).
 7. Engineering orders on hand (1958-76).
 The lengths of the series vary from 14 to 19 years. Model identification was in two stages: first

 a standard model (0, 1, 1) (0, 1, 1)12 was fitted to the full-length series and the first 24
 autocorrelations of the residuals examined, using the Ljung and Box (1978) Q-test. For series
 with substantial growth a logarithmic transformation was first applied. Fits at the 5 per cent
 significance level were obtained for Series 1, 2 and 6. For Series 4 and 7 the autocorrelations
 suggested that an AR factor or extra non-seasonal differencing was needed, so the model was
 extended to (1, 1,2) (0,1,1)12. The estimation program automatically changes (1- 4B) into
 (1-B) if 4 exceeds 096 (about 1 standard error from the stationarity boundary) and re-
 estimates; it also removes the highest order 0 or 0, if its coefficient is insignificant (i.e. less than its
 standard error). For Series 5 a top-heavy model (0, 1,2) (0, 1, 1)12 was fitted. At this stage all
 models had Q-values below the 1 per cent level except that for Series 3 which was a little above,
 but the first 6 and the 12th autocorrelations of the residuals of this series were all small and no
 further model extension was indicated.

 The series were then progressively truncated and the same models fitted. The models are
 shown in Table 1: the suffix 12 has been omitted to save space.

 Generally the more complex models .were still needed for the shorter series, but, for some of 7
 and 8 years' length, 0 exceeded 0-96: this causes cancellation of the seasonal factors in the model
 and the program instead removes a fixed deterministic component (following Pierce, 1976). For
 the resulting series the (1, 0, 0), operator may be included in the model, but in the few cases tested
 so far D was either negative or insignificantly positive. The program therefore fits the non-
 seasonal part of the original model, as this is needed by MSX to determine the extreme values.

 Attempts to fit more complex seasonal models like (1, 0, 1)12 and (0, 2,2)12 were unsuccessful
 and led to ill-determined parameters and a worse fit than (0, 1, 1)12 Our inability to identify
 (1,0, 1)12 models contrasts with Pierce's success in doing so. A possible reason for this is that in
 his method the non-seasonal and seasonal parts of the model are fitted in succession instead of
 simultaneously.
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 TABLE 1

 Models fitted

 Final year of estimation period Series
 length = n

 Series 7 8 n-3 n-2 n-I n (years)

 it (011) (000) (011) (011) (011) (011) (011) (011) (011) (011) (011) (011) 14
 2t (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) (01 1) 16
 3 (012) (0114) (021) (01i)t (011) (011) (011) (011) (011) (011) (011) (011) 19
 4 (112) (000) (112) (000) (112) (011) (112) (011) (112) (011) (112) (011) 19

 5t (012)(011) (012)(011) (012)(011) (012)(011) (012)(011) (012)(011) 14
 5At? (011) (011) (011) (011) (011) (011) (01 1) (01 i) (011) (011) (011) (011) 14
 6 (011) (011) (011) (011) (011) (011) (011) (011) (011) (011) (011) (011) 19
 7 (111) (000) (111) (000) (111) (011) (021) (011) (021) (011) (021) (011) 19

 t Multiplicative model.
 i Fixed seasonals on final round.
 ? Series 5 adjusted for date of Easter (see below).

 TABLE 2a
 Preliminary values of 0

 Last year of estimation period Series
 length

 Series 7 8 n-3 n-2 n-I n n =

 1 Fixedt 0 93 0 79 0 62 0 66 0 71 14
 2 072 068 072 067 067 073 16
 3 096 087 080 082 082 083 19
 4 Fixedt Fixedt 0 75 0 72 0 72 0 69 19
 5A 038 053 048 064 061 069 14
 6 065 069 076 077 081 081 19
 7 Fixedt Fixedt 0 75 0 80 0 82 0 83 19

 t Reached boundary imposed by program.

 TABLE 2b
 Final values of 0

 Last year of estimation period Series
 length

 Series 7 8 ,i-3 n-2 n-i I n =

 1 Fixedt 0 74 0 68 0 57 0 58 0 65 14
 2 068 062 062 056 067 071 16
 3 Fixedt Fixedt 0 74 0 75 0 75 0 77 19
 4 Fixedt Fixedt 0 73 0 68 0 69 0 66 19
 5A 0 27 0 50 0 44 0 63 0 57 0 64 14
 6 0 62 0 65 0-62 0-65 0 70 0 71 19
 7 Fixedt Fixedt 0-66 0-74 0 78 0 79 19

 t Reached boundary imposed by program.

 The fitted models were used in MSX, as described above, and the extremes modified. It was
 noticed that for Series 5 (furniture deliveries) extreme residuals were concentrated in March and
 April, and that the pattern of these pairs (of opposite sign) was almost perfectly correlated with
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 the position of Easter: normally April is a low month for deliveries, but, when Easter fell in
 March, that month was low. A new series (5A) was created in which a switch from April to
 March was made in the 4 years with an early Easter. This switch was estimated from the ratios
 March/(February, April)+ over the whole 14 years (a convenient, but not optimal procedure).
 The parameter 02 then became insignificant throughout, and the fit of the model improved
 considerably, so no further results are given for the original Series 5.

 Tables 2a and 2b show the preliminary estimates of 0 and the final ones based on the series
 modified for extremes.

 The final values are always lower than the preliminary ones. This would be an advantage if
 there really is a moving seasonal pattern, which is easier to detect when some of the noise has
 been removed. For Series 1 (12-14 years) 0, became insignificant on the second round, but
 dropping it made the fit much worse. It seems that the very slight seasonal pattern of this series
 makes the model parameters ill-determined. The model with 0, was therefore retained.
 Preliminary and final values are quite close together, except for Series 2 (13-14 years), Series 6
 (16-19 years), and-not surprisingly some of the 7- and 8-year runs. Apart from length of
 series, the differences are linked with the number and size of extremes-Series 6 has the largest
 number (14). Even after the Easter adjustment, Series 5A has 0 values which are surprisingly low
 and variable for less than 12 years' data.

 TABLE 3

 Absorption of a, into trend and seasonal components (full length)

 Series

 1 2 3 4 5A 6 7

 CTr/a. 0 35 0 55 0-71 0-13 044 0-63 0-23
 WO ~0-50 0-68 0.81 0-30 0-59 0-75 0-43

 The proportion of the innovation variance absorbed by the irregular component (lr/Oa)
 normally varies between 45 and 70 per cent for the balanced or top-heavy models-see Table 3,
 but is much lower for the bottom-heavy models (Series 7). This is because g*(wO) = es + em. which
 is usually fairly small. The proportion is also rather low for Series 1, whose small 0, makes it
 akin to a bottom-heavy model and very low for Series 4, which has a similar tendency, as 02 is
 small. In these cases, the trend filter picks up a large part of any extreme values, so that wo in
 equation (11) is also low.

 6. COMPARISON WITH OTHER METHODS

 To compare objectively different methods of adjustment is not easy: time series charts,
 relying on visual judgement, are useless, except for eliminating very inferior methods. Spectra of
 the adjusted and unadjusted series are. a limited help, but tests in the time domain are more
 sensitive. The most important of these are tests for residual seasonality (has the method removed
 enough?) and for stability (has it removed too much, i.e. some of the noise?). If the latter is the
 case, revisions-normally annual-will tend to be larger, and this is something that both
 producers and users wish to avoid. In this section MSX is compared with the well-known X. 11
 method and also the Bank of England's official method (called here BE)-see Burman (1965).
 The same limits for extremes (2-0c and 2 5a) were employed throughout.

 The stability of any method of seasonal adjustment depends on the degree of smoothing. As
 explained in Burman (1965), there is a trade-off between less smoothing, less stability, and
 greater sensitivity in following changes in the pattern, on the one hand, and more smoothing,
 more stability and less sensitivity on the other hand.

This content downloaded from 193.204.90.105 on Thu, 01 Jun 2017 07:49:30 UTC
All use subject to http://about.jstor.org/terms



 1980] BURMAN - Seasonal Adjustment by Signal Extraction 331

 X. 11 smooths with a [3] [5] moving average except the last 3 (and first 3) years.
 BE smooths each of the harmonic components of the seasonal pattern independently,

 choosing from a range of filters: fixed, exponential weights and [3] [5] the most flexible
 choice.

 MSX smooths all components in the same way, the weights being determined by the ? in the
 model.

 Table 4 gives a measure of the flexibility or movement in the seasonal pattern estimated by
 the three methods over 8-year series and the full-length series. It was expected that, because of its
 range of smoothing filters, BE would be less flexible than X. 11, but this was only true in 9 out of
 14 cases. MSX was less flexible then X. 11 in 11 cases. The relatively high flexibility of the MSX
 seasonals for Series 5A (8 years) reflects the low values of ? in Table 2b.

 TABLE 4

 Flexibility
 (Mean absolute year on year changes in seasonal component,

 expressed as percentage of series meant)

 8 years Full length

 Series X.11 BE MSX X.11 BE MSX

 1 006 005 003 0.12 0 11 0 10
 2 011 014 012 017 021 011
 3 0 49 0 17 Ot 1 08 0 57 0 48
 4 016 011 Ot 021 016 025
 5A 051 061 072 047 056 042
 6 0-87 034 086 1 16 058 079
 7 008 014 Ot 012 010 006

 t For multiplicative adjustment, the table shows the mean absolute changes in the
 seasonal factors (expressed as percentages).
 t Fixed pattern.

 When another year's data are added, the mean absolute revision (m.a.r.) to the seasonals in
 the last year of the series is likely to be relatively large; for the 2nd last year it should be less, the
 3rd last year less still, and so on. Eventually the m.a.r. should settle down at a low level (when
 estimating filter has become nearly symmetric) or even drop to zero (when the filter is truncated
 as in X. 11). Table 5 shows the m.a.r. for different parts of the series expressed as percentages
 (m.a.p.r.) of the mean of the shorter series. For multiplicative adjustment, it shows the mean
 absolute changes in the seasonal factors. The comparisons are made between MSX.1 the
 method as described so far and the other two methods (see below for explanation of MSX.2).
 Column 1 gives the m.a.p.r. for the first 7 years of the 7-year and 8-year series; column 2 contains
 the same calculation for the 7th year of the two series. Columns 3-6 show the m.a.p.r. for the last
 4 years of a series when 1 year is added; but, to reduce sampling fluctuations, they have been
 averaged over 3 pairwise comparisons (for example, for Series 4, these are 16 vs 17 years, 17vs 18
 years and 18 vs 19 years). Column 7 provides the m.a.p.r. over all years from the comparison
 (n-1) vs n years.

 As expected, the m.a.p.r. in columns 3-6 descend from right to left, X. 11 usually more steeply
 than the others, but the revisons for the 4th last year are still larger than the average of all years
 (column 7). For the 7-8 year runs the m.a.p.r. are larger than those for the longer runs, and again
 they are larger for the 7th year than for the average of all 7 years (except when MSX produces a
 fixed pattern).
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 TABLE 5

 Mean absolute percentage revisions to seasonal component on adding one year's data

 Lengths of estimatior periods

 Averages of 3 pairs:
 (n-3)vs(n-2),(n-2)vs(n-1),and(n-1) (n-1)

 7 vs 8 vs n vs n

 Years of comparison

 All 4th 3th 2nd All Full length
 Series years 7th last last last Last years of series n =

 1 X.11 0 14 0 16 0 07 0 14 0 21 0 30 0:06
 BE 006 007 007 0 13 020 028 007 14
 MSX.1 0-06 0 104 0 07 0-13 0 22 0 32 0-08 |
 MSX.2 009 0 10o 009 0 15 024 033 008 )

 2 X.11 006 0 19 0 12 0.19 0 31 043 007 A
 BE 0 09 0 13 0 21 0 31 0-32 0 39 0 14 16
 MSX.1 009 021 0 17 0-22 033 047 007
 MSX.2 0 12 0 26 0 15 0 21 0 30 0 41 0 09

 3 X.11 1.62 3 57 0 48 0 79 1 23 1 80 0-28
 BE 1 30 1 38 0 76 0-87 1-05 1-27 0 44 19
 MSX.1 069t 069t 055 069 089 1 15 042
 MSX.2 102 1-13 055 064 075 090 039 J

 4 X.11 037 082 020 0440 060 080 0 11 A
 BE 0 44 0 43 0 39 0 46 0 59 0 76 0 24 19
 MSX.1 0 43t 0 43t 0 27 0 38 0 54 0 78 0 12 |
 MSX.2 0 43t 0 43t 0 27 0 37 0 52 0-72 0 12 )

 5A X.11 017 057 030 053 082 1 15 020
 BE 045 083 051 060 088 105 040 14
 MSX.1 075 151 038 062 090 126 034
 MSX.2 0 55 1 22 0 40 0 63 0-89 1 22 0-36 J

 6 X.11 1 30 345 088 1 60 232 297 036
 BE 1 68 2 20 0.99 1 22 1 26 1-53 0 66 19
 MSX.1 1.21 2.35 1 07 1 35 1-72 2 25 0-46
 MSX.2 1 25 2-20 1-04 1 22 1 43 1 66 0 48

 7 X.11 0.11 027 0 10 0 16 025 036 004
 BE 022 049 0 13 0 18 026 0-32 008 19
 MSX.1 009t 009t 008 0 10 0 12 0 15 004
 MSX.2 009t 009t 008 0-12 0-11 012 005

 t Fixed seasonals for 7 and 8 years.
 t Fixed seasonals for 7 years.

 For Series 1 revisions are small for all three methods, which is not surprising, since the series
 displays very little seasonality. For Series 2, which has stronger seasonality, again all methods
 are very stable, with X. 11 and MSX. 1 close together. For Series 3, 4 and 7, MSX. 1 is the most
 stable for the longer runs (columns 4-6), though twice X. 11 overtakes it in the 4th last year; and
 MSX. 1 is far more stable for the 7-8 year runs, since it selects fixed patterns. Series SA's results
 are contradictory: X. 11 does best by a small margin for the longer runs, but is by far the most
 stable for 7-8 years. MSX. l's poor showing in the latter case is due to its low values of 0 (see
 Table 2b), leading to high flexibility (Table 4). Finally, for Series 6 (longer runs) the order of
 stability is: BE, MSX.1, X.1 1, until the 4th last year is reached, when X.1 1 is best.
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 Summing up, if stability near the end of a series is more important than the average over the
 whole series, MSX. 1 does very well, in most cases. X. 11 is more stable on average over a whole
 series, but the largest revisions in the table occur with this method (over 3 per cent in column 2,
 Series 3 and 6). However, MSX.1 has two unsatisfactory features: firstly, it can become very
 unstable for a short series (Series 5A); and secondly, for bottom-heavy, or nearly bottom-heavy,
 models, the irregular component is much smaller than for the other methods, because so much
 goes into the trend. Consequently, it identifies fewer extremes in Series 4 (unemployment) than
 X. 11 or BE in the exceptionally cold winter of 1962-63, and the modifications are much smaller.
 The second defect does not seem very serious, because MSX.I is no less stable than the other
 methods for series 4 and 7.

 The instability in Series 5A is undoubtedly partly due to the remaining variability in March
 and April, but its behaviour does suggest two general lines for further research. Firstly, at what
 length of series does one start to estimate moving seasonality? For BE it is introduced at 7 years;
 and probably the same should apply for MSX. It would then be natural to introduce a lower
 bound for 0 in short series, which would be gradually relaxed as the length increased to (say) 10
 years; and above that it would be dropped.

 Secondly, a more fundamental point, the modification of extremes lowers 0 for every series,
 thus increasing flexibility and lowering stability. Examination of the preliminary and final
 seasonal components shows that modification of extremes nearly always produces a more
 flexible pattern in the months in which they occur. By contrast, with BE the smoothing
 parameters i vary both ways between preliminary and final seasonals, and the (simple) averages
 of these values are close together.

 7. EXTREMES, STABILITY AND RESIDUAL SEASONALITY

 If there are no prior reasons for expecting an extreme in certain months (e.g. strikes,
 exceptional weather), is there any evidence that extremes represent departures from normality?
 For the seven series in our sample, the absolute values of the residuals in MSX exceed 2u'r for 4-6
 per cent of the observations; but they exceed 2 56r for an average of 21 per cent of the
 observations-twice the expected proportion for a normal distribution. So the modification of
 extremes can be partly justified on the grounds that (with full replacement above 2-5a) they
 stand outside the process generating the main series. Against this must be set the size of revisions
 to estimates of the extremes, which are the immediate cause of the instability of the seasonal
 component in certain cases.

 Is there any trade-off for the lower stability caused by modifying extremes? Stability is only
 one half of performance; the other half is the absence of residual seasonality. There is no
 generally accepted test of the latter. Idempotency is one possibility (Fase, Koning and Volgenant,
 1973)-running an adjusted series through the same procedure again. Another (used in BE) is to
 calculate von Neumann ratios for the residuals of each month, and to check whether the number
 of significantly low ratios in a group of series exceeds the number expected. Yet another test is to
 see if the spectrum of an adjusted series is smooth and removes no power at inter-seasonal
 frequencies. Spectra were estimated for the three seasonally adjusted versions of each full-length
 series, and proved to be very close together-the only interesting feature being the appearance
 of the predicted Grether-Nerlove "dips" at some of the seasonal frequencies. (Copies of the
 charts may be obtained from the author.)

 The method finally chosen for testing residual seasonality was as follows: fit a non-seasonal
 ARIMA model to each seasonally adjusted series, and calculate r12, r24 and r36 for the residuals;
 then the analogue of the Ljung-Box test is

 3

 QS=nn+) rj/n -l12j)
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 where n is the number of terms in the differenced series. The probability distribution of QS is not
 known exactly-see Pierce (1976); it is thought to lie between X2(2) and X2(3) for a one-parameter
 model, most probably close to X2(3). Table 6 shows the values of QS for each method, using Series
 2-7: first, the preliminary seasonal adjustments applied to the original series; second, the final
 seasonal adjustments applied to the modified series. All but one of the r12 are negative, three-
 quarters of the r24 and all the r36-this apparent "over-adjustment" is the time-domain
 equivalent of the Grether-Nerlove effect. We note first that the large majority of the series have

 QS significant at the nominal 1 per cent level, but since the true distribution is unknown, it is
 difficult to draw any conclusions from this. Secondly, it is remarkable that, for X. 11, QS increases
 from the preliminary to the final round. For BE and MSX, QS goes in both directions, but the
 shift is small with MSX. 1 for Series 4 and 7, for which the estimated extremes are small; and for
 Series 5A the instability noted for this method in Table 5 is accompanied by a worsening of Q,
 Thirdly, the final adjustments for BE have consistently lower residual seasonality than either
 MSX.1 or X.11.

 TABLE 6
 Residual seasonality test (QS)

 Series

 2 3 4 5A 6 7

 MSX.1 Preliminary 15 741: 15 431: 18 621: 13 021: 20-06: 10O88t
 Final 12781: 11 13t 18091: 18801: 21-671: 11 09t

 MSX.2 Final 11.771: 7 07 15 461: 16631: 10O86t 7 85
 BE: Preliminary 12-09: 12 73: 1 81 7 91 11-49t 19 691:

 Final 583 I-lot 673 1444: 331 1034t

 X.I1: Preliminary 12 611: 20 19: 7-80 15 96: 24-911: 28 43:
 Final 15-94: 30 85: 12-81: 19 42: 27 37: 33 37:

 t Significant at 5 per cent point for X2(3).
 t Significant at 1 per cent point for x2(3).

 Since MSX. 1-modifying extremes and re-estimating the model-does not show a uniform
 reduction in Q, a better trade-off between stability and residual seasonality may be possible.
 MSX.2 is defined to be the same as MSX.1 up to the modification of extremes: but the
 preliminary parameter values are used again on the second round to obtain forecasts and
 backcasts. Table 6 shows, surprisingly, that MSX.2 has lower QS values than the final seasonals
 of MSX. 1. Referring back to Table 5, MSX.2 has almost the same stability as MSX. 1 for Series 1,
 but is slightly better for Series 2. For Series 3 MSX.2 is definitely more stable on the longer runs,
 but less on the shorter ones, because there is not a fixed seasonal pattern on the first round of
 estimation. For Series 4 and 7 there is little difference between the two variants, as the identified
 extremes are small. The same is true of Series SA, except for the 7- and 8-year runs, where the
 marked improvement stems from avoidance of low 0 values. Finally, for the longer runs of
 Series 6 there is a dramatic improvement: it is now nearly as stable as BE.

 We conclude that MSX.2 is to be preferred, and that its stability for recent observations is
 substantially better than that of X. 11, except in the case of Series SA. MSX.2 is, of course, quicker
 to run than MSX.1: for example, on an IBM 370/158, a 12-year monthly series takes about 8
 seconds CPU time (provided reasonable starting values of the model parameters in the
 estimation can be obtained). This compares with 7 seconds for X. 11 and 6 seconds for BE.
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 8. BOTTOM-HEAVY MODELS

 When this paper was virtually complete, it was realized that there was a simple way of
 moving more of the high frequency spectral power from the trend to the irregular, which could
 be applied to bottom-heavy models (Series 4 and 7). Using the notation of Section 3, we first

 observe that g,c(w) declines more slowly towards its minimum (say 80) at w = ir than it does for
 balanced models. We therefore assume that the irregular component may follow a first order

 moving average: es +.c + cl(1 + cos w); and determine el by minimizing {gm(W) - o}/(A + cos w).
 In the two cases examined so far, the minimum of the latter expression is also at w = 7r, so the
 final trend spectrum-

 gM(cw) = g.(w))-so-E l( 1 + cos co)

 is still monotone decreasing. The new values of w0 (see Table 3) for Series 4 and 7 are 0 45 and
 0 54, and the new values of Cr/Ca are 0 21 and 0 29 respectively. The average magnitudes of the
 extremes are now only a little less than those of X. 11 and BE, though the individual extremes
 picked out by the three methods are not always the same.

 The above procedure could be applied to remove still more from the trend, if a second order
 moving average were acceptable for the irregular component.

 9. CONCLUSIONS

 What conclusions can be drawn at this stage about the use of Signal Extraction for seasonal
 adjustment? Obviously they must be very tentative until a much larger number of series has
 been tested:

 (i) Trend and seasonal signal extraction filters can be derived for all suitable seasonal
 ARIMA models; and, although these filters are doubly infinite, their effect on the original
 series can be obtained by simple finite operations. It is desirable to replace or modify
 extreme values of the series and re-apply the filters (Section 4).

 (ii) Fitting ARIMA models to a large number of series is quite practical: first using the

 standard (0, 1, 1) (0, 1, 1). model and then extending it to the (1, 1, 2) (0, 1, 1). family, if
 the diagnostic checks suggest it. For the latter, the non-seasonal operator is
 automatically simplified to (1, 1, 1) or (0, 2, 1) if appropriate. Initially some skilled
 resources are needed for model identification, but thereafter the same model can
 generally be used for a number of years.

 (iii) Only one seasonal operator is needed in practice, but there is some variety of non-
 seasonal operators, leading to balanced, top-heavy or bottom-heavy models. For
 bottom-heavy models, too much of the current observation is absorbed into the trend,
 compared with X. 11 and the Bank of England method, resulting in implausibly small
 modifications for extreme values. This "defect" can probably be overcome by assuming
 a moving average irregular component (Section 8).

 (iv) For short series the seasonal model may be degenerate, implying a fixed seasonal
 pattern, so that the adjustment consists simply of subtraction of seasonal means.

 (v) Generally, both signal extraction (MSX) and the Bank of England method are less
 flexible than X. 11 and give considerably smaller revisions to the last 3 years of a series,
 without leaving any more residual seasonality than X. 11. MSX often produces larger
 average revisions than X. 11 over the whole series (except in the case of the shorter series
 where a fixed seasonal pattern is obtained). However, this disadvantage could be
 nullified by a sensible publication policy: for example, in official publications no
 amendments (solely due to revised seasonal adjustment) would be made to data more
 than 4 years' old; but complete revisions could be made available to research workers
 on request.
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 (vi) MSX.2, which omits re-estimation of the model parameters, seems to be more stable
 and, at the same time, leaves less residual seasonality than MSX. 1 (which includes re-
 estimation).

 (vii) For shorter series-under 7 years-probably no attempt should be made to find
 moving seasonality. For intermediate lengths (7-10 years) some lower bound could be
 placed on the values of 0, to improve stability, and this restriction would be gradually
 relaxed as the series lengthened.

 (viii) Signal extraction is now ready for large-scale trials by other statisticians. Progress
 from ad hoc to more theoretically optimal methods of seasonal adjustment could be
 rapid in the next few years.
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 APPENDIX: TUNNICLIFFE WILSON ALGORITHM

 Let G(B) = go + g I B... + gr B' and C(B, F) = co + c (B + F) ... + c(B + FP). From (9):

 0(F) G(B) + 0(B) G(F) _ C(B, F).
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 Equating coefficients of Br, Br-1, etc.,

 00 gr + Or go Cr,

 01 gr + 00 gr- 1 + Or g 1 + Or- 1 90 = Cr- 1

 2(0r gr + Or-1 gr-1.. +00 g0) ?C

 So if A is defined as

 00 0 ... ... 0 . . 0 Or

 01 00 0 ... O 0 ... 0 Or Or-O1

 A= . . . . . + .

 Or Or-1 ... 00 Or Or-1 . - 00
 The equations become

 A(gr gr- 1... o)' = (Cr Cr- 1, *CO)-

 (The ordering of the matrix columns puts ones in most elements of the leading diagnonal for
 easier inversion.)

 For the second stage, let D*(B) = 00 + 01 B ... + /p BP (with p written for p*). Equations
 (10) are (with q written for q*):

 00 01 .. 0q 0 ... ... 0 XN+q-p+ 1 WN+q-p+ 1

 0 0001 .... Oq 0 ... 0

 0 ... 0 00 01 .q XN+q _ WN+q

 p 4 0 0... 0 0
 0 4p .& 0 ... 0

 0 ... 0 p.&. k00 XN+2q 0

 -The matrix is of order (p* + q*) and has ones in the leading diagonal.

This content downloaded from 193.204.90.105 on Thu, 01 Jun 2017 07:49:30 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. [321]
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332
	p. 333
	p. 334
	p. 335
	p. 336
	p. 337

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series A (General), Vol. 143, No. 3 (1980) pp. 219-381+i-iii
	Front Matter [pp. ]
	Statutory and Recommended List Trials of Crop Varieties in the United Kingdom [pp. 219-252]
	Identification Keys and Diagnostic Tables: A Review [pp. 253-292]
	A Statistical Analysis of Megalithic Data Under Elliptic Pattern [pp. 293-302]
	Chi-Squared Tests with Survey Data [pp. 303-320]
	Seasonal Adjustment by Signal Extraction [pp. 321-337]
	Conjectured Models for Trends in Financial Prices, Tests and Forecasts [pp. 338-362]
	A Note on Labouchere Sequences [pp. 363-366]
	A Note on the Accuracy of Forecasting: Opinion Polls [pp. 367-368]
	Reviews
	Review: untitled [pp. 369-370]
	Review: untitled [pp. 370]
	Review: untitled [pp. 370-371]
	Review: untitled [pp. 371]
	Review: untitled [pp. 371-372]
	Review: untitled [pp. 372]
	Review: untitled [pp. 372-373]
	Review: untitled [pp. 373]
	Review: untitled [pp. 373-374]
	Review: untitled [pp. 374]
	Review: untitled [pp. 374-375]
	Review: untitled [pp. 375-376]
	Review: untitled [pp. 376]
	Review: untitled [pp. 376-377]
	Review: untitled [pp. 377-378]
	Review: untitled [pp. 378]
	Review: untitled [pp. 378-379]
	Review: untitled [pp. 379-380]
	Review: untitled [pp. 380-381]
	Review: untitled [pp. 381]

	Back Matter [pp. ]



